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CHAPTER 1

NEURAL NETWORKS

1.1 Preparation of Input Data

A proper pre-processing of input vectors is considered to be crucial for the perfor-
mance of machine learning techniques [1]. The normalization or standardization
of a data set are two popular pre-processing procedures. Both techniques were
tested in order to optimize the application of neural networks for this thesis.

Normalization scales all variables in an input vector to the range [0, 1]:

xj,norm =
xj − xmin

xmax − xmin

(1.1.1)

where xmin /xmax is the minimal/maximal value of a given dataset and xj/xj,norm is
the j-th value of this data set before/after normalization. With all input variables
scaled to a common range, the dominance of one input feature over the others
is prevented. In the context of PXD cluster properties cluster charge values are
about one order of magnitude higher than cluster size properties. The impact of
charge values on the response of a neural network will therefore overshadow the
influence of cluster size values, if no normalization is performed. The disadvantage
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Chapter 1. Neural Networks

of normalization is the compression of the majority of input vectors to a small
range, which is particularly harmful if outliers are present.

Standardization scales the input data according to the mean µ and the standard
deviation σ of the dataset:

xj,std =
xj − µ
σ

. (1.1.2)

The new distribution has a mean at zero and unit variance. The standardized data
set is unbounded. Consequently, some input features might exert a higher influence
than others. This hierarchy of input features can be overcome or even modified
to suit certain requirements by assigning weights to the individual features. The
neural networks presented in this thesis are trained on standardized input sets.

1.2 Feedforward Neutral Networks

Feedforward Neutral Networks (FNNs) are a form of supervised learning. Neurons
are arranged in layers, which are connected among each other. In contrast to
recurrent neural networks, the connections do not form loops [2].

The input or sensor neurons, colored in orange, are activated by their environment
consisting of external data. Neurons in the hidden layer, displayed in green, are
activated by weighted connections to the input neurons. Networks featuring hidden
layers are also referred to as Multilayer Perceptron (MLP). The amount of hidden
layers can be arbitrarily high. Neurons in each hidden layer are connected to
the neurons in the layers before. The last layer, displayed in blue, is referred to
as output layer. It delivers the response of the network to an external entity.
All connections are unidirectional i.e. the flow of information proceeds only in
the direction towards the output layer. The training process of the network is
discussed in the following Section.

1.2.1 Activation of Neurons and Training

The response of a single neuron to a stimulus is determined by its activation
function. Typically non-linear bounded activation functions with a real-valued
output are chosen. Popular choices for the activation function are the hyperbolic
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Chapter 1. Neural Networks

Figure 1.1: Schematic representation of a simple Feedforward Neural Network.
The network consists of neurons in the input layer (colored in orange), which are
connected to the purple neurons in the hidden layer /green). In turn these neurons
share connections to the blue neurons in the output layer. The flow of information
proceeds from the input layer, activated by external data, towards the output layer
delivering the response of the network.

tangent t(xi) = tanh(xi), the sigmoid function σ(xi) = 1/(1 + e−xi) or a rectifier
r(xi) = max(0, xi) where xi is the input received from a predecessor neuron or
external data.

During training/learning the weights between the neurons are adjusted in order to
optimize the response of the network. The back propagation algorithm is commonly
employed for this purpose [3]. For a set of N training vectors xi the response yi

of the neural network is computed. The disagreement between yi and the desired
result ŷi is used to define a so-called error or loss function E. The geometrical
distance between actual and desired output of the network, for instance, can be
used as error function:

E(x1, ...,xN) =
1

2

N∑
i=1

(yi − ŷi). (1.2.1)

The error function is minimized with respect to the weights wi. A gradient descent
can be used for this purpose:

w(j+1) = wj − l · ∇wE (1.2.2)

where w(j) is the set of weights in the j-th iteration, wj, l is the learning rate and
∇wE is the derivative of the error function with respect to the set of weights.
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Chapter 1. Neural Networks

1.3 Self-Organizing Maps

Self Organizing Maps (SOMs) apply competitive learning in order to provide a low-
dimensional discretized representation of high-dimensional input vectors. Despite
the reduction in dimensionality, SOMs preserve the topology of the input to the
best degree possible [4].

