

Prospects for tests of LFU and LFV at Belle II.

S. Glazov on behalf of Belle II collaboration

Mainz, 30 Jan 2019.

1

Experimental data on LFU and LFV

ATLAS EPJC 77 (2017) 367; LEP+SLD, PR 427 (2006) 257; HFAG arXiv:1412.7515; KTEV PRD70 (2004) 092007; NA62 PLB 719 (2013) 326; PIENU PRL 115 (2015) 071801.

- Lepton flavour violation probed to 10^{-12} level in μ decays.
- Lepton universality for $Z \rightarrow \ell \ell$ probed to per mille accuracy at LEP, including $\Gamma_{Z \rightarrow \tau \tau} / \Gamma_{Z \rightarrow \ell \ell} = 1.0019 \pm 0.0032$.
- Lepton universality for W → ev and W → μv decays measured directly, controlled with high precision using π, K and τ decays. Some tension for W → τv from LEP: (Γ(τv)/Γ(ev) = 1.063 ± 0.027, Γ(τv)/Γ(μv) = 1.070 ± 0.026).

B decays and LFV/LFU

See talk of Lu Cao tomorrow.

• Semileptonic decays $B \to X \ell v$

• FCNC processes $B \to X_{s(d)} \ell^+ \ell^-$.

B-factories vs pp

- Pros:
 - Nearly 4π reconstruction (however, not so good for K_L)
 - Hadronic/semileptonic tagging, full event interpretation (FEI), reliable reconstruction of missing energy
 - Excellent reconstruction of both muons and electrons.
- Cons:
 - Lower rates
 - Lower energies, larger multiple scattering effects, reduced tracking efficiency.
 - Stronger dependence of final state topologies on Q^2

Status of Belle-II in phase-II

- *z*-vertex spread at 0.5 mm level (vs 1 cm at Belle-I): strong focusing, large crossing angle, towards nano-beam scheme.
- Transverse impact parameter resolution of $12 \,\mu m$ (vs $10 \,\mu m$ expected) thanks to PXD, about twice better vs Belle-I.
- However many challenges remain, including high background, requiring further machine and detector tuning.

- D^* mesons are reconstructed from $D^{*0} \to D^0 \gamma, D^0 \pi^0$ and $D^{*+} \to D^+ \pi^0, D^0 \pi^+$ while D are from $D^0 \to K_S^0 \pi^0,$ $\pi^+ \pi^-, K^- \pi^+, K^+ K^-, K^- \pi^+ \pi^0, K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^- \pi^0, K^- \pi^+ \pi^+ \pi^-,$ $D^+ \to K_S^0 \pi^+, K_S^0 K^+, K_S^0 \pi^+ \pi^0, K^- \pi^+ \pi^+, K^+ K^- \pi^+, K^- \pi^+ \pi^+ \pi^0,$ $K_S^0 \pi^+ \pi^+ \pi^-$
- Many of the channels are "rediscovered" at Belle II.
- With increased statistics, different channels provide important systematic check.

B-tagging: full event interpretation

- Hierarchical approach using several stages to construct full decay chains of B^0 , B^+ mesons.
- Heavy use of ML methods (BDT) leads to improvement vs previous methods.
- Can used for hadronic as well as semileptonic tagging. For B[±] Hadronic / semileptonic tag efficiency is 0.61% / 1.45%, about twice better vs Belle.
- Tested on early Belle-II data.

