$B^+ \rightarrow \ell^+ \nu_\ell \gamma$ at Belle and prospects of $B^+ \rightarrow \ell^+ \nu_\ell(\gamma)$

6th KEK Flavor Factory Workshop
Felix Metzner | 15th February 2019
Introduction

- B meson pairs are produced at the $\Upsilon(4S)$ resonance with no additional particles
- Measurement of missing energy modes possible
- New *tagging algorithm* for Belle II developed\(^a\)
- Opposite B meson can now be reconstructed with higher efficiency compared to the Belle approach
- New method applied to (converted) Belle MC/data and later Belle II
- Update of the Belle hadronically tagged $B^+ \to \ell^+ \nu_\ell \gamma$ analysis\(^b\)
- Determination of the first inverse moment λ_B of the light-cone distribution amplitude of the B meson

This Analysis: M. Gelb, F. U. Bernlochner, P. Goldenzweig, F. Metzner *et al.*

The Decay $B^+ \rightarrow \ell^+ \nu_\ell \gamma$

$$\frac{d\Gamma}{dE_\gamma} = \frac{\alpha_{em} G_F^2 m_B^4 |V_{ub}|^2}{48\pi^2} x_\gamma^3 (1 - x_\gamma) [F_A^2 + F_V^2]$$

with $x_\gamma = 2E_\gamma/m_B$

Previous Belle result (2015):
$$\Delta B(B^+ \rightarrow \ell^+ \nu_\ell \gamma) < 3.5 \cdot 10^{-6}$$

Form Factors (valid for large photon energies)

$$F_V(E_\gamma) = \frac{Q_u m_B f_B}{2E_\gamma \lambda_B} R(E_\gamma, \mu) + \left[\xi(E_\gamma) + \frac{Q_b m_B f_B}{2E_\gamma m_b} - \frac{Q_u m_B f_B}{(2E_\gamma)^2} \right]$$

$$F_A(E_\gamma) = \frac{Q_u m_B f_B}{2E_\gamma \lambda_B} R(E_\gamma, \mu) + \left[\xi(E_\gamma) - \frac{Q_b m_B f_B}{2E_\gamma m_b} - \frac{Q_u m_B f_B}{(2E_\gamma)^2} + \frac{Q_\ell f_B}{E_\gamma} \right]$$

Upper limit Belle 2015

$E_\gamma > 1.7$ GeV

$E_\gamma > 1$ GeV

Method	λ_B (GeV)
QCD factorization | ≈ 0.2
QCD sum rules | 0.46 ± 0.11
BaBar (2009)a | > 0.115
Belle (2015)b | > 0.238

Analysis Strategy

Reconstruction & Selection

\[B^+ \rightarrow \ell^+ \nu_\ell \gamma \]

+ Full Event Interpretation

Background Suppression

- Multivariate Methods
 - \[B^+ \rightarrow \pi^0 \ell^+ \nu_\ell \]
 - \[B^+ \rightarrow \eta \ell^+ \nu_\ell \]
 - \[e^+ e^- \rightarrow q\bar{q} \]

Control Region

\[B^+ \rightarrow \pi^0 \ell^+ \nu_\ell \]

Signal Extraction

Likelihood Fit

\[\lambda_B \text{ Determination} \]

\[B^+ \rightarrow \ell^+ \nu_\ell \gamma \] at Belle and prospects of \[B^+ \rightarrow \ell^+ \nu_\ell (\gamma) \] - Felix Metzner
Analysis of missing energy mode relies on
- reconstruction of second B_{tag} meson
- in hadronic decay channels

Inclusive Tag
$\epsilon = O(100)\%$
Consistency of B_{tag}

Semileptonic Tag
$\epsilon = O(1)\%$
Knowledge of B_{tag}

Hadronic Tag
$\epsilon = O(0.1)\%$
Exact knowledge of B_{tag}
The Tagging Algorithm: Full Event Interpretation

- Hierarchical reconstruction of B_{tag} with a network of classifiers
- Successor of the Belle Full Reconstruction (FR)
- Training and application
- Hadronic and semi-leptonic tag modes
- **Generic FEI:**
 1) FEI trained and applied on full event
 2) Signal selection
- **Signal-specific FEI (new):**
 1) Signal selection
 2) FEI trained and applied on **rest-of-event** → trained on specific event topology
- Each B_{tag} candidate has an assigned probability P_{FEI}

