

${ t B}^+ o \ell^+ u_\ell \gamma$ at Belle and prospects of ${ t B}^+ o \ell^+ u_\ell (\gamma)$

6th KEK Flavor Factory Workshop Felix Metzner | 15th February 2019

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

Introduction

- B meson pairs are produced at the
 [↑](4S) resonance with no additional particles
- Measurement of missing energy modes possible
- New tagging algorithm for Belle II developed^a
- Opposite B meson can now be reconstructed with higher efficiency compared to the Belle approach
- New method applied to (converted) Belle MC/data and later Belle II
- Update of the Belle hadronically tagged $B^+ \to \ell^+ \nu_\ell \gamma$ analysis^b
- Determination of the first inverse moment $\lambda_{\rm B}$ of the light-cone distribution amplitude of the B meson

This Analysis: M. Gelb, F. U. Bernlochner, P. Goldenzweig, F. Metzner *et al.* (The Belle Collaboration) Phys. Rev. D 98, 112016 (2018)

a: arXiv:1807.08680 (2018) b: Phys. Rev. D 91, 112009 (2015)

M. Beneke and J. Rohrwild (2011) $\frac{d\Gamma}{dE_{\gamma}} = \frac{\alpha_{em}G_{\rm F}^2 m_B^4 |V_{ub}|^2}{48\pi^2} x_{\gamma}^3 (1-x_{\gamma}) [F_A^2 + F_V^2]$ 5 Eur. Phys. J. C. 71:1818 $E_{\gamma} > 1 \, \text{GeV}$ (^) upper limit Belle 2015 $[0^6 \times Br(B \rightarrow \gamma$ 3 with $x_{\gamma} = 2E_{\gamma}/m_{\rm B}$ 2 Previous Belle result (2015): $E_{\nu} > 1.7 \, {\rm GeV}$ $\Delta {\cal B}({
m B}^+ o \ell^+
u_{\ell} \gamma) < 3.5 \cdot 10^{-6}$ 0.2 0.3 0.4 0.5 0.6 λ_R[GeV] Form Factors (valid for large photon energies) Method $\lambda_{\rm P}$ (GeV) $F_{V}(E_{\gamma}) = \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) + \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} + \frac{Q_{u}m_{B}f_{B}}{(2E_{\gamma})^{2}}\right]$ QCD factorization ≈ 0.2 QCD sum rules 0.46 ± 0.11 BaBar (2009)^a > 0.115 $F_{A}(E_{\gamma}) = \frac{Q_{u}m_{B}f_{B}}{2E_{\gamma}\lambda_{B}}R(E_{\gamma},\mu) + \left[\xi(E_{\gamma}) - \frac{Q_{b}m_{B}f_{B}}{2E_{\gamma}m_{b}} - \frac{Q_{u}m_{B}f_{B}}{\left(2E_{\gamma}\right)^{2}} + \frac{Q_{\ell}f_{B}}{E_{\gamma}}\right]$ Belle (2015)^b > 0.238a: Phys. Rev. D 80, 111105 (2009) b; Phys. Rev. D 91, 112009 (2015)

 $B^+ \to \ell^+ \nu_\ell \gamma$ at Belle and prospects of $B^+ \to \ell^+ \nu_\ell (\gamma)$ - Felix Metzner

The Decay $B^+
ightarrow \ell^+
u_{\ell} \gamma$

Analysis Strategy

Tag-Side B-Meson Reconstruction

Analysis of missing energy mode relies on

reconstruction of second B tag meson

• in hadronic decay channels

Ψ

The Tagging Algorithm: Full Event Interpretation

- Hierarchical reconstruction of B_{tag} with a network of classifiers
- Successor of the Belle Full Reconstruction (FR)
- Training and application
- Hadronic and semi-leptonic tag modes
- Generic FEI:
 - 1) FEI trained and applied on full event
 - 2) Signal selection
- Signal-specific FEI (new):
 - 1) Signal selection
 - 2) FEI trained and applied on rest-of-event
 - ightarrow trained on specific event topology
- Each B_{tag} candidate has an assigned probability P_{FEI}

B–Tagging efficiency ϵ on MC

Tag	FR ^a	gen. FEI Belle	gen. FEI Belle II
Hadronic B^+	0.28%	0.76%	0.66%
SL B ⁺	0.67%	1.80%	1.45%
Hadronic B ⁰	0.18%	0.46%	0.38%
SL B ⁰	0.63%	2.04%	1.94%
	a Dalla E	ull Decemptrivition	a las a súble sea

a: Belle Full Reconstruction algorithm.

Calibration of the Tagging Algorithm

Why calibration?

