Belle II & Vertex detector

- KEK, Tsukuba, Japan
- e^+e^- asymmetric collider (SuperKEKB)
- Study of CP violation in B-meson decay
- Next generation B-factory

- DEPFET pixel (PXD) sensors
- Double-sided strip (SVD) sensors
- Thickness of pixel sensors is 75 μm.
- Thickness of strip sensors is 300 - 320 μm.

Legendre polynomials & VXD alignment parametrization

Legendre polynomials in one dimension

$$\begin{align*}
L_0(x) &= 1, \\
L_1(x) &= \frac{(3 - 4x^2)}{2}, \\
L_2(x) &= \frac{35x^4 - 80x^2 + 24}{8}.
\end{align*}$$

Legendre polynomials in VXD alignment

If sensor has a uniform illumination at least along one side, the contribution from different orders are independent. Surface orders can be used depending on necessity.

Type of collected data during Commissioning run

- Data was collected in two different data taking periods:
 2. Cosmic muon passed through full CDC volume and hit one VXD sensor

Calibration and alignment of Central Drift Chamber

- Calibration is based on 4 stages:
 1. T_D correction: Minimization of drift time residual
 2. XT relation: $XT = T_D$ (layer, L/R, α, θ)
 3. Position resolution: $\sigma = \langle x \rangle$ (layer L/R, α, θ)

Alignment of vertex detector powered by Belle II & GBL

- We are using track based alignment and parameters are estimated using Millepede II
- MP II is based on global linear ν^2 minimization and constraints can be applied/ included.
- Tracks are retifed by General Broken Lines to provide Millepede II input.
- The CDC is used as reference for VXD geometry.
- VXD alignment procedure is able to determine 6 rigid body parameters:
 - 3 shifts (u, v and w) and 3 rotations (α, β, and γ) per each VXD sensor
- If necessary, VXD alignment can be extended to more parameters for elimination of surface deformation, Lorentz angle estimation, ...

VXD alignment strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Number per sensor</th>
<th>Total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid body</td>
<td>6</td>
<td>6 x 18 = 108</td>
</tr>
<tr>
<td>Surface simple</td>
<td>9 + 3</td>
<td>9 x 18 = 162</td>
</tr>
<tr>
<td>Surface complex</td>
<td>6 + 3 + 4</td>
<td>13 x 18 = 234</td>
</tr>
</tbody>
</table>

Monitoring tools of VXD alignment quality

- Monitoring is based on:
 1. Track to hit residuals in directions of measurement (U, V)
 2. Extrapolation to third local coordinate (W) of sensor
 3. Time walk effect calibrated as function of
 4. Wire by wire alignment using cosmic muons

VXD alignment procedure results

Alignment result for PXD sensor (2.1.2) on left and center figures, SVD sensor (3.1.2) on right picture

Time dependent VXD alignment validation

- Figure showing validation results for different strategies and time intervals.