THE BELLE II EXPERIMENT:
STATUS AND PROSPECTS

CLAUDIA CECCHI
UNIVERSITA’ DI PERUGIA & INFN-PG
DISCOVERY OF FLAVOR EXPERIMENTS

CPV in K^0 system discovered in 1964 → CKM mechanism and 3rd quark generation

Neutral kaon oscillation predicted in 1955 and established in 1960 and only in 1987 observed in B^0 system → charm and top quark masses

K^0_L → $\mu^+\mu^-$ suppression → GIM

PRECISION MEASUREMENTS OF CKM ELEMENTS

$\sin 2\beta = 0.667 \pm 0.023 \pm 0.012$

$A_\psi = 0.006 \pm 0.016 \pm 0.012$

PRL108, 171802 (2012)
B FACTORIES AND THE INTENSITY FRONTIER

Physics of the B Factories
Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley,

S. Olsen, D. Hitlin, J. Dorfan, F. Takasaki

T. Maskawa, M. Kobayashi
OPEN QUESTIONS

Summer 2018 ICHEP:
World Average is still ~4σ from the Standard Model

\[R(D^*) = \frac{B(B \to D^{(*)} \tau \nu)}{B(B \to D^{(*)} l \nu)} \quad l = \mu, e \quad \text{LHCb only} \mu \]

\[R_K = \frac{\text{BR}(B \to K^{(*)} \mu^+ \mu^-)}{\text{BR}(B \to K^{(*)} e^+ e^-)} \]

\[R_K \approx 2.1\sigma \text{ (low bin), 2.5\sigma (central bin)} \]
COMPLEMENTARITY e^+e^- AND LHC

The current combined $B \rightarrow \tau \nu$ limit places a stronger constraint than direct searches from LHC exps. for the next few years.

Currently inclusive $b \rightarrow s \gamma$ rules out m_{H^+} below ~ 480 GeV/c2 range at 95% CL (independent of $\tan\beta$), M. Misiak et al. (assuming no other NP)

For more detail see a dedicated talk at this conference by D. Tonelli
WHAT IS THE GAME AT ASYMMETRIC e^+e^- FACTORIES

Asymmetric Collider

- e^- (7 GeV)
- e^+ (4 GeV)

- B production
- B^- production

- ~ 130 mμ

- The beam energies are asymmetric (7 on 4 GeV)
- The decay distance is increased by around a factor ~ 7

But also some difficulties:

- e^+e^- cross section about 1000 smaller than hadronic production
- Production of only B_d and B_u, B_s is possible at smaller rate, B_c unreachable

Coherent B Bbar initial state

Vertex $\Delta z \rightarrow \Delta t$ in decay proper time

Final state can identify flavor, or select CP eigenstate
Now use the full Phase 2 pilot run dataset and apply the FEI (Full Event Interpretation) technique based on boosted decision trees (BDTs, a machine learning technique).

We now observe ~571 fully reconstructed B mesons (389+182) or an improvement of a factor of ~O(3.6) in overall efficiency by using this advanced analysis method that covers many more decay channels.
Peak Luminosity Trends (e^+e^- collider)

- 10^{36}
- 10^{35}
- 10^{34}
- 10^{33}
- 10^{32}
- 10^{31}
- 10^{30}

Luminosity vs Year

- KEKB
- PEP-II
- CESR
- DAΦNE
- LEP II
- BEPC-II
- SPEAR
- DORIS
- PETRA
- LEP I

SuperKEKB

40 times higher luminosity
NANO BEAM SCHEME TO INCREASE LUMINOSITY

$$L = \frac{\gamma e^\pm}{2e r_e} \left(1 + \frac{\sigma^*_y}{\sigma^*_x} \right) \frac{I^e_{\pm 0}}{\beta^*_y} \left(\frac{R_L}{R_{\xi_y}}\right)$$

Lorenz factor
Beam current
Lumi. reduction factor (crossing angle)
Tune shift reduction factor (hour glass effect)
Beam size ratio@IP
Classical electron radius
Vertical beta function@IP