Difference in tagging efficiency on data and MC:

- Hadronic branching ratios
- Dynamics of hadronic decays
- Detector simulation

…

Procedure

- 1) Reconstruct B_{sia} in well-known channel
- 2) Apply tagging algorithm
- 3) Extract the number of events on MC and data via a fit of the $M_{\rm miss}^2$ distribution
- 4) Calculate the correction factor for calibration channel:

$$\epsilon = \frac{\textit{N}_{\rm Data}}{\textit{N}_{\rm MC}}$$

 $\epsilon =$ 0.825 \pm 0.014 \pm 0.049

 $B^- \rightarrow D^0 (\rightarrow K^- \pi^+ \pi^+ \pi^-) \ell^- \overline{\nu}_\ell$

 $B^- \rightarrow D^0 (\rightarrow K^- \pi^+ \pi^0) \ell^- \overline{\nu}_{\ell}$

 $B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \ell^- \overline{\nu}_\ell$

 ϵ incorporates all corrections on the tag-side $\mathsf{B}_{\mathsf{tag}}.$

Missing Mass — MC Expectation

Signal simulated with $\Delta {\cal B}(B^+ o \ell^+
u_\ell \gamma)_{E_\gamma > 1.0\,{
m GeV}} = 5 imes 10^{-6}$

Increased signal reconstruction efficiency by a **factor of 3** compared to previous Belle analysis without increasing the background.

 $B^+ o \ell^+
u_\ell \gamma$ at Belle and prospects of $B^+ o \ell^+
u_\ell (\gamma)$ - Felix Metzner

Improved measurement strategy

To **constrain the peaking background** from $B^+ \to \pi^0 \ell^+ \nu_\ell$ decays in the analysis we fit an additional sample of reconstructed $B^+ \to \pi^0 \ell^+ \nu_\ell$ decays. We have two samples:

- $B^+
 ightarrow \ell^+
 u_\ell \gamma$ selection (nominal analysis)
- $B^+ \to \pi^0 \ell^+ \nu_\ell$ selection (control region)

In addition we can use the extracted $\mathcal{B}(B^+ o \pi^0 \ell^+
u_\ell)$.

Two parameters

Measure two quantities:

$$\Delta \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma)_{E_\gamma > 1.0 \, \text{GeV}} \quad \text{and} \quad \mathcal{R}_\pi = \frac{\Delta \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma)_{E_\gamma > 1.0 \, \text{GeV}}}{\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_\ell)} \tag{1}$$

This allows to extract $\lambda_{\rm B}$ independent of $|V_{\rm ub}|$. In addition, some systematics cancel in the ration \mathcal{R} .

 $B^+ o \ell^+
u_\ell \gamma$ at Belle and prospects of $B^+ o \ell^+
u_\ell (\gamma)$ - Felix Metzner

Fit on Data

Limit Calculation

Bayesian Limit

$$0.9 = \frac{\int_{0}^{\Delta \mathcal{B}_{\text{limit}}} \mathcal{L}_{\text{PDF}}(\Delta \mathcal{B}) \, d\Delta \mathcal{B}}{\int_{0}^{\infty} \mathcal{L}_{\text{PDF}}(\Delta \mathcal{B}) \, d\Delta \mathcal{B}}$$

l	$\Delta {\cal B}({ extsf{B}^+} o \ell^+ u_\ell \gamma)$ ($ imes$ 10 $^{-6}$) limit @90% C.L.			
	BaBar (2009) ^a	Belle (2015) ^b	This work	
е	-	< 6.1	< 4.3	
μ	-	< 3.4	< 3 .4	
${f e},\mu$	< 14	< 3.5	< 3 .0	

Limits are estimated with total systematic error.

b: Phys. Rev. D 91, 112009 (2015)

a: Phys. Rev. D 80, 111105 (2009)

Systematics

	Source		$egin{split} \mathcal{B}(B^+ & o \pi^0 \ell^+ u_\ell) \ & ext{ in 10}^{-5} \end{split}$	$\Delta {\cal B}({ m B}^+ o \ell^+ u_\ell \gamma)$ in 10 ⁻⁶
tive	N _{BB} LID Efficiency	Common Common	$\pm 0.11 \\ \pm 0.16$	±0.02 +0.02
olica	Tracking Efficiency	Common	± 0.03	± 0.02 ± 0.00
ulti	Calibration	Specific	\pm 0.49	± 0.09
Σ	Reconstruction Efficiency	Specific	\pm 0.20	± 0.01
	Reconstructed Tag Channel	Specific	±0.01	±0.14
d)	Peaking Background BDT	Specific	± 0.02	\pm 0.24
itive	PDF Templates	Specific	± 0.08	± 0.18
ppv	$B \to X_{u} \ell^+ \nu_\ell$	Specific	± 0.02	± 0.07
∢	Signal Model	Specific	± 0.00	± 0.03
	BCL Model	Specific	±0.25	±0.01
	Combined		±0.62	±0.36

Systematic uncertainties are directly incorporated into the likelihood.

