

X, Y, Z Search at Belle II

26.02.2019 I Elisabetta Prencipe on behalf of the Belle II Collaboration

International Workshop on e⁺e⁻ collisions from Phi to Psi 2019 (Novosibirsk, Russia)

Outline

- Introduction
- Motivation
 - how can we improve the Belle achievements?
 - open questions
 - new and unique opportunities at Belle II
- The Belle II experiment waiting for Phase 3 starting
- Perspectives in search for exotics at Belle II
 - Charmonium
 - Bottomonium
- Summary

Introduction

Gell-Mann Zweig idea: Constituent Quark Model

Still valid for half century \rightarrow it classifies all known hadrons

- QCD-motivated models predict the existence of hadrons with more complex structures than simple qq (mesons) or qqq (baryons) \rightarrow the so-called XYZ "charmonium"-like states
- Lot of experimental effort to prove the existence of XYZ!
- No unambiguous evidence for hadrons with non-CQM-like structures has been found
- New possibilities, started with the observation of the X(3872):
 - tetraquarks - hybrids
- molecular states - hadrocharmonium
- pentaquarks glueballs
- hexaquarks cusps...
- Evidence that there is more than mesons and baryons! Substantial contribution from Belle (1999-2010) into the field

Quark Bound States

Forschungszentrum

BaBar + Belle:

>1.5 ab⁻¹ integrated luminosity - triumph in the history of B-factories!

- Not only B-factory, but $\overline{c}c$ -factory with so high luminosity
- Still statistics limitation in spectroscopy for rare processes (BR<10⁻⁵)
- Upgrade needed!

Mitglied der Helmholtz-Gemeinschaft

From Belle to Belle II

What has been changed?

PXD, vertex resolution in z direction (beam direction) will be factor 2 better than before:

50 μ m (Belle) \rightarrow 25 μ m (Belle II)

- TOP: no TOF (time-of-flight) detector anymore, but TOP (time-ofpropagation) will do the timing of the Cerenkov light. Time resolution ~50 ps. TOP detector surface is polished to nanometer precision for total reflection of Cerenkov light
- KLM: inner 2 layers of barrel + all layers in the endcap replaced by scintillators, because of large background
- ECL readout electronics exchanged, fast FADC sampling for identify pileup of pulses
- Huge gain in luminosity in Belle II compared to Belle: factor x40. How?

- factor 2 by beam current: 1.64/1.19 A (Belle) \rightarrow 3.6/2.6 A for e^+(e^-) beam in Belle II

- factor 20 by "nano-beam" principle (collision point in vertical direction will be only 59 nm)

DETAILS IN BACKUP SLIDES

Y Family - Summary

Contribution from Belle

Y(4008)	4008±40 ⁺¹¹⁴ -28	226±44±87
Y(4260)	4258.6±8.3±12.1	134.1±16.4±5.5
Y(4360)	4361±9±9	74±15±10
Y(4660)	4664±11±5	48±15±3

- ISR studies: unique at B factories
- Clear signature: J^{PC} = 1⁻⁻
- No mixing surprising!
- Limited statistics at B-factories for such rare events: need more data!

Main achievements at Belle

First observation: Belle, PRL 100 (2008) 142001; Confirmed by LHCb: PRD 92(2015) 112009

BESIII confirmation/following PRL 110 (2013) 252001

- not connected to thresholds?
- Belle II is in a unique position to look for both Z types:
 - through B decays (LHCb, no BES III)
 - threshold state (BES III, no LHCb)

Mitglied der Helmholtz-Gemeinschaft

Luminosity: long term perspectives

10² ntegrated Luminosity Belle II Projection (Feb 2019) Scenarios: --- Belle (II), 2019 NOMINAL [ab⁻¹] Belle (II), 2018 PROJ 9 MONTHS/YR [ab] - Feb 2018: Belle (II), 2019 NO PXD SHUTDOWN [ab] nominal projection 9 months/year - Feb 2019: 10 nominal projection 8 months/year - Special case without shutdown for the PXD (&TOP) in 2020 \rightarrow introduced to assess impact on physics in 2021-2022 2019 2020 2017 2018 2021 2022 2023 2024

Year

- Phase 2, until 17th July 2018: L = 504.9 pb⁻¹
- Phase 3, will start on 11th March 2019

X(3872) total width

• Known upper limit: $\Gamma < 1.2$ MeV (estimated from X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$), on full Belle data sample