1. **Smaller** β_y^*
2. **Increase beam currents**
3. **Increase** ξ_y

"Nano-Beam" scheme

$$\sigma(s) = \sqrt{\epsilon \cdot \beta(s)}$$

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB
Replace short dipoles with longer ones (LER)

Redesign the lattices of HER & LER to squeeze the emittance

TiN-coated beam pipe with antechambers

Low emittance positrons to inject

Damping ring

New positron target / capture section

Add / modify RF systems for higher beam current
LUMINOSITY PROFILE

Phase I (Feb – June 2016)
- Background commissioning detectors (diamond TPC’s, diodes, crystals...)
- Circulated both beams but no collisions;
- Tune accelerator optics, etc.; vacuum scrubbing

Phase II (2018)
- First collisions!
- Beam Commissioning
- Background measurements with BEAST II/2
- Full Belle II outer detector without Vertex Detector

Phase III (2019 →)
- Physics run
SCHEDULE

- First collision April 26th 2018
- Phase 3 has started March 11th

THE SHOW MUST GO ON!!!!
BELLE II DETECTOR

EM Calorimeter: Csl(Tl), waveform sampling

Vertex Detector: 2 (1 in 2019) layers DEPFET + 4 layers DSSD

Beryllium beam pipe 2cm diameter

KL and muon detector:
Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

Particle Identification
Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (fwd)

Central Drift Chamber He(50%):C₂H₆(50%), small cells, long lever arm, fast electronics

Electrons (7GeV)

Positrons (4GeV)

SVD: 4 DSSD lyrs → 2 DEPFET lyrs + 4 DSSD lyrs
CDC: small cell, lor
ACC+TOF → TOP+A-RICH
ECL: waveform sampling (+pure CsI for endcaps)
KLM: RPC → Scintillator +MPPC (endcaps, barrel inner 2 lyrs)
>800 members
101 institution
25 countries
First collisions on April 26
\(\beta^* \) successfully squeezed down to \(\beta^* = 2 \text{mm} \)
\(L = 5.54 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \)
\(L_{\text{spec}} = 2 \times 10^{31} \text{ cm}^{-2}\text{s}^{-1} \)
Integrated Luminosity (online): 500 pb\(^{-1}\)

\[e^+e^- \rightarrow \gamma^* \rightarrow B \bar{B} \]
PHASE2: PHOTON RECONSTRUCTION

\[e^+e^- \rightarrow \mu^+\mu^-\gamma \quad \pi^0 \rightarrow \gamma\gamma \quad \eta \rightarrow \gamma\gamma \]

- Good reconstruction of both single photons and pairs
- Ready for the “dark sector” – single photons

\[e^+e^- \rightarrow \gamma X \]
\[e^+e^- \rightarrow \gamma ALP \rightarrow \gamma\gamma \]
PHASE2: TRACKING

\[K_S \rightarrow \pi^+ \pi^- \]

\[J / \psi \rightarrow \mu^+ \mu^- , \ J / \psi \rightarrow e^+ e^- \]

- Good tracking efficiency.
PHASE2: RE-DISCOVERY OF B MESONS

\[\Delta E = \frac{E_{cm}}{2} - E_{recon} \]

\[M_{bc} = \sqrt{\left(\frac{E_{cm}}{2}\right)^2 - p_{recon}^2} \]

Belle II

2018 preliminary

\[\int L \, dt = 472 \text{ pb}^{-1} \]

VOLUME 50, NUMBER 12

PHYSICAL REVIEW LETTERS

21 MARCH 1983

Observation of Exclusive Decay Modes of b-Flavored Mesons

\[40.7 \text{ pb}^{-1} \]

B-meson decays to final states consisting of a \(D^0 \) or \(D^{**} \) and one or two charged pions have been observed. The charged-\(B \) mass is \(5270.8 \pm 2.3 \pm 2.0 \) MeV and the neutral-\(B \) mass is \(5274.2 \pm 1.9 \pm 2.0 \) MeV.
PHYSICS: EARLY PHASE3