 $B^+ o \ell^+
u_\ell \gamma$ at Belle and prospects of $B^+ o \ell^+
u_\ell (\gamma)$ - Felix Metzner

Extraction of $\lambda_{\rm B}$

$$R_{\pi} = \frac{\Delta \mathcal{B}(B^{+} \to \ell^{+} \nu_{\ell} \gamma)}{\mathcal{B}(B^{+} \to \pi^{0} \ell^{+} \nu_{\ell})} = \frac{\Delta \Gamma(\lambda_{\rm B})}{\Gamma(B^{+} \to \pi^{0} \ell^{+} \nu_{\ell})}$$

$$\textit{R}^{ ext{measured}}_{\pi} = (1.7 \pm 1.4) imes 10^{-2}$$

	λ_{B} (GeV)
Model I Model II Model III	$\begin{array}{c} 0.36\substack{+0.25}_{-0.08}\substack{+0.03\\-0.08}_{-0.06}\substack{+0.25}_{-0.08}\\ 0.38\substack{+0.25}_{-0.06}\substack{+0.08\\-0.08}\\ 0.32\substack{+0.24}_{-0.07}\substack{+0.05\\-0.08}\end{array}$

based on theoretical input from: Beneke et al., JHEP 07:154 (2018) HFLAV, Eur. Phys. J., C77:895, (2017)

Prospects of $B^+ o \ell^+ u_\ell \gamma$ at Belle II

Analysis is **statistically limited**.

- \Rightarrow Extrapolation for Belle II:
 - scale statistical uncertainty with luminosity: $\sqrt{711 \text{ fb}^{-1}/\mathcal{L}}$
 - unchanged central value
 - unchanged systematic uncertainty

Prospects of $B^+ o \ell^+ u_\ell \gamma$ at Belle II

 \Rightarrow Estimate improved statistical uncertainties for the full analysis

 \Rightarrow Propagate results to \textit{V}_{ub} and λ_{B}

${f B}^+ o \mu^+ u_\mu$ at Belle and Prospects for Belle II

${ t B}^+ o \mu^+ u_\mu$ at Belle

Rare decay with SM expectation of

$${\cal B}({\sf B}^+
ightarrow \mu^+
u_\mu) pprox {\cal O}(10^{-7}).$$

Latest result (Belle 2018):

$${\cal B}({
m B}^+ o \mu^+
u_\mu) = (6.46 \pm 2.22 \pm 1.6) imes 10^{-7}$$

Phys. Rev. Lett 121, 031801 (2018)

 \Rightarrow Requires high reconstruction efficiency!

Clean signature of **two-body decay** of B_{sig} $\Rightarrow p_{\mu}^{B} = m_{B}/2 \approx 2.64 \text{ GeV}$ in the B_{sig} rest frame

\Rightarrow Experimental access to CKM matrix element V_{ub}

 \Rightarrow Sensitive to New Physics (e.g. 2HDM, Sterile Neutrinos)

 ${ t B}^+ o \mu^+
u_\mu$ at Belle

To provide a sufficiently high reconstruction efficiency a **inclusive B-tagging** algorithm is applied.

Knowledge of the $\rm B_{tag}$ meson's momentum allows to boost into the $\rm B_{sig}$ rest frame.

Efficiency ∈

Prospects of $B^+ o \mu^+ u_\mu$ at Belle II

Based on these new results we make **predictions** for the relative uncertainties of

• $\mathcal{B}(\mathsf{B}^+ o \mu^+
u_\mu)$ and

V_{ub}

for this statistically limited decay mode, assuming

- unchanged central values and
- 3% irreducible systematic uncertainty

by scaling reducible σ with $\sqrt{711 \text{ fb}^{-1}/\mathcal{L}}$ and propagating the effect to V_{ub} .

Summary

- First application of (signal-specific) FEI.
- Improved upper 90% C.L. limit. for ${\rm B}^+ \to \ell^+ \nu_\ell \gamma$
- Improved method for $\lambda_{\rm B}$ extraction!

l	$\Delta {\cal B}(B^+ ightarrow \ell^+ u_\ell \gamma) ext{ limit } \left(10^{-6} ight)$ @90% C.L.		
	BaBar (2009)	Belle (2015)	This work
е	-	< 6.1	< 4.3
μ	-	< 3.4	< 3.4
e, μ	< 14	< 3.5	< 3.0

	λ_{B} (GeV)
QCD factorization QCD sum rules BaBar Belle (2015) This work	$\begin{array}{c} \approx 0.2 \\ 0.46 \pm 0.11 \\ > 0.115 \\ > 0.238 \\ > 0.24 \end{array}$

By utilizing the new Belle II software and the B2BII conversion package, we can

- still squeeze out new results from the Belle data set and
- get the analysis software warmed up for Belle II data.

Thank You for Your attention!

Backup — Fit on Data for $B^+ \to \pi^0 \ell^+ \nu_\ell$

