

SuperKEKB and Belle II status, and prospects on two-photon physics

B.Shwartz, on behalf of BELLE II collaboration

Budker Institute of Nuclear Physics Novosibirsk State University Novosibirsk, Russia

05.06.2019

The primary goal of the Belle and BaBar experiments was to discover the CP violation in B mesons and to measure the parameters of CPV. This was achieved by both experiments in 2001

However, a lot of other important results were obtained

- •Observation of direct CP violation in B decays
- •Measurements of the CPV parameters in different modes (ϕK^0 , $\eta' K^0$, $K_s K_s K_s$, ...)
- •Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$)
- •Observation of new charmonium-like and bottomonium-like hadronic states
- •b \rightarrow s transitions: probe for new sources of CPV and constraints from the b \rightarrow s γ branching fraction
- •Forward-backward asymmetry (A_{FB}) in b \rightarrow sl⁺l⁻ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- •Search for lepton flavour violation in τ decays
- •Study of the hadronic τ decays
- •Precise measurement of the hadronic cross sections in $\gamma\gamma$ and e⁺e⁻(γ_{ISR}) processes

So wide researches area become possible because of clean event environment and well defined initial state in the e⁺e⁻ experiments as well as high luminosity and general purpose detectors

Two-Photon Measurements at Belle

	GeV	cost*	fb-1	Ref.	year
γ J/ψ	3.2 - 3.8		32.6	PLB540, 33	2002
π+π-	2.4 - 4.1	0.6	88	PLB15, 39	2005
	0.8 -1.5	0.6	86	PRD75, 051101	2007
				JPhySocJpn76, 074102 2007	
K+K-	1.4 - 2.4	0.6	67	EPJC32, 323	2003
	2.4 - 4.1	0.6	88	PLB15, 39	2005
ppbar	2.0 - 4.0	0.6	89	PLB621, 41	2005
4 mesons	2.75 - 3.75		395	EPJC53, 1	2006
KsKs	2.4 - 4.0	0.6	398	PLB651, 15	2007
	1.05 - 4.0	0.8	972	PTEP2013, 123C01	2013
π0π0	0.6 - 4.0	0.8	95	PRD78, 052004	2008
	0.6 - 4.1	0.8	223	PRD79, 052009	2009
ηπ0	0.84 - 4.0	0.8	223	PRD80, 032001	2009
ηη	1.096 - 3.8	1.0	393	PRD82, 114031	2010
$\omega J/\psi$	3.9 - 4.2		694	PRL104, 092001	2010
φ J/ψ	4.2 - 5.0		825	PRL104, 112004	2010
ωω,ωφ,φφ	thr - 4.0		870	PRL108, 232001	2012
η'π+π-	1.4 - 3.4		673	PRD86, 052002	2012
π0	Q2ɛ[4,40]GeV2		759	PRD86, 092007	2012
π0π0	Q2<30GeV2	on 2010 I	759 Trascoti	PRD93, 032003	2016
ppbarK+K-	3.2 - 5.6	011 2019, 1	980	PRD93, 112017	2016

Recent results from twophoton processes at Belle – the talk of Wenbiao Yan at this conference

05.06.2019

05.06.2019

Design Concept of SuperKEKB

- Increase the luminosity by 40 times based on "Nano-Beam" scheme, which was first proposed for SuperB by P. Raimondi.
 - Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (× 20)
 - Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A}$ (× 2)
 - Beam-beam parameter: $.09 \rightarrow .09$ (× 1)

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \left(\frac{I_{\pm}\xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right) \right) = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

Beam energy: 3.5/8.0 → 4.0/7.0 GeV

LER : Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering HER : Lower emittance and lower SR power

	E (GeV)	β* _y (mm)	β* _x (cm)	φ	I (A)	L (cm ⁻² s ⁻¹)
	LER/HER	LER/HER	LER/HER	(mrad)	LER/HER	
KEKB	3.5/8.0	5.9/5.9	120/120	11	1.6/1.2	2.1 x 10 ³⁴
SuperKEKB	4.0/7.0	0.27/0.30	3.2/2.5	41.5	3.6/2.6	80 x 10 ³⁴

05.06.2019

Demands on the detector

Total cross section and trigger rates with $L = 8 \times 10^{35}$ cm⁻² s⁻¹ from various physics processes at Y(4S).

Physics process	Cross section (nb)	Rate (Hz)
Y (4 S) → B B	1.2	960
Hadron production from continuum	2.8	2200
μ+μ_	0.8	640
t^+t^-	0.8	640
Bhabha (θlab> 17°)	44	350 ^(a)
γγ (θlab> 17°)	2.4	19 ^(a)
2γ processes (θlab> 17°, pt > 0.1GeV/c)	~80	~ 15000
Total	~130	~20000

(a) rate is pre-scaled by a factor of 1/100

Beam-related backgrounds are 10-20 x KEKB. Radiative Bhabha, Touschek scattering, 2-photon *Fake hits, pile up, radiation damage*!!

The requirements for the trigger system are:

- 1. high efficiency for hadronic events;
- 2. maximum average trigger rate of 30 kHz;
- 3. fixed latency of about 5 µs;
- 4. timing precision of less than 10 ns;
- 5. minimum two-event separation of 200 ns;
- 6. trigger configuration that is flexible and robust.