During training a topologically correct map of the high-dimensional input signal
is formed by the lower-dimensional processing units, which are often referred to
as nodes. A local feedback is responsible for the self-organized mapping process.
A SOM is categorized as an unsupervised learning algorithm, since no comparison
with a desired output is required.

In the following Section the mathematical concept of SOMs is sketched. A detailed
description [5] and a more rigorous mathematical treatment [6] are listed in the
bibliography.

1.3.1 Definitions

SOMs consist of two mathematical spaces: a node space of dimension n and a
feature space of dimension m. For visualization purposes the dimension of the
node space is commonly chosen to be n = 1 or n = 2. There are N nodes in node
space, which sit at a fixed position r(n) ∈ Rn.

Each node is associated with a feature vector (sometimes referred to as weight
vector) of dimensionm. The position r(m) ∈ Rm of the feature vectors is constantly
modified during the learning process as will be explained below.

The input signal consists of vectors r(x) ∈ Rm. The dimension of the input vectors
is therefore equal to the dimension of the weight vectors.

1.3.2 The Learning Algorithm

The neural network is trained by adapting the weight vectors according to the
input vectors. For the i-th input vector r(x)i = (x1, x2, ..., xm) ∈ Rm the distance
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Chapter 1. Neural Networks

under a certain metric 1 to all weight vectors r(m) of the map is determined. The
winner vector r(m)

w is defined as the weight vector with the smallest distance to
the input vector:

‖r(x)i − r
(m)
w ‖ = minj(‖r

(x)
i − r

(m)
j ‖) (1.3.1)

The corresponding node to this weight vector is consequently called winner node
r(n)w . A local feedback is given to the nodes in a specified region around the winner
node. Their associated weight vectors are shifted from their current position r(m)

j (t)

to the position r(m)
j (t+ 1) according to:

r
(m)
j (t+ 1) = r

(m)
j (t) + hw,j(t)(r

(x)
i − r

(m)
j (t)) (1.3.2)

where the subscript j denotes the j-th weight vector. The parameter t labels each
step with an integer number. The initial position of the weight vectors has an
impact on the convergence behavior. Nevertheless, this impact is neglected for
now and the initial position is chosen randomly.

The function hwj(t) is termed neighborhood function. It determines the local re-
laxation process of the map. The function hwj(t) is monotonically decreasing with
increasing time. In addition, with increasing distance from the j-th node to the
winner node, the neighborhood function hwj(t) decreases as well. While weight
vectors associated with nodes in the near vicinity of the winner node are adapted
the most, the weight vectors of distant nodes are not activated. For practical
purposes the neighborhood function is chosen such that 0 < hwj(t) < 1.

Most commonly a Gaussian kernel:

hwi(t) = α(t) exp

(
−‖r

(n)
w (t)− r(n)i (t)‖2

2σ2(t)

)
(1.3.3)

is applied. In the next Section the application of other kernels is briefly discussed.
The time-dependent parameter α(t) is considered to be the current learning rate.
The width of the Gaussian kernel σ(t) determines the range of the relaxation
process. In order to ensure the monotonic decrease of Eq. 1.3.3 with increasing
time, the parameters α(t) and σ(t) have to be chosen accordingly.

The choice of α(t) and σ(t) is usually guided by intuition as well as trial and error.

