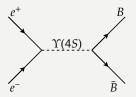


Selective background Monte Carlo simulation at Belle II

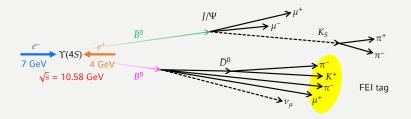
James Kahn Thomas Kuhr Martin Ritter

Ludwig Maximilians Universität München DFG "Excellence Cluster ORIGINS"

ACAT19, March 2019


Bundesministerium für Bildung und Forschung

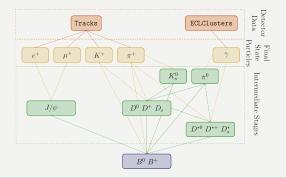
Asymmetric $e^+e^$ experiment mainly at the $\Upsilon(4S)$ resonance (10.58 GeV)



Focus on B, charm and τ physics

	KEKB/Belle	SuperKEKB/Belle II
Operation	1999–2010	2019–
Peak luminosity	$2.11 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$8 \times 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
ntegrated luminosity	1 ab ⁻¹ (772 million BB pairs)	50 ab ⁻¹

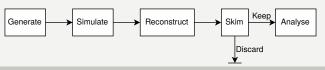
MAXIMILIANS-UNIVERSITÄT **Full Event Interpretation**

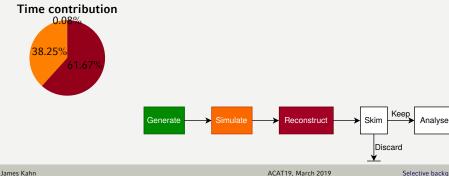


Hierarchical reconstruction of *B* mesons

LUDWIG-

MÜNCHEN


- O(200) decay channels with classifiers trained for each
- Reconstructs O(10000) unique decay chains ► in six stages
- Talk by W. Sutcliffe on Wednesday, 19:00 (track 2)


- ▶ Approach at Belle \rightarrow Background MC \approx 10 × data
- Infeasible at Belle II \rightarrow still require high statistics

- ▶ Approach at Belle \rightarrow Background MC \approx 10 × data
- ▶ Infeasible at Belle II → still require high statistics
- Event simulation is time consuming
- ► Currently for $\Upsilon(4S) \sim 100 \text{ HEPSpec s / event}$ To simulate $1 \text{ ab}^{-1} \rightarrow \sim 80 \text{ GHEPSpec s}$

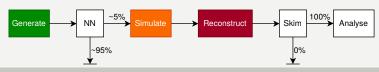
- ▶ Approach at Belle \rightarrow Background MC \approx 10 × data
- ▶ Infeasible at Belle II → still require high statistics
- Event simulation is time consuming
- ► Currently for $\Upsilon(4S) \sim 100 \text{ HEPSpec s / event}$ To simulate $1 \text{ ab}^{-1} \rightarrow \sim 80 \text{ GHEPSpec s}$
- ► For given analysis → most background events discarded trivially

Time contribution

Table: FEI skim retention rates.

Channel	Had B^+	Had B^0
$B^0 \overline{B}{}^0$	5.62%	4.25%
B^+B^-	8.35%	3.82%
นนิ	6.86%	3.78%
dā	7.20%	3.39%
СĒ	12.0%	5.73%
SS	6.13%	2.95%

- ▶ Approach at Belle \rightarrow Background MC \approx 10 × data
- ▶ Infeasible at Belle II → still require high statistics
- Event simulation is time consuming
- ► Currently for $\Upsilon(4S) \sim 100 \text{ HEPSpec s / event}$ To simulate $1 \text{ ab}^{-1} \rightarrow \sim 80 \text{ GHEPSpec s}$
- ► For given analysis → most background events discarded trivially



Try to discard events **before simulation**

Table: FEI skim retention rates.

Channel	Had B^+	Had B^0
$B^0 \overline{B}{}^0$	5.62%	4.25%
B^+B^-	8.35%	3.82%
นนิ	6.86%	3.78%
dā	7.20%	3.39%
СĒ	12.0%	5.73%
SS	6.13%	2.95%

- ► Train on two FEI skim channels:
 - FEI Had. B⁰: 8.5 M events
 - FEI Had. B⁺: 4 M events
- ► 10% reserved for validation
- 100,000 test events simulated independently
- Implemented in Tensorflow/Keras

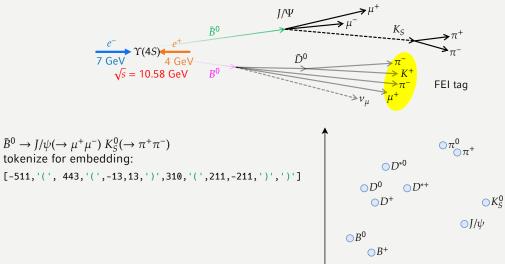
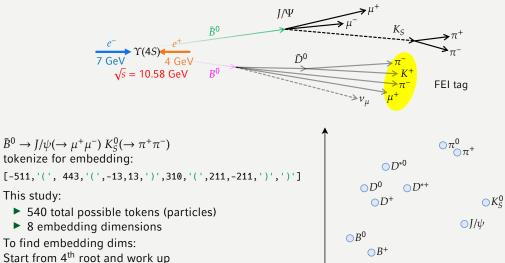


Table: FEI skim retention rates.

