

Hot Topics at Belle and Belle II

Yoshiyuki Onuki for the Belle II collaboration University of Tokyo/ICEPP

KEK Theory Meeting on Particle Physics Phenomenology (KEK-PH2018 winter) and 3rd KIAS-NCTS-KEK workshop on Particle Physics Phenomenology

Outline

- SuperKEKB and Bellell detector
- Phase-2 and toward Phase-3
- Physics program
- Pick up topics
 - B $\rightarrow \ell \nu$
 - B→D^(*)τν
 - $B \rightarrow K^{(*)} \ell \ell$
 - $B \rightarrow K^{(*)} \nu \nu$
 - τ LFV
- Summary

Belle II Detector

EM Calorimeter: CsI(TI), waveform sampling (barrel)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Issues to overcome

- Beam background
- High rate capability
- Boost ~2/3

KL/ muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

904 researchers from 26 countries

Luminosity prospect

5

Rediscoveries in Phase-2

5.2

5.21

5.22

5.23 5.24

5.25 5.26

5.27

5.28

5.29 M_{bc} (GeV/c²)

Vertex detector has been installed ! Phase 3 will start March 2019 !

Belle II physics program

Belle II as a super B, τ , Charm factory. The Golden/Silver observables well defined.

CKM matrix V_{CKM}

N. Cabibbo, PRL.10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973). I. I. Bigi and A. I. Sanda, Phys. Lett. B 211, 213 (1988). $\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{ud} & V_{us} & V_{db} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$ #of complex phase =(n-1)(n-2)/2 $V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$ diagonal→Favored $\lambda \sim 0.22$. A ~ 0.80 Off-diagonal→Suppressed $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ Unitary Triangle $\phi_{3} \equiv \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$ $\phi_{3} \equiv \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$ $\phi_{3} \equiv \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$ $\phi_{1} \equiv \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right)$

CKM UT triangle

∆t (ps)

10

η**' Κ**

0

_0

-10

-5

(S = 0.55)

5

$B \rightarrow \tau v$ and $B \rightarrow \mu v$

$$\mathcal{B}(B \to \tau \bar{\nu}_{\tau}) = \frac{\tau_{B^-} G_F^2 |V_{ub}|^2 f_B^2}{8\pi} m_B m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 |1 + r_{\rm NP}|^2,$$

$$r_{\rm NP} = C_{V_1} - C_{V_2} + \frac{m_B^2}{m_b m_{\tau}} \left(C_{S_1} - C_{S_2}\right). \text{ PTEP. 2017, 013B05}$$

Model indep. approach

- $B_{SM}(B \rightarrow \tau \nu) = (7.71 \pm 0.62) \times 10^{-5}$ 1808.10567
- $B_{\text{meas}}(B \rightarrow \tau \nu) = (10.6 \pm 1.9) \times 10^{-5}$ 1612.07233
- $B_{SM}(B \rightarrow \mu \nu) = (3.46 \pm 0.28) \times 10^{-7}$ 1808.10567
- $B_{\text{meas}}(B \rightarrow \mu \nu) = (6.46 \pm 2.22 \pm 1.60) \times 10^{-7} 2.4 \sigma \text{ excess(Belle)} \text{ PRL121.031801}$

 \rightarrow 5 σ @Bellell ~6 ab⁻¹

 Δ BR ~ 5 % level@ 50 ab⁻¹

Ratio of $B \rightarrow \tau \nu$ to $B \rightarrow \mu \nu$

$$R_{\rm ps} = \frac{\tau_{B^0}}{\tau_{B^-}} \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_{\ell})} = (0.539 \pm 0.043) \left| 1 + r_{\rm NP}^{\tau} \right|^2$$

$$R_{\rm pl} = \frac{\mathcal{B}(B \to \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to \mu \bar{\nu}_{\mu})} = \frac{m_{\tau}^2}{m_{\mu}^2} \frac{(1 - m_{\tau}^2/m_B^2)^2}{(1 - m_{\mu}^2/m_B^2)^2} |1 + r_{\rm NP}|^2 \simeq 222 |1 + r_{\rm NP}|^2.$$