1Even though all metrics are equal in a finite dimensional space, the choice of the metric can
influence the convergence behavior.
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Chapter 1. Neural Networks

The expressions:

α(t) = α0(1−
t

tmax

) (1.3.4)

σ(t) = σ0(1−
t

tmax

) (1.3.5)

have turned out to be reasonable choices [7]. Only the constants α0, σ0 and tmax

remain to be determined for the specific application. In this thesis the constants
are fixed to be:

α0 = 0.01

σ0 = 7

tmax = 200000

1.3.3 Alternative Learning Functions

Apart from the Gaussian kernel introduced in the previous Section, two different
learning functions are tested in this thesis. The first one is a constant kernel with
an extension equal to a width σ, the other one resembles a ’Mexican hat’ and is
given by:

h(t) = (1− 2p

2πσ2 )e
− p

2πσ
2 (1.3.6)

where p is given by:

p = ‖r(n)w,x(t)− r(n)i,x (t)‖2 + ‖r(n)w,y(t)− r
(n)
i,y (t)‖2 (1.3.7)

where the second index indicates the spatial dimension in node space. The Gaus-
sian kernel turned out to deliver the best results. It is chosen as neighborhood
function for all SOMs presented in this thesis based on this empirical observation.
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CHAPTER 2

COMPOSITION OF INPUT VECTOR
FOR NEURAL NETWORKS

2.1 Image Moment Analysis

Visual pattern recognition on the basis of image moment invariants has proven
to be a valuable tool in computer vision and image analysis [8]. In the following
Section the application of image moments for the characterization of PXD clusters
is discussed.

Zernike moments [9] have proven to be a successful technique for the classification
of shower shapes in calorimeters [10]. Zernike moments are invariant under rotation
but depend on the scaling and translation of objects. A more general scheme for
constructing a complete set of independent image invariants was first introduced
by Flusser [11, 12]. Image moments invariant under scaling, rotation, skewness,
kurtosis etc. can be derived from his theorems. There is no universal answer as
to which image invariants should be used for a cluster analysis. In some cases,
for instance, the rotation of a cluster with respect to the global z-axis can contain
valuable information, which are lost, if rotation invariants are used to describe the
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Figure 2.1: Image moments φ1 (left-hand side) and φ6 (right-hand side) for anti-
deuterons and Phase III background. While the distributions for φ1 are distin-
guishable, the variable φ6 has no discriminatory power.

cluster. A pre-evaluation based on physical considerations and prior experimental
evidence of cluster properties for a specific analysis is required. In this thesis
results for image moments invariant under rotation and translation are shown.
The choice is motivated by the desire to keep the well-established application of
Zernike moments, which are also invariant under rotation, while extending them
to achieve independence from spacial translations.

Image moments are constructed from the complex moments cpq:

cpq =
∑
x

∑
y

(x+ iy)p(x− iy)qf(x, y). (2.1.1)

where cpq is the image moment of order (p+q). The sum runs over the set of input
pixels (x, y). The charge of each pixel is encoded in the function f(x, y).

According the Flussner, a complete set of independent rotation/translation invari-
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Chapter 2. Composition of Input Vector for Neural Networks

Figure 2.2: Accuracy against training epoch for training and testing set. The input
vectors consist of the seven image moments presented in this Section. A cut at
0.5 on the classification axis is set to determine the accuracy. The accuracy for
the training set is increasing slightly. The accuracy for the testing set oscillates
between ∼0.7 and ∼0.3.

ants are given by:

φ1 = c11

φ2 = c20c02

φ3 = c30c03

φ4 = c21c12

φ5 = Re(c30c
3
12)

φ6 = Re(c20c
2
12)

φ7 = Im(c30c
3
12)

(2.1.2)

In Fig. 2.1 the image moments φ1 and φ6 for anti-deuterons and Phase III back-
ground are shown. While the variable φ1 exhibits some discriminatory power,
the φ6 distribution for anti-deuterons and background is indistinguishable. Distri-
butions for the the entire set of invariants considered for this thesis is shown in
Fig. 2.3 at the end of this Section. The application of image moments turned out
to perform significantly worse than the other types of input vectors. The distribu-
tions in Fig. 2.3 demonstrate that all of the seven invariants are very similarly for
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Chapter 2. Composition of Input Vector for Neural Networks

anti-deuterons and background. In Fig. 2.2 the accuracy as a function of train-
ing epoch for a training and testing set is depicted. The input vectors consist of
the seven image moments. A cut at 0.5 on the classification axis is set. While
the accuracy for the training set increases slightly, it scarcely surpasses 0.5. The
accuracy for the testing set oscillates between ∼0.7 and ∼0.3.
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Figure 2.3: Entire set of image moments considered for this thesis. The distribu-
tions for each image moment for anti-deuteron and background clusters is shown.
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Chapter 2. Composition of Input Vector for Neural Networks

2.1.1 Smallest Enclosing Ellipse

The assignment of a smallest enclosing ellipse to clusters allows for the extraction
of features such as cluster length, eccentricity, skewness etc., which might serve as
input for neural networks.