arXiv:1807.0868

Semileptonic decays: R_D and R_{D^*}

Exp.	Tag method	$ au^-$ decays	Observables	Fit variables
Belle PRL 99, 191807 (2007)	Untagged	$e^{-}v_{\tau}\bar{v}_{e},\pi v_{\tau}$	$\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau)$	$M_{ m bc}^{ m comp}$
Belle PRD 82, 072005 (2010)	Untagged	$\ell^- u_ au ar u_\ell, \pi u_ au$	$\mathcal{B}(B^- \to D^{(*)0} \tau^- \bar{\nu}_{\tau})$	$M_{\rm bc}^{\rm comp}$ and p_{D^0}
Belle PRD 92, 072014 (2015)	Hadronic	$\ell^- u_ au ar u_\ell$	$R_D, R_{D^*}, q^2, p_\ell^* $	$M_{\rm miss}^2$ and O_{NB} †
Belle PRD 94, 072007 (2016)	Semileptonic	$\ell^- u_ au ar u_\ell$	$R_{D^*}, p_\ell^* p_{D^*}^* $	$E_{\rm ECL}$ and O'_{NB} ‡
Belle PRL 118, 211801 (2017)	Hadronic	$h^- v_{ au}$	$R_{D^*}, P_{\tau}(D^*)$	$E_{\rm ECL}$ and $\cos \theta_{\rm hel}$

Several methods to reconstruct $B \rightarrow D^{(*)} \tau \ell \nu$:

- Untagged early measurements used for observation of the decay
- Hadronically tagged for simultaneous fit of R_D , R_{D^*} and determination of differential distributions (semileptonic τ decays).
- Semileptonically tagged, with semileptonic τ decays for R_{D^*}
- Hadronically tagged with hadronic τ decays, for τ polarisation measurements.

Measurement of $R_{D^{*+}}$ with semileptonic tag at Belle

- Use leptonic $\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$ decays to reconstruct τ ; require two leptons of opposite charge, missing energy and D^{*+} .
- Combine lepton of opposite charge with D^{*+} , compute $\cos \theta_{B-D^*\ell}$.
- E_{ECL} sum of energies of extra neutrals in calorimeter useful to separate background

Measurement of R_{D^*} with hadronic tag at Belle

$$M_{\rm miss}^2 = (p_{e^+e^-} - p_{\rm tag} - p_{D^{(*)}} - p_{\ell})^2 \,.$$

- Use reconstructed hadronically tagged *B* and $D^{(*)} + \ell$ with $\ell = \mu, e$ to determine M_{miss}^2 .
- Low $M_{\text{miss}}^2 < 0.85$ GeV is used to determine normalization $B \to D^{(*)} \ell \nu$, high $M_{\text{miss}}^2 > 0.85$ GeV — to fit NN output to determine $B \to D^{(*)} \tau \nu$. For NN, E_{ECL} is the main discriminating variable.

Measurement of R_D with hadronic tag at Belle

- Simultaneous fit of *l* normalization, *τ* signal for *D* and *D** samples together with some of background sources while others are fixed to MC expectations.
- Significant backgrounds are *D*^{**}ℓ (fitted) and for *D*ℓ cross-feed from *D*^{*}ℓ (fitted).

R_{D^*} and τ polarisation measurements

- SM predictions for τ polarisation are very accurate: $P_{\tau}(D^*) = -0.497 \pm 0.013$, while BSM allows for larger variations.
- Polarisation is measured in two-body hadronic $\tau^- \to \pi^- \nu$ and $\tau^- \to \rho^- \nu \ (\rho^- \to \pi^- \pi^0)$ decays.
- Significant backgrounds from misreconstructed *D*^{*} candidates, hadronic *B* decays.

$R_{D^{(*)}}$ measurements: systematic uncertainties

	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}\%$
$B o D^{**} \ell \nu_\ell$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic B	0.1%	0.1%	1.1%	+7.3%
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%
Total	7.1%	5.2%	+3.4%	$^{+10.0}_{-9.0}\%$

- Leading systematic sources:
 - $B \rightarrow D^{**} \ell \nu$ for analyses with leptonic τ decays;

- Hadronic *B* decays for $\tau \rightarrow h\nu_{\tau}$ analysis

Other significant sources are form factors of B → D^(*)ℓ/τν decays, background from B → X_cD^(*) and cross-feed from B → D^{*}ℓ/τν to B → ℓ/τν.

 \rightarrow dedicated measurements of $B \rightarrow D^{**} \ell \nu$; direct constrain on $B \rightarrow D^{**} \tau \nu_{\tau}$.