B–Tagging efficiency ϵ on MC

<table>
<thead>
<tr>
<th>Tag</th>
<th>FRa</th>
<th>gen. FEI Belle</th>
<th>gen. FEI Belle II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadronic B^+</td>
<td>0.28%</td>
<td>0.76%</td>
<td>0.66%</td>
</tr>
<tr>
<td>SL B^+</td>
<td>0.67%</td>
<td>1.80%</td>
<td>1.45%</td>
</tr>
<tr>
<td>Hadronic B^0</td>
<td>0.18%</td>
<td>0.46%</td>
<td>0.38%</td>
</tr>
<tr>
<td>SL B^0</td>
<td>0.63%</td>
<td>2.04%</td>
<td>1.94%</td>
</tr>
</tbody>
</table>

a: Belle Full Reconstruction algorithm.

$B^+ \rightarrow \ell^+ \nu_\ell \gamma$ at Belle and prospects of $B^+ \rightarrow \ell^+ \nu_\ell (\gamma)$ - Felix Metzner
Calibration of the Tagging Algorithm

Why calibration?
Difference in tagging efficiency on data and MC:
- Hadronic branching ratios
- Dynamics of hadronic decays
- Detector simulation
- ...

Procedure
1) Reconstruct B_{sig} in well-known channel
2) Apply tagging algorithm
3) Extract the number of events on MC and data via a fit of the M^2_{miss} distribution
4) Calculate the correction factor for calibration channel:

$$\epsilon = \frac{N_{\text{Data}}}{N_{\text{MC}}}$$

$$\epsilon = 0.825 \pm 0.014 \pm 0.049$$

ϵ incorporates all corrections on the tag-side B_{tag}.
Missing Mass — MC Expectation

Signal simulated with $\Delta B(B^+ \rightarrow \ell^+\nu\gamma)|_{E_\gamma > 1.0\,\text{GeV}} = 5 \times 10^{-6}$

Increased signal reconstruction efficiency by a factor of 3 compared to previous Belle analysis without increasing the background.
Improved Measurement Strategy

Improved measurement strategy

To constrain the peaking background from $B^+ \to \pi^0 \ell^+ \nu_\ell$ decays in the analysis we fit an additional sample of reconstructed $B^+ \to \pi^0 \ell^+ \nu_\ell$ decays.

We have two samples:

- $B^+ \to \ell^+ \nu_\ell \gamma$ selection (nominal analysis)
- $B^+ \to \pi^0 \ell^+ \nu_\ell$ selection (control region)

In addition we can use the extracted $\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_\ell)$.

Two parameters

Measure two quantities:

$$\Delta \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma)_{E_\gamma > 1.0 \text{ GeV}} \quad \text{and} \quad R_\pi = \frac{\Delta \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma)_{E_\gamma > 1.0 \text{ GeV}}}{\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_\ell)} \quad (1)$$

This allows to extract λ_B independent of $|V_{ub}|$. In addition, some systematics cancel in the ration R.

Fit on Data

Fit on Data

\[B^+ \rightarrow e^+\nu_e \gamma \]

\[B^+ \rightarrow \mu^+\nu_\mu \gamma \]

\[B^+ \rightarrow \pi^0\ell^+\nu_\ell \]

\[B^+ \rightarrow \pi^0\ell^+\nu_\ell \gamma \]

\[\ell \rightarrow B(B^+ \rightarrow \pi^0\ell^+\nu_\ell)(10^{-5}) \sigma \Delta B(B^+ \rightarrow \ell^+\nu_\ell\gamma)(10^{-6}) \sigma \]

<table>
<thead>
<tr>
<th>\ell</th>
<th>(B(B^+ \rightarrow \pi^0\ell^+\nu_\ell)(10^{-5}))</th>
<th>(\sigma)</th>
<th>(\Delta B(B^+ \rightarrow \ell^+\nu_\ell\gamma)(10^{-6}))</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>(8.3^{+0.9}_{-0.8} \pm 0.9)</td>
<td>8.0</td>
<td>(1.7^{+1.6}_{-1.4} \pm 0.7)</td>
<td>1.1</td>
</tr>
<tr>
<td>\mu</td>
<td>(7.5 \pm 0.8 \pm 0.6)</td>
<td>9.6</td>
<td>(1.0^{+1.4}_{-1.0} \pm 0.4)</td>
<td>0.8</td>
</tr>
<tr>
<td>e, \mu</td>
<td>(7.9 \pm 0.6 \pm 0.6)</td>
<td>12.6</td>
<td>(1.4 \pm 1.0 \pm 0.4)</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Previous results for \(B^+ \rightarrow \pi^0\ell^+\nu_\ell \)