Channel	Had B^+	Had B^0
B ⁰ B ⁰	5.62%	4.25%
B^+B^-	8.35 %	3.82%
иū	6.86%	3.78%
dā	7.20%	3.39%
CĈ	12.0%	5.73%
SS	6.13%	2.95%



Decay strings

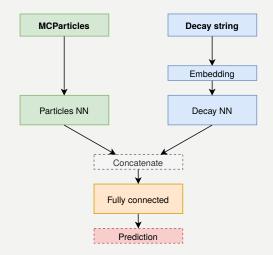
Decay strings

MCParticles

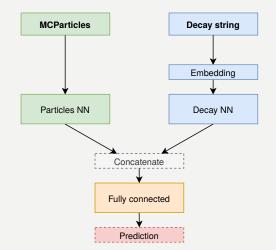
ז 1D kernel מ	(4 <i>S</i>) (300553) B ⁰ (-511)	۔ ۱	Feature	Definition
	$ \begin{array}{l} B^{-}(-511) \\ J/\psi & (443) \\ \mu^{+} & (-13) \\ \mu^{-} & (13) \\ pi^{-} & (-211) \\ pi^{+} & (211) \\ B^{0} & (511) \\ D^{0} & (-421) \\ pi^{-} & (-211) \\ K^{+} & (321) \\ pi^{-} & (-211) \\ \mu^{+} & (-13) \\ \nu_{\mu} & (14) \end{array} $		PDG code Mother PDG code Mass Charge Energy Momentum Production time Production vertex Status bit	Identifier of particle type and charge. Particle parent PDG code. Particle mass in GeV/c ² . Electric charge of the particle. Particle energy in GeV. Three momentum of the particle in Gev/c. Production time in ns relative to $\Upsilon(4S)$ production. Coordinates of particle production vertex. Bitmask representing MC production conditions.

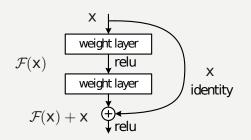
- All simulated particles have same set of features
- ▶ Variable number of particles per event \rightarrow pad with zeroes
- Apply 1D convolutions across particles

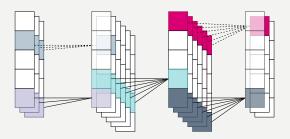
MCParticles

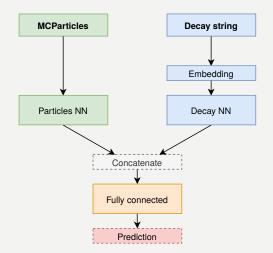


$\Upsilon(4S)$ (300553)	$[E, M, p_x, p_y, p_z, x, y, z,]$
$ar{B}^0$ (-511)	$[E, M, p_x, p_y, p_z, x, y, z,]$
J/ψ (443)	$[E, M, p_x, p_y, p_z, x, y, z,]$
μ^+ (-13)	$[E, M, p_x, p_y, p_z, x, y, z,]$
μ- (13)	$[E, M, p_x, p_y, p_z, x, y, z,]$
K_{S}^{0} (310)	$[E, M, p_x, p_y, p_z, x, y, z,]$
<i>pi</i> ⁻ (-211)	$[E, M, p_x, p_y, p_z, x, y, z,]$
pi ⁺ (211)	$[E, M, p_x, p_y, p_z, x, y, z,]$
B ⁰ (511)	$[E, M, p_x, p_y, p_z, x, y, z,]$
\bar{D}^{0} (-421)	
D(-421)	$[E, M, p_x, p_y, p_z, x, y, z,]$
<i>D</i> (-421) <i>pi</i> [−] (-211)	$\begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix}$ $\begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix}$
	$ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} \\ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} \\ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} $
pi ⁻ (-211)	$\begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} \\ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix}$
pi ⁻ (-211) K ⁺ (321)	$ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} \\ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} \\ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} $
pi [−] (-211) K ⁺ (321) pi [−] (-211)	$\begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix} \\ \begin{bmatrix} E, & M, & p_x, & p_y, & p_z, & x, & y, & z, & \dots \end{bmatrix}$