$R_{D^{(*)}}$ and polarisation measurement projections for Belle II

	5 ab^{-1}	50 ab ⁻¹
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

- Projections for 5 and 50 ab⁻¹. For 50 ab⁻¹ systematics start to play important role.
- $P_{\tau}(D^*)$ as well as the double ratio of R_{D^*}/R_D provide extra information on the nature of NP (if deviation remains).

arXiv:1808.10567

Differential $R_{D^{(*)}}$ measurements (hadronic tag)

- Compare $q^2 = (P_B p_{D^{(*)}})^2$ distributions vs SM and NP scenarios.
- Significant discriminating power in the q^2 distribution, different for $B \rightarrow D^* \tau v$ vs $B \rightarrow D \tau v$.

Differential $R_{D^{(*)}}$ measurements (semileptonic tag)

- For semileptonic tag, q^2 can not be determined directly, use P_{D^*} instead.
- Some additional discrimination between SM and *R*₂-type leptoquark model.

Differential measurements: Belle-II projections

 $M_{\rm NP} \sim (2\sqrt{2}G_F V_{cb}C_X)^{-1/2} \sim 5 - 10 {\rm TeV}$

- Hadron-tag based analysis for published Belle vs Belle II estimated using 50 ab⁻¹.
- Strong discriminating power vs 2HDM of type II model.
- Discrimination vs other models with scalar or tensor mediators. arXiv:1808.10567

FCNC: $B \rightarrow K^* \ell \ell$ differential rate

Angular decomposition for the differential rate:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell \ d\cos\theta_K \ d\phi \ dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right]$$

$$-F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin^2\theta_\ell \sin 2\phi \right],$$

Redefinition of parameters: $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$ Folding of variables:

$$P'_{4}, S_{4}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{\ell} > \pi/2\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases} \qquad P'_{5}, S_{5}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2. \end{cases}$$

For small q^2 , P'_5 is connected to semi-leptonic operators Q_9 and Q_{10} .

$$P'_{5} \simeq \frac{\operatorname{Re}\left(C_{10}^{*}C_{9,\perp} + C_{9,\parallel}^{*}C_{10}\right)}{\sqrt{\left(|C_{9,\perp}|^{2} + |C_{10}|^{2}\right)\left(|C_{9,\parallel}|^{2} + |C_{10}|^{2}\right)}},$$

$B \to K^{(*)}\mu\mu$ and $B \to K^{(*)}ee$ at Belle

Fit to beam constrained mass distribution, N

$$A_{bc} = \sqrt{E_{beam}^2 - |\vec{p}_B|^2}.$$

Similar quality for $K^*\mu\mu$ and K^*ee reconstruction: reduced systematics for R_{K^*} .

PRL118, 111801 (2017).

- Determine flavour dependent angular coefficient difference: $Q_i = P'_{i,\mu} - P'_{i,e}$.
- Sensitivity to NP in Q_5 , errors dominated by statistics.
- Modeling of QED radiation / bin-to-bin migrations may start play a role with improved stats.

(Note that the measurement is presented for two different binning schemes, the measurement for the $1 < q^2 < 6 \text{ GeV}^2$ bin is correlated with measurements in the overlaping bins.)

PRL118, 111801 (2017).

- Initial measurements sum over exclusive method with $M_{X_s} \leq 1.8 \text{ GeV}$, eventually: fully inclusive recoil method.
- Theoretical uncertainties from M_{X_s} cut, resolved photon contribution, charmonium resonances.
- Can be performed for $X_s ee$ and $X_s \mu\mu$ separately.