<table>
<thead>
<tr>
<th>(B(B^+ \rightarrow \pi^0\ell^+\nu_\ell)(10^{-5}))</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle excl.(^a)</td>
<td>(8.0 \pm 0.8 \pm 0.4)</td>
</tr>
<tr>
<td>PDG</td>
<td>(7.80 \pm 0.27)</td>
</tr>
</tbody>
</table>

Limit Calculation

Bayesian Limit

\[0.9 = \frac{\int_0^{\Delta B_{\text{limit}}} L_{\text{PDF}}(\Delta B) \, d\Delta B}{\int_0^\infty L_{\text{PDF}}(\Delta B) \, d\Delta B} \]

<table>
<thead>
<tr>
<th>(\ell)</th>
<th>(\Delta B(B^+ \to \ell^+ \nu_\ell \gamma) \times 10^{-6}) limit (%90) C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaBar (2009)(^a)</td>
<td>Belle (2015)(^b)</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
</tr>
<tr>
<td>(\mu)</td>
<td>-</td>
</tr>
<tr>
<td>e, (\mu)</td>
<td>< 14</td>
</tr>
</tbody>
</table>

Limits are estimated with total systematic error.

\(B^+ \to \ell^+ \nu_\ell \gamma\) at Belle and prospects of \(B^+ \to \ell^+ \nu_\ell (\gamma)\) - Felix Metzner

Systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>Multiplicative</th>
<th>Additive</th>
<th>$\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_{\ell})$ in 10^{-5}</th>
<th>$\Delta \mathcal{B}(B^+ \to \ell^+ \nu_{\ell} \gamma)$ in 10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\bar{B}B}$</td>
<td>Common</td>
<td>Reconstructed Tag Channel</td>
<td>±0.11</td>
<td>±0.02</td>
</tr>
<tr>
<td>LID Efficiency</td>
<td>Common</td>
<td>Peaking Background BDT</td>
<td>±0.16</td>
<td>±0.02</td>
</tr>
<tr>
<td>Tracking Efficiency</td>
<td>Common</td>
<td>PDF Templates</td>
<td>±0.03</td>
<td>±0.00</td>
</tr>
<tr>
<td>Calibration</td>
<td>Specific</td>
<td>B $\to X_u \ell^+ \nu_{\ell}$</td>
<td>±0.49</td>
<td>±0.09</td>
</tr>
<tr>
<td>Reconstruction Efficiency</td>
<td>Specific</td>
<td>Signal Model</td>
<td>±0.20</td>
<td>±0.01</td>
</tr>
</tbody>
</table>

Combined

<table>
<thead>
<tr>
<th>Source</th>
<th>$\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_{\ell})$ in 10^{-5}</th>
<th>$\Delta \mathcal{B}(B^+ \to \ell^+ \nu_{\ell} \gamma)$ in 10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±0.62</td>
<td>±0.36</td>
</tr>
</tbody>
</table>

Systematic uncertainties are directly incorporated into the likelihood.
Extraction of λ_B

$$R_\pi = \frac{\Delta B(B^+ \rightarrow \ell^+ \nu_\ell \gamma)}{B(B^+ \rightarrow \pi^0 \ell^+ \nu_\ell)} = \frac{\Delta \Gamma(\lambda_B)}{\Gamma(B^+ \rightarrow \pi^0 \ell^+ \nu_\ell)}$$

$$R_\pi^{\text{measured}} = (1.7 \pm 1.4) \times 10^{-2}$$

<table>
<thead>
<tr>
<th></th>
<th>λ_B (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model I</td>
<td>$0.36^{+0.25+0.03}_{-0.08-0.03}$</td>
</tr>
<tr>
<td>Model II</td>
<td>$0.38^{+0.25+0.05}_{-0.06-0.08}$</td>
</tr>
<tr>
<td>Model III</td>
<td>$0.32^{+0.24+0.05}_{-0.07-0.08}$</td>
</tr>
</tbody>
</table>

based on theoretical input from:
Beneke et al., JHEP 07:154 (2018)

Result of Belle (2015) was $\lambda_B > 0.238$ GeV

$\lambda_B > 0.24$ GeV @ 90% C.L.
Prospects of $B^+ \to \ell^+ \nu \ell \gamma$ at Belle II

Analysis is **statistically limited**.