■ Very promising: X(3872) \rightarrow D⁰ \overline{D}^{0*}

mode	Q value [MeV]
J/ ψπ⁺π⁻	495.65±0.17
D°D°π° D°D ⁰ *	0.01±0.18

Width [MeV]

Due to very low Q value, the mass resolution is extremely good \rightarrow expected great improvement in the width measurement with 50 ab⁻¹

XYZ Expectations at Belle II

- Yield of X(3872)→J/ $\psi\pi^+\pi^-$ in 2020 will be about Belle yield of $\psi' \rightarrow J/\psi\pi^+\pi^-$
- Radiative decay X(3872) \rightarrow J/ $\psi\gamma$: expected yield N \approx 350 in 2020
- The width of the X(3872) could be measured with a systematic error of ±0.11 MeV in radiaive X decay
 → monoenergetic photon provides 4⁻constraint fit (ΔE/E~2%)
 - \rightarrow systematic error on width may be ~110 keV
- Search for exotics at D^{*}D^{*} threshold (better slow pion detection at Belle II) slow pions reconstruction efficiency >60%(L. Koch, Master Thesis 2016)

State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	\simeq 14400
Y(4260)	ISR, Y(4260) $\rightarrow J/\psi \pi^+\pi^-$	$\simeq 29600$
Z(4430)	$B \rightarrow K^{\mp} Z(4430), Z(4430) \rightarrow J/\psi \pi^{\pm}$	$\simeq 10200$

Expectation with 50ab⁻¹ data at Belle II

Charmonium in ISR: Perspectives at Belle II

- Line shape of the Y(4260)
- Strange partner of Z(3900) in KKJ/ ψ
- Cross sections of exclusive (cc) +Hadrons

Why Bottomonium at Belle II?

- Bottomonium spectrum is significantly different from charmonium spectrum
 - n=3 state (³P) is below the threshold
 - L=2 state (^{1}D) is below the threshold
- ${\scriptstyle \bullet}$ Z $_{_{\rm b}}$ states were only found so far in Y(5S) decays
- SuperKEKB can reach $E_{c.m.} \cong 11 \text{ GeV}$
 - $\Rightarrow \Upsilon$ (6S) running possible unique possibility!
- With the high luminosity, for the 1st time study radiative transitions between bottomonia states possible (suppressed by 1/137). Marginal statistics so far at Belle, <u>big advantage at Belle II</u>

Expectations on Z_b states at Belle II

- If Z_b is a loosely bound state, several new molecular states should appear
- Υ (6S) and Υ (5S): conventional state search
- Belle II goals:
 - search for new, predicted, resonances
 - use both, single transitions and double cascade
 - fill the remaining spectrum to measure the effect of the coupled channel xm To contribution

- Belle II goals:
 - $\Upsilon(6S)$: 100 fb⁻¹ exploratory run $\Upsilon_{\pi, h_b \pi, \eta_b \rho}$
 - Y(5S): 1 ab⁻¹ high statistics run

Υ (6S) and Υ (5S): scan BB

- Belle II goals:
 - Y(6S) and Y(5S) behave differently in $\pi\pi\Upsilon$ and $\pi\pi h = T\rho$
 - → hint of a non-bb nature of $\Upsilon(5S)$?
 - investigate an extra resonance around 10750 MeV/c²

 $1^{-}(2^{+})$

Settle the nature of

 $\chi_b \pi, \Upsilon \rho$

Y(5S)

Wb0

Υ(3S): Opportunities at Belle II

- Exotic states contribute to the hadronic and radiative transitions from narrow quarkonia
 - → complementary approach to the direct search from Y(5S) and Y(6S)

Υ (3S): exotics in transitions

- Belle II goals:
 - $\Upsilon(3S) \rightarrow \pi \pi \Upsilon(1S, 2S)$ still limited by statistics
 - perform full amplitude analysis
 - search for missing $\pi\pi/\eta$ transitions to constraint further theoretical models
 - study hindered radiative transitions

Υ(3S): charmonia in production

- Belle II goals with 300 fb⁻¹:
 - up to 5x sensitivity in inclusive production from $\Upsilon(3S)$
 - up to 15x in double charmonium
 - inclusive rate of X(3872)
 - $D\overline{D}^*$ correlation in $\Upsilon(3S) \rightarrow D\overline{D}^*$ + hadron to test the nature of the X(3872)