- Luminosity will depend on machine and detector performance
- Let’s assume 10 fb⁻¹ by summer 2019

SEMILEPTONIC
\[B \rightarrow \pi \nu \text{ and } \rho \nu \text{ untagged (CLEO saw a signal with } 2.66 \text{ fb}^{-1} \]

TIME DEPENDENT CP VIOLATION AND CHARM
- D lifetimes (2 fb⁻¹)
- \[D^0 \rightarrow K^+ \pi^- , \ D^0 \rightarrow K^+ \pi^- \pi^0 (10 \text{ fb}^{-1}) \]
- B lifetimes (2-10 fb⁻¹)
- Time dependent B mixing (10 fb⁻¹)

RADIATIVE ELECTROWEAK PENGUINS
- \[B \rightarrow K^* \gamma (2 \text{ fb}^{-1}) \text{ rediscovery penguins} \]
- \[B \rightarrow X_{s\gamma} (10 \text{ fb}^{-1}) \]

HADRONIC B DECAYS
- \[B \rightarrow K\pi (10 \text{ fb}^{-1}) \]
- \[B \rightarrow \phi K (10 \text{ fb}^{-1}) \]
- \[B \rightarrow J/\psi K (2-10 \text{ fb}^{-1}) \]
- Time dependent B mixing (10 fb⁻¹)

DARK SECTOR physics publications!
New triggers will be used in Belle II to search for dark matter and dark photons.

Single photon trigger with ~ 1 GeV threshold to search for dark photon decaying into light dark matter

For more details see dedicated talk at this conference by G. Inguglia
PHYSICS PHASE3: $B \rightarrow D(*)\tau\nu$

- Partial cancellation of theoretical uncertainties related to hadronic effects and measurement systematics.

\[R(D^*) = \frac{\Gamma(B \rightarrow D(*)\tau\nu)}{\Gamma(B \rightarrow D(*)\ell\nu)} \] (\(\ell = e\) or \(\mu\))

\[P_{\tau}(D^*) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \] \((\Gamma^\pm\): decay rate of \(\pm\tau\)-helicity)

- Another probe of New Physics

Belle II 5 ab\(^{-1}\)

Very clean theoretical prediction
PHASE3 PHYSICS PERSPECTIVES

- B2TIP: Belle2 Theory Interface Platform
- A series of joint workshops with theorists
- Belle II Physics book submitted to PTEP

https://inspirehep.net/record/1692393/
<table>
<thead>
<tr>
<th>Observables</th>
<th>Expected the. accuracy</th>
<th>Expected exp. uncertainty</th>
<th>Facility (2025)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT angles & sides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_1 [°]</td>
<td>***</td>
<td>0.4</td>
<td>Belle II</td>
</tr>
<tr>
<td>ϕ_2 [°]</td>
<td>**</td>
<td>1.0</td>
<td>Belle II</td>
</tr>
<tr>
<td>ϕ_3 [°]</td>
<td>***</td>
<td>1.0</td>
<td>LHCb/Belle II</td>
</tr>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$ incl.</td>
<td>***</td>
</tr>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$ excl.</td>
<td>***</td>
</tr>
<tr>
<td>$</td>
<td>V_{td}</td>
<td>$ incl.</td>
<td>**</td>
</tr>
<tr>
<td>$</td>
<td>V_{td}</td>
<td>$ excl.</td>
<td>**</td>
</tr>
</tbody>
</table>

CP Violation			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow \eta' K^0)$	***	0.01	Belle II
$A(B \rightarrow K^0\pi^0)[10^{-2}]$	***	4	Belle II
$A(B \rightarrow K^+\pi^-)[10^{-2}]$	***	0.20	LHCb/Belle II

(Semi-)leptonic			
$B(B \rightarrow \tau \nu)$	[10^{-6}]	3%	LEPT
$B(B \rightarrow \mu \nu)$	[10^{-6}]	7%	SL
$R(B \rightarrow D^+\tau\nu)$	***	3%	LFUV
$R(B \rightarrow D^+\tau\nu)$	***	2%	Bell II/LHCb