⇒ **Extrapolation for Belle II:**
 - scale statistical uncertainty with luminosity: $\sqrt{711 \text{ fb}^{-1}} / \mathcal{L}$
 - unchanged central value
 - unchanged systematic uncertainty
Prospects of $B^+ \rightarrow \ell^+ \nu_\ell \gamma$ at Belle II

\Rightarrow Estimate improved statistical uncertainties for the full analysis

\Rightarrow Propagate results to V_{ub} and λ_B
$B^+ \rightarrow \mu^+ \nu_\mu$ at Belle

and

Prospects for Belle II
$B^+ \to \mu^+ \nu_\mu$ at Belle

Rare decay with SM expectation of

$$\mathcal{B}(B^+ \to \mu^+ \nu_\mu) \approx \mathcal{O}(10^{-7}).$$

Latest result (Belle 2018):

$$\mathcal{B}(B^+ \to \mu^+ \nu_\mu) = (6.46 \pm 2.22 \pm 1.6) \times 10^{-7}$$

⇒ Requires high reconstruction efficiency!

Clean signature of **two-body decay** of B_{sig}

⇒ $p^B_\mu = m_B/2 \approx 2.64$ GeV

in the B_{sig} rest frame

⇒ Experimental access to CKM matrix element V_{ub}

⇒ Sensitive to New Physics (e.g. 2HDM, Sterile Neutrinos)
$B^+ \rightarrow \mu^+ \nu_\mu$ at Belle

To provide a sufficiently high reconstruction efficiency a **inclusive B-tagging** algorithm is applied.

Knowledge of the B_{tag} meson’s momentum allows to boost into the B_{sig} rest frame.

- **Inclusive Tag**
 - Efficiency $\epsilon = \mathcal{O}(100\%)$
 - Consistency of B_{tag}

- **Semileptonic Tag**
 - Efficiency $\epsilon = \mathcal{O}(1\%)$
 - Knowledge of B_{tag}

- **Hadronic Tag**
 - Efficiency $\epsilon = \mathcal{O}(0.1\%)$
 - Exact knowledge of B_{tag}
Prospects of $B^+ \rightarrow \mu^+ \nu_\mu$ at Belle II

Based on these new results we make predictions for the relative uncertainties of $B(B^+ \rightarrow \mu^+ \nu_\mu)$ and V_{ub} for this statistically limited decay mode, assuming

- unchanged central values and
- 3% irreducible systematic uncertainty

by scaling reducible σ with $\sqrt{711\ \text{fb}^{-1}/L}$ and propagating the effect to V_{ub}.

| $B^+ \rightarrow \ell^+ \nu_\ell \gamma$ at Belle and prospects of $B^+ \rightarrow \ell^+ \nu_\ell (\gamma)$ | Felix Metzner | 15th February 2019 | 19/21 |
Summary

- First application of (signal-specific) FEI.
- Improved upper 90% C.L. limit for $B^+ \rightarrow \ell^+ \nu_\ell \gamma$
- Improved method for λ_B extraction!

<table>
<thead>
<tr>
<th>ℓ</th>
<th>$\Delta \mathcal{B}(B^+ \rightarrow \ell^+ \nu_\ell \gamma)$ limit (10^{-6}) @90% C.L.</th>
<th>BaBar (2009)</th>
<th>Belle (2015)</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>-</td>
<td>< 6.1</td>
<td>< 4.3</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>-</td>
<td>< 3.4</td>
<td>< 3.4</td>
<td></td>
</tr>
<tr>
<td>e, μ</td>
<td>< 14</td>
<td>< 3.5</td>
<td>< 3.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ_B (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD factorization</td>
</tr>
<tr>
<td>QCD sum rules</td>
</tr>
<tr>
<td>BaBar</td>
</tr>
<tr>
<td>Belle (2015)</td>
</tr>
<tr>
<td>This work</td>
</tr>
</tbody>
</table>
By utilizing the new Belle II software and the B2BII conversion package, we can
- still squeeze out new results from the Belle data set and
- get the analysis software warmed up for Belle II data.

Thank You for Your attention!
Backup — Fit on Data for $B^+ \rightarrow \pi^0 \ell^+ \nu_\ell$

$B^+ \rightarrow \pi^0 e^+ \nu_e$

$B^+ \rightarrow \pi^0 \mu^+ \nu_\mu$

B$^+ \rightarrow \ell^+ \nu_\ell \gamma$ at Belle and prospects of $B^+ \rightarrow \ell^+ \nu_\ell (\gamma)$.

Felix Metzner 15th February 2019