

Prospect of τ decays at Belle II

Based on the τ physics part of the Belle II Physics book (arXiv:1808.10567)

Xingyu Zhou Beihang University (for Belle II collaboration)

LHCb and Belle II Opportunities for Model Builders MITP, Mainz, Germany, from Jan 28 to Feb 1, 2019

Outline

- Motivation for τ decays
- Belle II at SuperKEKB
- CLFV τ decays at Belle II
- CPV τ decays at Belle II
- Summary

Motivation for τ decays

CLFV τ decays New physics CPV τ decays New physics

Motivation for CLFV τ decays (I)

 Charged Lepton flavor violating (CLFV) τ decays are suppressed in the Standard Model (SM), and their branching fractions (BFs) are tiny

$$\mathcal{B}(\tau \to l\gamma) = \frac{3\alpha}{32\pi} |\sum_{i} U_{\tau i}^* U_{\mu i} \frac{\Delta_{3i}^2}{m_W^2}|^2 \le 10^{-53} \sim 10^{-49}$$

• Even with neutrino oscillations taken into account

$$\mathcal{B}(au
ightarrow l\gamma)$$
 < O(10⁻⁴⁵)

- The BFs are unreachable in current experiments
- Possible observation of CLFV τ decays will be an evidence for New Physics (NP)!

Motivation for CLFV τ decays (II)

• Many CLFV τ decays are related to NP models

• Their Branch Fractions (BFs) are predicted by many NP models

Model	Reference	τ→μγ	т→µµµ
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10-14
SM+ heavy Maj v _R	PRD 66 (2002) 034008	1 0 ⁻⁹	10-10
Non-universal Z'	PLB 547 (2002) 252	1 0 ⁻⁹	1 0-8
SUSY SO(10)	PRD 68 (2003) 033012	1 0-8	1 0 ⁻¹⁰
mSUGRA+seesaw	PRD 66 (2002) 115013	1 0 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566 (2003) 217	1 0 ⁻¹⁰	1 0 ⁻⁷

 Many of the BFs are large than O(10⁻¹⁰), which is in the reach of Belle II experiment.

Motivation for CLFV τ decays (III)

The ratios of the BFs of different CLFV τ decays given by different • NP models varies

	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z'
$\frac{\mathcal{B}(\tau \to \mu \mu \mu)}{\mathcal{B}(\tau \to \mu \gamma)}$	~2 x 10⁻³	0.06 - 0.1	0.4 - 2.3	~16
$\frac{\mathcal{B}(\tau \to \mu e e)}{\mathcal{B}(\tau \to \mu \gamma)}$	~1 x 10 ⁻²	~1 x 10 ⁻²	0.3 - 1.6	~16
$\mathcal{B}(au o \mu \gamma)_{\max}$	< 10 ⁻⁷	< 10 ⁻¹⁰	< 10 ⁻¹⁰	< 10 ⁻⁹

JHEP 0705, 013 (2007); PLB 547, 252 (2002)

- The more CLFV τ decays are investigated, the better these NP models are examined
- Almost all decay modes were studied using Belle data, no significant • signals are observed, and more studies with big data samples from Belle II are urgently expected. 6

Motivation for CPV τ decays

- CP violation (CPV) has never been observed in lepton decays
- ➢ It is strongly suppressed in the SM ($A^{CP} ≤ 10^{-12}$), and possible observation of large CPV in lepton sector will be evidence of NP
- Many NP models predicts large CPV in lepton sector, for example:
 - minimum supersymmetric standard model [IHEP12,021;RMP80,577]
 - multi-Higgs-doublet-models [PRL37,657;NPB426,355]
- τ lepton provides a unique opportunity to search for CPV effects, as it is the only lepton decaying to hadrons, so that the associated strong phases allow us to visualize CPV in hadronic τ decays
- Decays have been suggested to measure CPV:
 - $\tau \rightarrow 2\pi \nu$ [PRD50,4544]
 - *K*πν[PLB398,407]
 - $3\pi\nu$ [PRD52,1614]
 - Kππν, KKπν [Z. Phys. G62,413; PRD78, 113008; PRD91, 073006]

Belle II at SuperKEKB

B factories are also τ factories
 SuperKEKB and Belle II
 Belle II early data

B factories are also τ factories!