Current measurement $R_{\rm ps} = 0.73 \pm 0.14$, $R_{\rm pl}$ Not yet

Luminosity	$R_{\rm ps}$	$R_{ m pl}$	
	$r_{ m NP}^{ au}$	$r_{ m NP}^{ au}$	95 % C.L.
$5 \mathrm{ab}^{-1}$	[-0.22, 0.20]	[-0.42, 0.29]	1808.10567
$50 \mathrm{ab}^{-1}$	[-0.11, 0.12]	[-0.12, 0.11]	

 $r_{NP}^{\tau} < O(0.1)$ can be tested.

Further sensitivity can be achieved for direct ratio measurement to cancel some experimental systematic uncertainty

The q² information also has the sensitivity. Full angular analysis will be the challenge at Be^{18} [lell.

Angular analysis of $B^0 \rightarrow K^{*0} \ell^+ \ell^-$

- Transversity basis $A_{\perp,\parallel,0}$ and lepton chirality L,R JHEP01(2009)019 \rightarrow 6 amplitudes $A_{\perp,\parallel,0}^{L,R}$ PRL118,111801(2017)
- $P_5' \propto \text{Re}(A_0^L A_\perp^{L*} A_0^R A_\perp^{R*})$ approximately expressed by C_7' , C_9' , C_9' , C_{10}'
- LHCb: 2.8 σ and 3.0 σ deviation in P_5' in muon mode.
- Belle : 2.6 σ (1.3 σ) deviation in P₅' in the muon(electron) mode.

Naïve extrapolation:

2.8 ab⁻¹ of BelleII data(~2020) \rightarrow Comparable uncertainty to LHCb 3 fb⁻¹ at q²[4,6]. 50 ab⁻¹ of BelleII data(~2025) \rightarrow Slightly 20 % larger uncertainty of LHCb 50 fb⁻¹. With the muon mode, Belle II has an unique measurement for electron mode¹⁹.

LFU in $B^0 \rightarrow K^{(*)0} \ell^+ \ell^-$ angular analysis

- LFUV observable $Q_{4,5}$ (= $P_{4,5}^{\mu\prime}$ - $P_{4,5}^{e\prime}$) meas. by Belle
- Non-zero Q_{4,5} would point to NP JHEP10(2016)075

Belle II

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$	_
$Q_4 \ ([1.0, 2.5] { m GeV^2})$	0.50	0.18	0.056	_
$Q_4~([2.5, 4.0]{ m GeV^2})$	0.45	0.15	0.049	
$Q_4 \ ([4.0, 6.0] \mathrm{GeV^2})$	0.34	0.12	0.040	$Q_{45} \sim 5\%$ level@ 50 ab ⁻¹
$Q_5~([1.0, 2.5]{ m GeV^2})$	0.47	0.17	0.054	
$Q_5~([2.5, 4.0]{ m GeV^2})$	0.42	0.15	0.049	1808.10307
$Q_5~([4.0, 6.0]{ m GeV^2})$	0.34	0.12	0.040	20