05.06.2019

Belle II Detector

EM Calorimeter: CsI(Tl), waveform sampling electronics (barrel)

electrons (7GeV)

Central Drift Chamber Smaller cell size, long lever arm

Vertex Detector 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers)

positrons (4GeV)

Particle Identification Time-of-Propagation counters (barrel) Prox. focusing Aerogel RICH (forward)

SuperKEKB/Belle II Interaction Region

2 layers of DEPFET pixel sensors in the innermost part
4 layers of double-sided silicon strip sensors

Low material VXD (0.16% X₀ for layer 1)
 Closer to the IP
 Vertex detector only tracking possible

		Belle II	Belle
Beam Piper = DEPFET		10mm	15mm
	Layer 1	r = 14mm	
	Layer 2	r = 22mm	
DSSD			
	Layer 3	r = 38mm	20mm
	Layer 4	r = 80mm	43.5mm
	Layer 5	r = 104mm	70mm
	Layer 6	r = 135mm	88mm

DEPFET pixel sensor

longer lever arm Improved momentum resolution and dE/dx

 $\sigma_{P_t}/P_t = 0.19P_t \oplus 0.30/\beta$ $\sigma_{P_t}/P_t = 0.11P_t \oplus 0.30/\beta$

PXD: excellent spatial granularity

(resolution $\sim 15 \,\mu m$) low material (0.16%X0 for layer 1) **but** significant amount of background hits, huge data rate.

SVD: precise timing (2–3 ns RMS) but has ambiguities in space due to 1D

strip.

Combining both yields a very powerful

small cell

	Belle	Belle II
inner most sense wire	r=88mm	r=168mm
outer most sense wire	r=863mm	r=1111.4mm
Number of layers	50	56
Total sense wires	8400	14336
Gas	He:C ₂ H ₆	He:C ₂ H ₆
sense wire	W(Φ30μm)	W(Φ30μm)
field wire	Al(Φ120μm)	Al(Φ120μm)

Particle Identification in Belle II

Cherenkov ring imaging with precise time measurement.

Device uses internal reflection of Cerenkov ring images from quartz like the BaBar DIRC

Cherenkov angle reconstruction from

 Aerogel RICH (endcap PID) RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices -> Cherenkov images from individual layers overlap on the photon detector.

Hamamat su HAPD

6.6 σ π/K at 4 GeV/c !

05.06.2019

BELLE Electromagnetic Calorimeter

CsI(Tl) crystals

 $L_{cr} = 30 \text{ cm} = 16.2 X_0$

Number of crystal: Total weight is ~43ton

8736

Modification of the electronics.

Pipe-line readout with waveform analysis:

◆16 points within the signal are fitted by the signal function F(t): $F(t) = H \cdot f(t-t_0)$

♦ Both amplitude (H) and time (t_0) are obtained by the on-line shape fit.

- **Calorimeter successfully worked for more than 10** years since 1999 to 2010
- All 8736 channels are operable
- It demonstrated high resolution and good performance.

05.06.2019

The Geography of the International Belle II collaboration

Belle II now has grown to ~900 researchers from 26 countries

05.06.2019

SuperKEKB and Belle II status and plans

Vertical beam size (measured by the luminosity scans with diamond detectors (Phase 2)

IR Z size (Phase 2)

At Phase 2 peak luminosity of 5 x 10³³/cm²/sec⁻1, the vertical spot is ~700nm high. There is still beam-beam blowup at high currents. At low currents, the vertical spot size is 330 nmhigh (the final goal is O(50nm) with full capability of the QCS system). 05.06.2019 Photon 2019, Frascati, Italy

Current Luminosity status

05.06.2019

Phase 2 results - photons

Phase 2 results - tracking

 $K_S \rightarrow \pi^+\pi^-$

05.06.2019

Study of Two-Photon Physics at Belle II

Belle II Advantages For Two-photon processes:

- Much higher (integrated) luminosity (up to 50 x)
- Better momentum resolution and identification
- Improved trigger efficiency due to more sophisticated neutral trigger

Most interesting two-photon studies:

Transition form factors of $\pi 0$, η and η ' mesons via single and double tagged events. These are particularly important for lightby-light contribution to muon (g-2); Study and search for charmonium and charmonium-like states in the two photon collisions

the two-photon collisions.

 $\gamma\gamma * \rightarrow \pi^0$ Single-tag π^0 production in two-photon process with a large-Q² and a small-Q² photon

 $|F(Q^2)|^2 = |F(Q^2,0)|^2 =$ $(ds/dQ^2)/(2A(Q^2))$ $A(Q^2)$ is calculated by QED $|F(0,0)|^2 = 64\pi\Gamma\gamma\gamma/\{(4\pi\alpha)^2 m_R^3\}$

π^0 Transition Form Factor

Belle II expectation

in 2012 Expected error size for Q2 -dependent (stat. and a part of sys. errors) component at Belle II 20 10 30 Q2 (GeV2

The pion transition form factor for the "asymptotic" (solid line) and different models The experimental data are from BaBar (circles), Belle [(squares) and CLEO (open triangles).

TFF of the light pseudoscalar mesons

Transition form factors $\gamma^* \gamma \rightarrow \eta$ (left panels) and $\gamma^* \gamma \rightarrow \eta'$ (right panels) compared to the LCSR calculation (Phys. Rev., D90(7), 074019 (2014)).

New-Charmonium (or XYZ) production

Important task is a serch for and study above 3.6 GeV: η c(2S), χ c2(2P), X(3915) and X(4350) (Discovered by Belle in B decays and two-photon processes) Now statistics is limited <~100 evt.

And search for exotic baryons in γγ→pp K+K-Photon 2019, Frascati, Italy

05.06.2019

Conclusion

•Last decade demonstrated the fruitfulness and efficiency of the flavor "factory" approach in the particle physics.

•Huge amount of results was obtained at the B-factories, but many new questions appeared and the large field of researches will be opened by the super B factory.

•High luminosity to be brought by SuperKEKB/Belle II will make various analyses possible for two-photon physics:

•QCD test with exclusive processes at High-W, at High-Q2, with Single and Double tag ...

•Charmonia/XYZ above 3.6 GeV