Radiative & EW Penguins			
$B(B \rightarrow X_s\gamma)$	**	4%	EWP
$A_{CP}(B \rightarrow X_s,d\gamma)$ [10^{-2}]	***	0.005	
$S(B \rightarrow K_S^0\pi^0\gamma)$	***	0.03	Belle II
$S(B \rightarrow \rho\gamma)$	**	0.07	Belle II
$B(B_s \rightarrow \gamma\gamma)$ [10^{-6}]	**	0.3	Belle II
$B(B \rightarrow K^+\nu\nu)$ [10^{-6}]	***	15%	Belle II
$B(B \rightarrow K^0\pi^0\nu\nu)$ [10^{-6}]	***	20%	Belle II
$R(B \rightarrow K^+\ell\ell)$	***	0.03	Belle II/LHCb

Charm				
$B(D_s \rightarrow \mu\nu)$	***	0.9%	Charm	
$B(D_s \rightarrow \tau\nu)$	***	2%		
$A_{CP}(D^0 \rightarrow K_{S}^{0}\pi^{0})$ [10^{-2}]	**	0.03	Belle II	
$a/q	p(D^0 \rightarrow K_{S}^{0}\pi^{+}\pi^{-})$	***	0.03	Belle II
$\phi(D^0 \rightarrow K_{S}^{0}\pi^{+}\pi^{-})$ [°]	***	4	Belle II	

Tau			
$\tau \rightarrow \mu\gamma$ [10^{-10}]	***	< 50	LFV
$\tau \rightarrow e\gamma$ [10^{-10}]	***	< 100	
$\tau \rightarrow \mu\mu\mu$ [10^{-10}]	***	< 3	Belle II/LHCb

- Very rich physics program in the next few years
CONCLUSIONS

• Belle II has completed the initial data taking (Phase 2)
 Understanding the machine and the backgrounds
 Detector and software checkout
 Initial physics

• Belle II will explore New Physics on the Intensity Frontier in a complementary way w.r.t. LHC high p_T experiments, in a healthy competition with LHCb

• We are ready to start a long physics run in the Super Factory mode (Phase 3) from yesterday!
 This requires high-efficiency data-taking by Belle II and extensive running by Super KEK-B, soon to be the world’s highest luminosity accelerator.

• Particle Physics community is waiting for our results ➔ first at LP2019
SUPERKEKB DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>parameters</th>
<th>KEKB</th>
<th>SuperKEKB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LER</td>
<td>HER</td>
</tr>
<tr>
<td>Beam energy E_b</td>
<td>3.5</td>
<td>8</td>
</tr>
<tr>
<td>Half crossing angle ϕ</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Horizontal emittance ε_x</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Emittance ratio κ</td>
<td>0.88</td>
<td>0.66</td>
</tr>
<tr>
<td>Beta functions at IP $\beta_x^/\beta_y^$</td>
<td>1200/5.9</td>
<td>32/0.27</td>
</tr>
<tr>
<td>Beam currents I_b</td>
<td>1.64</td>
<td>1.19</td>
</tr>
<tr>
<td>beam-beam parameter ξ_y</td>
<td>0.129</td>
<td>0.090</td>
</tr>
<tr>
<td>Luminosity L</td>
<td>2.1×10^{34}</td>
<td>8×10^{35}</td>
</tr>
</tbody>
</table>

- Nano-beams and a factor of two more beam current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of short lifetime for the LER
- Consequence β_y: decrease 0.42 \rightarrow 0.28
Physics Competition and Complementarity