$B \rightarrow h v \bar{v}$ study from Belle (semileptonic tag)

1.2

1.2

1.2

continuum

 $\rightarrow u d$

- Simultaneous analysis of $B \rightarrow s, dv\bar{v}$ transition in several modes
- Presence of LFV may affect these modes
- Relative background fractions are fixed to MC expectations

1 1

No significant signal yield:			
Channel	Expected limit	Observed limit	
$\overline{K^+ \nu \overline{\nu}}$	0.8×10^{-5}	1.9×10^{-5}	
$K^0_S \nu \bar{\nu}$	1.2×10^{-5}	1.3×10^{-5}	
$K^{*+}\nu\bar{\nu}$	2.4×10^{-5}	6.1×10^{-5}	
$K^{*0} \nu \bar{\nu}$	2.4×10^{-5}	1.8×10^{-5}	
$\pi^+ u ar{ u}$	1.3×10^{-5}	1.4×10^{-5}	
$\pi^0 \nu \bar{\nu}$	1.0×10^{-5}	0.9×10^{-5}	
$ ho^+ \nu ar{ u}$	2.5×10^{-5}	3.0×10^{-5}	
$\rho^0 \nu \bar{\nu}$	2.2×10^{-5}	4.0×10^{-5}	

PRD 96, 091101 (2017)

- Best upper limits at the time
- Golden channel for Belle-II

PRD 96, 091101 (2017)

Perspectives for $B \to K^* \nu \bar{\nu}$ at Belle II

- Study based on hadronic tag, using FEI.
- Good discrimination vs background using $E_{\text{miss}} + p_{\text{miss}}$ variable with low correlation to $m_{\nu\bar{\nu}}$
- Expected observation with 4 ab⁻¹, 10% accuracy with 50 ab⁻¹.
- Measurement of *K*^{*} longitudinal polarisation fraction to 0.08 (SM accuracy 0.03).

arXiv:1808.10567

Perspectives for $B \to K^* \tau \tau$

Observables	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$Br(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 6.5	< 2.0
$\operatorname{Br}(B^0 \to \tau^+ \tau^-) \cdot 10^5$	< 30	< 9.6
$\operatorname{Br}(B_s^0 \to \tau^+ \tau^-) \cdot 10^4$	< 8.1	_
$\operatorname{Br}(B^+ \to K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	—	< 2.1
$\operatorname{Br}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) \cdot 10^6$	_	< 3.3
$\operatorname{Br}(B^0 \to \tau^{\pm} e^{\mp}) \cdot 10^5$	_	< 1.6
$\operatorname{Br}(B^0 \to \tau^{\pm} \mu^{\mp}) \cdot 10^5$	—	< 1.3

- Standard Model $B \rightarrow K\tau\tau$ is difficult at Belle II even with full luminosity.
- Lepton flavour violating processes, such a $B \rightarrow K\tau\mu$, are easier to get to better limits.
- \rightarrow perhaps some room for CepC/FCCee to do flavour physics.

arXiv:1808.10567

Belle search for $B \to K^{*0} \mu e$

- Selection on beam-constrained mass M_{bc} and the energy difference $\Delta E = E_B - E_{beam}$, continuum suppression using NN (kinematics, flavour tagging).
- Main remaining background from (a) both *B* decay semileptonically, (b)
 B → *D*^(*)*Xℓ*⁺*v*, *D*^{*} → *Xℓ*⁻*v*, (c) lepton mis-ID. Suppressed by NN using vertex, ECL information.
- $B(B^0 \to K^{*0}\mu^+e^-) < 1.2 \times 10^{-7}, B(B^0 \to K^{*0}\mu^-e^+) < 1.6 \times 10^{-7}, B(B^0 \to K^{*0}\mu^\pm e^\mp) < 1.8 \times 10^{-7}$

PRD 98, 071101 (2018)

- Belle-II is an excellent detector for lepton universality studies, especially for the channels involving missing energy, but also for *ee* vs $\mu\mu$ channels, due to similar reconstruction efficiency.
- Most of the channels at Belle-II are statistics limited, however for $R_{D(*)}$ better modeling of $B \rightarrow D^{**} \ell \nu$ and hadronic *B* decays is needed.
- ML-based full event iterpretation tagging method improves *B*-meson tagging compared to Belle-I. Further improvements are possible, with better modelling of *B* decays used for the training.