There are several algorithms to obtain an ellipse, which encloses a set of data
points [13, 14]. In the following the Direct least square fit [15] is introduced as an
example.

Conic sections are defined as a set of points x̂ satisfying the equation:

F (a, x̂) = D · a = 0 (2.1.3)

where a and D are defined as a = (ax,x ax,y ay,y ax ay a1)
T and D = (x2 xy y2 x y 1)

for data points xi = (x, y)i in x̂ [16]. The function F (a, x̂) is also referred to as
algebraic distance. The fitting of a general conic to N data point xi i = 1, ..., n is
approached by minimizing the square of the algebraic distances:

∆(a, x̂) =
N∑
i=1

F (a,xi)
2. (2.1.4)

It can be shown [17], that this condition is equivalent to:

∆(a, x̂) =
N∑
i=1

aTDT
i Dia = aTSa (2.1.5)

where S =
∑N

i=1 D
T
i Di is a 6 x 6 matrix.

In the special case of an ellipse the vector a has to satisfy the condition

4ax,xay,y − a2x,y > 0 (2.1.6)

which can be written as matrix equation [15, 18] by introducing the 6 x 6 matrix
C, with all entries equal to zero except for C1,3 = C3,1 = 2 and C2,2 = −1:

aTCa > 0 (2.1.7)

aTCa = φ (2.1.8)

where φ is a positive number. The last condition holds, since F (a, x̂) = 0 is
independent of scaling in a.
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Chapter 2. Composition of Input Vector for Neural Networks

Consequently, the vector a has to be chosen such that ∆(a, x̂) is minimal under
the constraint aTCa = φ. In terms of Lagrange Multipliers this is written as:

L(a) = ∆(a, x̂)− λ(aTCa− φ) (2.1.9)

where L(a) is the Lagrange function and λ is a Lagrange multiplier. Setting
∂aL(a) = 0 one obtains the eigenvalue equation:

1

λ
a = S−1Ca. (2.1.10)

The pixel positions belonging to a cluster xi = (x, y)i are used as input to the
eigenvalue equation to obtain the smallest ellipse around the cluster.

Ellipse parameters

The fit of the smallest enclosing ellipse yields the vector a. The following section
demonstrates how the properties of the fitted ellipse are inferred from a.

The angle of rotation α with respect to the x coordinate is given by

α =
1

2
arctan(

ax,y
ax,x − ay,y

). (2.1.11)

In order to express the length of the major and minor axis of the ellipse in terms
of a, the following substitutions are used: a, b, c, d, e, f , g = ax,x, ax,y/2, ay,y,
ax/2, ay/2, a1 The length of the axes are defined as:

lmajor =

√√√√ 2(af 2 + cd2 + gb2 − 2bdf − acg)

(b2 − ac)(
√

(a− c)2 + 4b2 − (a+ c))
(2.1.12)

lminor =

√√√√ 2(af 2 + cd2 + gb2 − 2bdf − acg)

(b2 − ac)(−
√

(a− c)2 + 4b2 − (a+ c))
(2.1.13)

The eccentricity ε is obtained by computing:

ε =

√
1− b2

a2
. (2.1.14)

In Fig. 2.4 examples of clusters fitted with smallest enclosing ellipses are shown.
The x coordinate in the above equations corresponds to the local v coordinate and
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Figure 2.4: Smallest enclosing ellipse (cyan line) fitted to PXD clusters with size
three. The ellipses do not capture the entire extend of the cluster.

y to the u coordinate in the local PXD coordinate system. The center of the cluster
is shifted to (u, v) = (0, 0). A smallest enclosing ellipse is expected to preserve
the orientation of the cluster in the uv plane. Additionally, all pixels belonging
to the clusters should be located within the ellipse. The second condition is not
fulfilled by the two ellipses shown in Fig. 2.4. The spatial extend of the pixels is
not taken into account since the fit routine only receives information about the
center of the pixels. The issue could be remedied by including information about
the boundaries of the cluster. This would require pre-processing of every single
cluster prolonging the computation.