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
<th>2031</th>
<th>2032</th>
<th>203+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run III</td>
<td></td>
</tr>
<tr>
<td>LS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHCb 40 MHz UPGRADE I</td>
<td></td>
</tr>
<tr>
<td>L = 2 \times 10^{33}</td>
<td></td>
</tr>
<tr>
<td>ATLAS Phase I Upgr</td>
<td></td>
</tr>
<tr>
<td>L = 2 \times 10^{34}</td>
<td></td>
</tr>
<tr>
<td>CMS Phase I Upgr</td>
<td></td>
</tr>
<tr>
<td>300 fb^{-1}</td>
<td></td>
</tr>
<tr>
<td>Belle II</td>
<td>5 ab^{-1}</td>
<td></td>
</tr>
<tr>
<td>L = 8 \times 10^{35}</td>
<td></td>
</tr>
<tr>
<td>50 ab^{-1}</td>
<td></td>
</tr>
<tr>
<td>Run IV</td>
<td></td>
</tr>
<tr>
<td>LS3</td>
<td></td>
</tr>
<tr>
<td>LHCb Consolidate: Upgr Ib</td>
<td></td>
</tr>
<tr>
<td>L = 2 \times 10^{33} 50 fb^{-1}</td>
<td></td>
</tr>
<tr>
<td>ATLAS Phase II UPGRADE</td>
<td></td>
</tr>
<tr>
<td>HL-LHC</td>
<td></td>
</tr>
<tr>
<td>L = 5 \times 10^{34}</td>
<td></td>
</tr>
<tr>
<td>ATLAS</td>
<td></td>
</tr>
<tr>
<td>HL-LHC</td>
<td></td>
</tr>
<tr>
<td>L = 5 \times 10^{34}</td>
<td></td>
</tr>
<tr>
<td>CMS</td>
<td></td>
</tr>
<tr>
<td>3000 fb^{-1}</td>
<td></td>
</tr>
</tbody>
</table>

- **Belle II**
 - \(L = 5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1} \) achieved!
 - Physics with VXD in 2019
GLOBAL SCHEDULE

Ongoing status and JFY2018 plan

Phase 1
- MR startup
- MR renovation for phase 2, including installation of QCS and Belle II
- DR installation & startup

Phase 2
- HER start
- LER start
- VXD installation

Phase 3
- W/ Belle II
- W/ full Belle II
- Phase 3 operation 9 months / year

Table

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan FY</td>
<td>JFY2016</td>
<td>JFY2017</td>
<td>JFY2018</td>
<td>JFY2019</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Summer shutdown (power saving)</td>
<td>Summer shutdown (power saving)</td>
<td>Summer shutdown (power saving)</td>
<td>Summer shutdown (power saving)</td>
<td>...</td>
</tr>
</tbody>
</table>

Timeline

- **Phase 2 started April 26, 2018**
- **Phase 3 start Mar. 11, 2019**
- **Operation** Mar. 11, 2019 to 9:00 Jul. 1, 2019
- **Summer shutdown** Jul. 1, 2019 to Early autumn 2019 (end Sep-Oct)
- **Operation** Early autumn 2019 to ~Christmas
- **Winter shutdown** ~Christmas to Early 2020 (Jan-Feb)
- **Operation** Early 2020 (Jan-Feb) to 9:00 Jul. 1, 2020
- **Shutdown 2020** Jul. 1, 2020 to Depending on the amount of Belle II/superKEKB consolidation works

Notes

- **12/03/2019**
- **2019**

La Thuile 2019
E+E- CROSS SECTIONS

Cross section @ Y(10580)

<table>
<thead>
<tr>
<th></th>
<th>Cross-section (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^+e^-</td>
<td></td>
</tr>
<tr>
<td>$b\bar{b}$</td>
<td>1.05</td>
</tr>
<tr>
<td>$c\bar{c}$</td>
<td>1.30</td>
</tr>
<tr>
<td>$s\bar{s}$</td>
<td>0.35</td>
</tr>
<tr>
<td>$u\bar{u}$</td>
<td>1.39</td>
</tr>
<tr>
<td>$d\bar{d}$</td>
<td>0.35</td>
</tr>
<tr>
<td>$\tau^+\tau^-$</td>
<td>0.94</td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>1.16</td>
</tr>
<tr>
<td>e^+e^-</td>
<td>\sim 40</td>
</tr>
</tbody>
</table>

R = $\sigma(e^+e^- \rightarrow \text{hadrons})/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

La Thuile 2019