 $\sigma(e^+e^- \longrightarrow \Upsilon(4s)) = 1.05 \text{ nb}$ $\sigma(e^+e^- \longrightarrow \tau \tau) = 0.92 \text{ nb}$

τ pairs and B pairs are produced in the same order of magnitude!

SuperKEKB (I)

Super B factory
 (Super τ factory too!)

 $\sigma(e^+e^- -> \Upsilon(4s)) = 1.05 \text{ nb}$ $\sigma(e^+e^- -> \tau \tau) = 0.92 \text{ nb}$

 Integrated luminosity expected: 50 ab-1 (x50 of that of previous B factories)

4.6x10¹⁰ τ pairs

SuperKEKB (II)

- Target luminosity is *L* = 8x10³⁵ cm⁻²s⁻¹ (x40 w.r.t. BELLE)
- Achievable in the nano-beam scheme (P. Raimondi for SuperB)
 - double beam currents
 - squeeze beams @ IP by 1/20

at the IP

"Nano-beams": vertical beam size is 50nm at the IP.

		KE	КВ	Super	KEKB	
parameters	LER HER		LER HER		units	
beam energy	Еь	3.5	8	4	7	GeV
CM boost	βγ	0.425		0.28		
half crossing angle	φ	П		41.5		mrad
horizontal emittance	ε _x	18	24	3.2	4.6	nm
emittance ratio	К	0.88	0.66	0.37	0.40	%
beta-function at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
beam currents	lь	1.64	1.19	3.6	2.6	А
beam-beam parameter	ξy	129	90	0.0881	0.0807	1
beam size at IP	σ_x^*/σ_y^*	100/2		10/0.059		μm
Luminosity	L	2.1×	:10	8x	035	cm ⁻² s ⁻¹

ratio at the IP

- Higher background (Radiative Bhabha, Touschek, beamgas scattering, etc.)
- Higher trigger rates (High performance DAQ, computing)

Belle II detector

All sub-detectors are upgraded from Belle, expect for ECL crystals and a part of Barrel KLM

- Improved IP and secondary vertex resolution
- Better K/ π separation and flavor tagging
- Higher Ks, π^0 and slow pion reconstruction efficiency

Belle II Collaboration

~900 colleagues, 108 institutions, 25 countries/regions

Belle II Schedule

Phase I: commissioning of the main ring; installation of outer detectors; vacuum scrubbing and beam background Studies

Phase II: start of the collisions, detector commissioning without vertex detector; physics runs on Y(4S) [April 2018 -July 2018]

Phase III: full detector operation at the beginning of 2019

First collisions on Phase II

- Phase II: from 26/04/2018 to 18/07/2018
- Total integrated luminosity: 500 pb⁻¹

A tipical τ pair candidate ($\tau \rightarrow 3\pi v \& \tau \rightarrow \mu v v$)

$\tau \rightarrow 3\pi v$ in Belle II early data

- Data agrees well with MC after event selection
- Performance of subsystems is good enough as expected

τ mass in Belle II early data

CLFV τ decays at Belle II

Analysis strategy

- Key to searching for rare decays:
 Understand backgrounds and reduce them as much as possible
- Search for various decay modes:

- Analyze the modes from simple ones to hard ones
- Provide feedback to next analyses of similar final states

Analysis procedure

- $e^+e^- \rightarrow \tau^+\tau^-$: No missing in signal side Signal side: $\mu\mu\mu$ - Fully reconstructed Tag side: 1 prong + missing - Br ~ 85 %
- Signal extraction: $m_{\mu\mu\mu} \Delta E$ plane

$$-m_{\mu\mu\mu} = \sqrt{E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2} \sim m_{\tau}$$
$$-\Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM} \sim 0$$