Seite 17

 Υ (3S): rare χ_{b} decays

 Υ (3S): deuteron production mechanism

Mitglied der Helmholtz-Gemeinschaft

26- February 2019

Preliminary Study with Phase II Data

Preliminary Study with Phase II Data

Mitglied der Helmholtz-Gemeinschaft

00. Monat 2017

Belle II

Preliminary Study with Phase II Data

Summary

- Great achievements with Belle (~ 1 ab⁻¹) in spectroscopy, but still opportunities for <u>unique physics with the new upgrade Belle II</u>!
- In SuperKEKB e⁺e⁻ collisions will reach unprecedented instantaneous luminosity: 8×10³⁵ cm⁻² s⁻¹
- Improved tracking and PID in Belle II
- Phase 2 in Belle II completed on 17th July 2018: ~500 pb⁻¹ @ Y(4S)
 - → peak luminosity during Phase 2: 5×10^{33} cm⁻² s⁻¹
 - \rightarrow first cosmics to test detector setup for Phase 3 started in January **2019**
 - \rightarrow ready for Phase 3 in a few weeks: challenge to collect 60 fb⁻¹

>10fb⁻¹ @ Y(4S), with >1 fb⁻¹ off-peak

- Expected 50 ab⁻¹ integrated luminosity at Belle II in 2026
- With x50 more data than Belle, expected in Belle II great achievements in hadron spectroscopy:
 - ISR analysis as a unique case
 - improved search capability from $\Upsilon(6S)$ decays possible
 - good slow pion reconstruction to search for $D^*\overline{D}^{(*)}$ threshold exotic states

Thank you for your kind attention!

e.prencipe@fz-juelich.de

"The greatest danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieve our mark." (Michelangelo, 1475 - 1564)

Mitglied der Helmholtz-Gemeinschaft

26- February 2019

Backup slides

Mitglied der Helmholtz-Gemeinschaft

26- February 2019

How can Belle II perform these challenging measurements?

- most powerful e+e- collider in the world
- x40 more luminosity than Belle
- high vertex resolution
- excellent tracking perfomance
- improved slow pion detection

Vertex Pixel Detector (PXD)

VXD consists of 2 layers of DEPFET (Pixel Detector) and 4 layers of double-sided silicon microstrip sensors (Silicon Vertex Detector), assembled over carbon fiber ribs.

One of the 40 sensor modules which are being installed in the pixel-vertex detector

Mitglied der Helmholtz-Gemeinschaft

26- February 2019

Central Drift Chamber (CDC)

Momentum [GeV]

VXD + CDC hits in EventDisplay

Jan 16, 2019: First global SVD cosmic run

26- February 2019

Exp. 5, Run 690, Evt. 14110 (Jan 27, 2019)

Track Efficiency 0.8 0.6 0.4 $\sigma_{r\phi} = 100 \, \mu m$ $\sigma_z = 2 mm$ 0.2 200 ns dead time 0.5 1.5 2.5 2 10 dE/dx 10⁻¹

Belle II Simulation (Preliminary)

Cerenkov detector, laser in TOP module

Particle Identification

(<u>Time-o</u>f-<u>p</u>ropagation, $t \le 50 \text{ ps}$) Photo: K. Inami (Nagoya) L~ 2.5m, 16 barrels

Mitglied der Helmholtz-Gemeinschaft

26- February 2019

Charmonium Production at B Factories

Main Achievements in Bottomonium at Belle

Main Achievements in Bottomonium at Belle Z_{b} in Y(5S) $\rightarrow \pi^{+}\pi^{-}Y(nS)$

Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z^{\pm}(10610)\pi^{\pm}},\%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1^{+4.2}_{-0.3}$	$30.0 \pm 6.3^{+5.4}_{-7.1}$
$Z_b(10610)$ mass, MeV/ c^2	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$10607.4 \pm 1.5^{+0.8}_{-0.2}$
$Z_b(10610)$ width, MeV/ c^2	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8 \pm 2.5^{+0.3}_{-2.1}$	$18.7 \pm 3.4^{+2.5}_{-1.3}$
$f_{Z^{\pm}(10650)\pi^{\pm}},\%$	$0.87 \pm 0.32^{+0.16}_{-0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3 \pm 3.6^{+2.6}_{-1.4}$
$Z_b(10650)$ mass, MeV/ c^2	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5^{+0.5}_{-0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$Z_b(10650)$ width, MeV/ c^2	$12.1_{-4.8-0.6}^{+11.3+2.7}$	$14.2 \pm 3.7^{+0.9}_{-0.4}$	$9.3 \pm 2.2^{+0.3}_{-0.5}$
ϕ_Z , degrees	$67 \pm 36^{+24}_{-52}$	$-10 \pm 13^{+34}_{-12}$	$-5 \pm 22^{+15}_{-33}$
$c_{Z_b(10650)}/c_{Z_b(10610)}$	$0.40 \pm 0.12^{+0.05}_{-0.11}$	$0.53 \pm 0.07^{+0.32}_{-0.11}$	$0.69 \pm 0.09^{+0.18}_{-0.07}$
$f_{\Upsilon(nS)f_2(1270)}, \%$	$14.6 \pm 1.5^{+6.3}_{-9.7}$	$4.09 \pm 1.0^{+0.33}_{-1.0}$	-
$f_{\Upsilon(nS)(\pi^+\pi^-)_S}, \%$	$86.5 \pm 3.2^{+3.3}_{-4.9}$	$101.0 \pm 4.2^{+0.5}_{-3.5}$	$44.0 \pm 6.2^{+1.8}_{-4.3}$
$f_{\Upsilon(nS)f_0(980)}, \%$	$6.9 \pm 1.6^{+0.8}_{-2.8}$	_	_

$$\begin{split} \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 109 \pm 27^{+35}_{-10} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 20 \pm 7^{+4}_{-3} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 737 \pm 126^{+188}_{-85} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 165 \pm 49^{+43}_{-20} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 438 \pm 92^{+92}_{-114} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 194 \pm 53^{+43}_{-25} \quad \text{fb} \end{split}$$

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE

 $M_{X(3872)} = (3871.85\pm0.27(stat)\pm0.19(syst)) \text{ MeV}$ $B(B^+ \to K^+X(3872)) \times B(X(3872) \to \pi^+\pi^-J/\psi) =$ (8.63±0.82(stat)±0.52(syst))×10⁻⁶ $B(B0 \to K^0X(3872))/B(B^+ \to K^+X(3872)) =$ 0.50±0.14(stat)±0.04(syst) ΔM_{X[B0-B+]} = (-0.71±0.96(stat)±0.19(syst)) MeV.

- X(3872) observed in different decay modes, and <u>different production mechanisms</u>
- At $D\overline{D}^*$ threshold $E_B = 160\pm330$ keV, but no threshold effect
- $\Gamma \leq 1.2 \text{ MeV} \rightarrow \text{ too narrow!}$ Bugg, JPHG35 (2008) 075005
- The DD* decay of the X(3872) is dominant
 - ~ x10 than other X(3872) decay modes \rightarrow a molecule?
- Isospin-violating decay: $B(X(3872) \rightarrow J/\psi\rho)$, ~10² too large

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE

- Correlation function from MC
 Γ (output) = f(Γ (input))
- 3-dim fits validated with ψ width Γ_{ψ} =0.52±0.11 MeV (PDG: 0.304±0.009 MeV) \rightarrow bias 0.23±0.11 MeV
- procedure for upper limit: width in 3-dim fit fixed n_{signal} and n_{BG} floating → calculate likelihood
- Γ_{X(3872)} < 0.95 MeV + bias</p>

Reference channel: $B \rightarrow \psi(2s)\pi^+\pi^-$

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE

- Isospin-violating decay: $B(X(3872) \rightarrow J/\psi\rho), \text{ factor } 10^2 \text{ too large}$ $J^{PC} = 1^{++}, \text{ predicted nearby } \chi_{c1}$
 - Barnes et al, PRD72 (2005) 054026
- Mass ≥ 50 MeV higher
- Width ≥100 larger

What can be done better to disclose the nature of the X(3872)?

X(3872)

JÜLICH Forschungszentrum

Photoproduction of X(3872)

Forschungszentrum

Is the X(3872) exotic ?