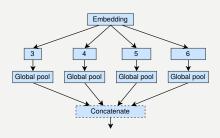


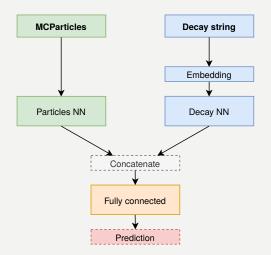

- Fully connected
- Convolutional
- Recurrent (LSTM)


- Fully connected
- Convolutional
- Recurrent (LSTM)
- ResNet (1512.03385) / ResNeXt (1611.05431)



- Fully connected
- Convolutional
- Recurrent (LSTM)
- ResNet (1512.03385) / ResNeXt (1611.05431)
- 1 × 1 convolutions (1409.4842)





- Fully connected
- Convolutional
- Recurrent (LSTM)
- ResNet (1512.03385) / ResNeXt (1611.05431)
- 1 × 1 convolutions (1409.4842)
- Wide convolutional (1510.03820)

- ► Binary classification → binary cross-entropy
- Adam optimiser with AMSGrad
- LeakyReLU activation for intermediate layers
- Sigmoid activation for output layer
- BatchNorm/Dropout used for regularisation
- Trainings performed on consumer grade GPU (Nvidia GTX 1080Ti)

- ► Binary classification → binary cross-entropy
- Adam optimiser with AMSGrad
- LeakyReLU activation for intermediate layers
- Sigmoid activation for output layer
- BatchNorm/Dropout used for regularisation
- Trainings performed on consumer grade GPU (Nvidia GTX 1080Ti)

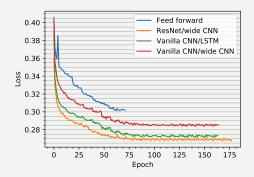


Figure: Example: Charged FEI

- ► Binary classification → binary cross-entropy
- Adam optimiser with AMSGrad
- LeakyReLU activation for intermediate layers
- Sigmoid activation for output layer
- BatchNorm/Dropout used for regularisation
- Trainings performed on consumer grade GPU (Nvidia GTX 1080Ti)

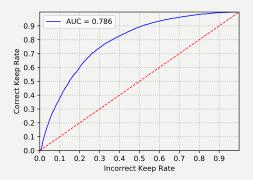
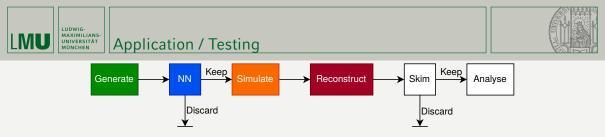
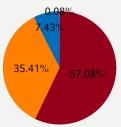




Figure: Example: Charged FEI

Time contribution

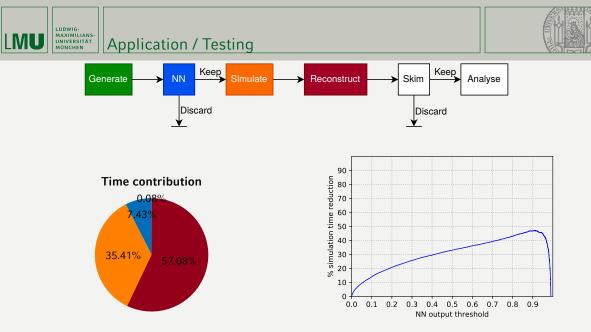
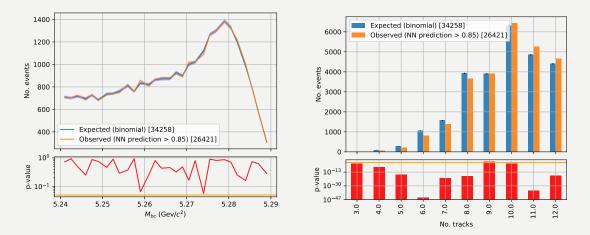
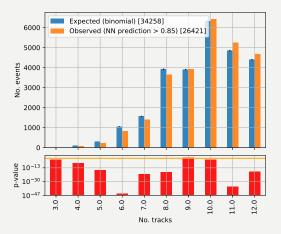



Figure: Example: Charged FEI

Compare kinematics before/after applying NN threshold:



Compare kinematics before/after applying NN threshold:

Investigating:

- Post-hoc reweighting
- Adversarial network
- Loss penalty (e.g. KL divergence)

- ▶ Belle II experiment presents new challenges in Monte Carlo simulation production
- Shift in focus from *simulate all* to *simulate necessary*
- Possible to preempt event usefulness in early simulation stages
- ► Requires careful bias consideration → adversarial / loss penalty
- Currently investigating potential for usage in ATLAS simulation