 Number of Background is estimated using sideband data and MC

Tau physics prospect at Belle II

Past searches for $\tau \rightarrow l\nu$ at B factories

Signal regions after BG rejection cuts — data (points) and signal MC (shaded):

Belle: PLB 666,16(2008)

best limits, BaBar: PRL 104,021802(2010)

$\tau \rightarrow \gamma \mu$ sensitivity at Belle II

- Sensitivity using Belle II MC samples with background simulation
- Main backgrounds

$$\begin{array}{c} -\tau \rightarrow \mu \nu \nu \\ -\tau \rightarrow e \nu \nu \\ -\tau \rightarrow \pi \nu \end{array} \right\} + \gamma \qquad \qquad -ee \rightarrow ee/\mu \mu (\gamma) \\ -ee \rightarrow hadronic \end{array}$$

 Backgound rejected by event shape variables, such asThurst, Fox Wolfram moments and so on.

	Belle (535 fb ⁻¹) Be	Belle II (50 ab-1)	
\mathcal{L} (cm ² /s)	2.11 x 10 ³⁴	80 x 10 ³⁴	\rightarrow Belle II (66 db)
Esignal	5.09%	4.59%	5.5 x10 ⁻¹⁰
N _{BG}	10	-	a naive extrapolation
B ₉₀ (τ → μγ)	4.5 x10⁻ ⁸	2.7 x10 ⁻⁸	by luminosity

- Even with much higher backgrounds, the sensitivity is compared with Belle (Scaled by luminosity)
- Signal region is almost background free

Upper limits of CLFV τ decays at Belle II

- 48 different decays were studied at B factories, no significant signals are observed.
- Belle achieves the Best results, the upper limits are between O(10^{-7}) and O(10^{-8})

- Current estimation with Belle II final statistics : ~ 10^{-2} lower
- Many decay modes predicted by NP models are reachable at Belle II

24

CPV τ decays at Belle II

CP violation in $\tau \rightarrow K_s \pi (\geq 0\pi^0) \nu$

- τ decays with K_s meson in final states
 - Nonzero decay rate asymmetry due CP violation to Kaon sector

$$A_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K^0_S \bar{\nu_{\tau}}) - \Gamma(\tau^- \to \pi^- K^0_S \bar{\nu_{\tau}})}{\Gamma(\tau^+ \to \pi^+ K^0_S \bar{\nu_{\tau}}) + \Gamma(\tau^- \to \pi^- K^0_S \bar{\nu_{\tau}})}$$

- SM prediction : (3.6±0.1) x 10⁻³ I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005). Y. Grossman and Y. Nir, JHEP 2012.4 (2012).
- BaBar results : (−3.6±2.3±1.1) x 10⁻³
 - 2.8o discrepancy from SM
- Belle II will provide an improvement

J.P. Lees et.al (BaBar) Phys.Rev D85 (2012) 031102

CP violation in $\tau \rightarrow K_s \pi \nu$

II: CPV in $\tau^- \rightarrow \pi^- K_s v_{\tau}$ at Belle (PRL107, 131801(2011); 699 fb⁻¹) Angular distributions were analyzed, $A_{CP}(W = M_{Ks\pi})$ was measured

W (GeV/c²)

W (GeV/ c^2)

Summary

- CLFV τ decays are extremely good laboratory to search for NP, and hadronic τ decays are important to test CPV
- Studies with τ pairs to search for NP are carried out at B factories. No significant result has been obtained yet
- Belle II experiment at SuperKEKB factory starts data taking in 2018 and will start full operation in early 2019
- Many of LFV τ decays are reachable at Belle II, Improve upper limits of their branching fractions by O(10⁻²)
- Hadronic decays of τ lepton is also interesting for NP, to be improved in Belle II
- For more details (including other aspects of τ physics), please refere to "The Belle II Physics Book" arXiv:1808.10567

Need O(100x) more data \rightarrow Next generation B-factories