TETRAQUARK

[qQ]₈[qQ]₈ Diquarks are colored

Maiani, Riquer, Piccinini, Polosa, Burns; Ebert, Faustov, Galkin; Chiu, Hsieh; Ali, Hambrock, Wang

THRESHOLD CUSP

Bugg; Swanson

MOLECULE

Intriguing Analogon

Tornqvist; Swanson; Braaten, Kusonoki, Wong; Voloshin; Close, Page Guo, Hanhart, Meissner

courtesy of J.S. Lange, HIRSCHEGG2018

Mitglied der Helmholtz-Gemeinschaft

26- February 2019

Y STATES

Cornell–Potential

Eichten, Gottfried, et al. PRD 17(1978)3090 Barnes, Godfrey, Swanson, PRD 72(2005)054026

Coulomb-Potential *k*=0 5 GeV/fm + Confinement-Term $V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$ V(r) [GeV] spin-spin $+\frac{32\pi\alpha_s}{9m^2}\delta_r\vec{S_c}\vec{S_c}$ *k*=1.5 GeV/fm 0 spin-orbit $+\frac{1}{m^2}(\frac{2\alpha_s}{r^3}-\frac{k}{2r})\vec{L}\vec{S}$ $-\frac{4}{3}\frac{\alpha_s}{r}$ V(r)tensor $+\frac{1}{m^2}\frac{4\alpha_s}{r^3}(\frac{3\vec{S_c}\vec{r}\cdot\vec{S_c}\vec{r}}{r^2}-\vec{S_c}\vec{S_c})$ solve Schrödinger equation (quark mass heavy \rightarrow \on-relativistic) -3 0,5 10 Notation →states r [fm] $n^{2S+1}L_{1}$ $\Psi(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$ $\left[-\frac{1}{m_a}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{m_a r^2} + V(r)\right)\right]R_{nl}(r) = E_{nl}R_{nl}(r)$ IPC

Mitglied der Helmholtz-Gemeinschaft

Seite 40

Forschungszentrum

Cornell potential: Wronski-Determinant must be zero at turning point

- m=4.660 GeV → turning point of wave function is 2.2 fm!
- large fraction of wave function in string breaking regime r>1.4 fm

courtesy of J.S. Lange, HIRSCHEGG2018

Mitglied der Helmholtz-Gemeinschaft

Z STATES AT BESIII

Recent hot topic: neutral partners \rightarrow isospin triplets All of them 1+, whereever tested.

Mitglied der Helmholtz-Gemeinschaft

Z states and "confinement" ? All measured Z_c^+ masses are <u>above</u> $D^{(*)}\overline{D}^{(*)}$ thresholds

State	$m \; ({\rm MeV})$	Threshold	$\Delta m \; (\text{MeV})$
$Z_{c}(3900)$	$3899.0{\pm}3.6{\pm}4.9$	$D^+\overline{D}^{0*}$	+22.4
$Z_{c}(3900)$	$3899.0 {\pm} 3.6 {\pm} 4.9$	$D^0\overline{D}^{+*}$	+23.9
$Z_{c}(3900)$	$3894.5{\pm}6.6{\pm}4.5$	$D^+\overline{D}^{0*}$	+17.9
$Z_{c}(3900)$	$3894.5{\pm}6.6{\pm}4.5$	$D^0\overline{D}^{+*}$	+19.4
$Z_{c}(3900)$	$3885 \pm 5 \pm 1$	$D^+\overline{D}^{0*}$	+8.4
$Z_{c}(3900)$	$3885{\pm}5{\pm}1~{\rm MeV}$	$D^0\overline{D}^{+*}$	+9.9
$Z_{c}(3885)$	$3883.9 {\pm} 1.5 {\pm} 4.2$	$D^+\overline{D}^{0*}$	+7.4
$Z_c(3885)$	$3883.9 {\pm} 1.5 {\pm} 4.2$	$D^0\overline{D}^{+*}$	+8.8
$Z_{c}(4020)$	$4022.9{\pm}0.8{\pm}2.7$	$D^{0*}\overline{D}^{\pm *}$	+5.6
$Z_{c}(4025)$	$4026.3{\pm}2.6{\pm}3.7$	$D^{0*}\overline{D}^{\pm *}$	+9.0
$Z_c(4032)^+$	$\simeq 4032.1 \pm 2.4$	$D^{0*}\overline{D}^{\pm *}$	+15.0

	possible?
threshold CUSP	no (must be @ threshold)
tetraquark	yes (spin–spin forces)
molecules	no, if bound state (pole below threshold, $E_B>0$)

Mitglied der Helmholtz-Gemeinschaft

A MC study of slow pion tracking efficiency, and pions from K^0_{s} in $B^0 \rightarrow \Phi K^0_{s}$ (fake rate of 50%). Master Thesis (Belle II) – L. Koch - 2016