The first condition can be compromised as well for large clusters as shown in
Fig. 2.5. Additionally, the implementation of the algorithm turned out to be
numerically unstable due to the computation of the inverse for Eq. 2.1.10. In the
worst cases the fit does converge, but the agreement between data and ellipse is
insufficient (see Fig. 2.5). An additional algorithm to detect the goodness of the fit
is required to prevent a mismatch between cluster and fitted ellipse. An increase of
the computational difficulty and expense is the consequence. There are, however,
suggestions how the numerical stability of the least square fitting of ellipses can
be improved [19].
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Figure 2.5: Smallest enclosing ellipse (cyan line) fitted to PXD clusters with size
six (left-hand side) and size seven (right-hand side). The ellipses do not adopt the
orientation of the cluster.

2.1.2 Cluster Angle - Principal Component Analysis

A Principal Component Analysis (PCA) [20,21] is performed in order to determine
the angle between a cluster and the global z axis.

The covariance matrix C of a cluster is given by:

C =

(
cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

)
(2.1.15)

where the covariance cov(x, y) is determined by:

cov(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)

n− 1
. (2.1.16)

n is the amount of pixels belonging to the cluster. For the i-th pixel, the x
coordinate xi and the y coordinate yi are subtracted from the respective mean,
which is obtained by computing:

x̄ =

∑n
i=1 xi
n

. (2.1.17)

Note that, cov(x, x) as well as cov(y, y) are per definition equal to the variance.
For a cluster with size n = 1 the PCA is not applied to avoid division by zero (see
Eq. 2.1.16).
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Figure 2.6: Cluster angle for anti-deuterons with p < 3GeV and background. Both
distributions exhibit a maximum at 0, which corresponds to clusters aligned with
the v axis. The occurrence of clusters with a non-zero angle is more common for
background than for anti-deuterons.

The principle components λ1 and λ2 are defined as the eigenvalues of the ma-
trix 2.1.15. The eigenvector a(λ1) with the largest eigenvalue λ1 is associated with
the major axis of a cluster. Accordingly the eigenvector with the lower eigenvalue
a(λ2) represents the minor axis. The orientation of a cluster is defined as:

α = arccos

 ax(λ1)√
ax(λ1)

2 + ay(λ1)
2

. (2.1.18)

As an alternative to calculating the geometrical angle of a cluster, the inputs to
the PCA could be weighted with the pixel charge yielding a charge-weighted angle.

In Fig. 2.6 the cluster angle for anti-deuterons with momentum below 3GeV and
background is depicted. Both distributions adopt a maximum at 0, which is equiv-
alent to a cluster parallel to the v/z axis. The occurrence of clusters, which
are unaligned with the v/z axis is strongly suppressed for both particles species.
Anti-deuteron clusters with non-zero angles, however, are more infrequent than
background clusters in accordance with the higher cluster size in u direction for
background clusters. The geometrical cluster angle can be partially reconstructed
from the cluster size in u and v direction. With increasing cluster size in u the
cluster angle approaches π/2 for a given size in v. The reason for the higher num-
ber of clusters with non-zero angle for background is therefore equivalent to the
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higher size in u direction: the off-vertex source of beam background particles.

The calculation of the cluster angle turned out to be numerically more stable than
the computation of the smallest enclosing ellipse. However, the computation is
time consuming (determination of eigenvalues) and does not yield a high amount
of new information. The distribution of cluster angles is found to be partially
describable with the cluster size in u and v. The cluster angle is therefore not
added as property in the input vector to the neural networks.
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