LFU in R(K^(*)) and the double ratio $\mathcal{R}_{K^{(*)}} \equiv \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}.$ $R_{K^{\ast 0}}$ PRL 113 (2014) 151601 JHEP08(2017)055 $R_{\rm K}$ LHCb 1.5Belle II $5 \, \mathrm{ab}^{-1}$ Belle II $50 \, \mathrm{ab}^{-1}$ Observables 1.0 R_{K} ([1.0, 6.0] GeV²) 11% 3.6%SM $R_K \ (> 14.4 \, {\rm GeV^2})$ 12%3.6% R_{K^*} ([1.0, 6.0] GeV²) 10%3.2%0.50.5 LHCb BaBar $R_{K^*} (> 14.4 \, \text{GeV}^2)$ 9.2%2.8%LHCb Belle R_{X_*} ([1.0, 6.0] GeV²) 12%4.0%10 15 5 10 20 $R_{X_{*}} (> 14.4 \, \text{GeV}^2)$ 3.4%11% $q^2 \, [{\rm GeV}^2/c^4]$ $q^2 \,[{\rm GeV^2}/c^4]$ JHEP02(2015)055 where $\left\{ \Delta_{\pm} = \frac{2}{|C_9^{\rm SM}|^2 + |C_{10}^{\rm SM}|^2} \left[\operatorname{Re} \left(C_9^{\rm SM} (C_9^{\rm NP\mu} \pm C_9'^{\mu})^* \right) + \operatorname{Re} \left(C_{10}^{\rm SM} (C_{10}^{\rm NP\mu} \pm C_{10}'^{\mu})^* \right) - (\mu \to e) \right] \right\}.$ $R_K \simeq 1 + \Delta_+$, $R_{K_0(1430)} \simeq 1 + \Delta_-,$ $p \simeq 0.86$, $C_{10}^{SM} = -4.2$, $C_9^{SM} = 4.2$ (at m_b scale) $R_{K^*} \simeq 1 + p \left(\Delta_- - \Delta_+ \right) + \Delta_+$ $R_{X_{\bullet}} \simeq 1 + (\Delta_+ + \Delta_-)/2$, 0.003 GeV/c R_{H} can constrain $C_{q}^{(')NP\ell}$, $C_{10}^{(')NP\ell}$ $B \rightarrow K^* e^+ e^ B \rightarrow K^* \mu^+ \mu^-$ Double ratio $X_H \equiv R_H / R_K$ $X_{K_0(1430)} \simeq 1 + \Delta_- - \Delta_+,$ ²⁰ Belle $\Delta_{-}-\Delta_{+}$ cancels left-handed current $X_{K^*} \simeq 1 + p \left(\Delta_- - \Delta_+ \right),$

LHCb

Pulls

LHCb

 $B^0 \rightarrow K^{*0}e^+e^-$ Combinatorial

 $B \rightarrow Xe^+e^ B^0 \rightarrow K^{*0}J/\psi$ $1 \le a^2 \le 0 [\text{GeV}^2/c^4]$ LHCb

 $B^0 \rightarrow K^{\circ 0} \mu^+ \mu^-$

Combinatorial

1.1<q2<6.0 [GeV2/c4]

 $X_{K^*} \simeq 1 + p(\Delta_- - \Delta_+),$ double ratio X_H can only probe $X_{X_s} \simeq 1 + \frac{1}{2}(\Delta_- - \Delta_+).$ right-handed current $C_i'O_i'$

Belle(II) has a symmetric detection eff. for electron/muon May be easier to control the systematic uncertainties.

Unknown flavor of $\boldsymbol{\nu}.$

If NP couples mostly to the third generation lepton, anomaly may be in this mode? This mode may enhance from SM expectation.

$\tau \text{ LFV}$

 $\tau \rightarrow \ell \ell \ell, \tau \rightarrow \mu \gamma$,... (ℓ =e, μ)

BR can be enhanced by some NP scenarios to be detectable $\sim O(10^{-8})$

Summary

- Belle II @SuperKEKB successor to Belle@KEKB
- Phase2 achieved 1st collision and rediscovery of particles.
- Phase3 preparation on going and will start March 2019.
- Interesting physics modes, Golden modes, are predefined well and the details are gathered in "The Belle II Physics Book " arXiv.1808.10567
- Many physics programs; NP through the CPV, FUV, FLV in B-meson and τ -lepton.
- Large part of current flavor anomalies will be clarified after a couple of years.

backup

$B^0 \rightarrow K^{*0} \ell^+ \ell^-$ Wilson coefficient

Within the SM, the effective Hamiltonian for the quark-level transition $b \rightarrow s\mu^+\mu^-$ is

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left\{ \sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + C_7 \frac{e}{16\pi^2} \left[\bar{s}\sigma_{\mu\nu} (m_s P_L + m_b P_R) b \right] F^{\mu\nu} + C_9 \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma^{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\mu + C_{10} \frac{\alpha_{em}}{4\pi} \left(\bar{s}\gamma^{\mu} P_L b \right) \bar{\mu}\gamma_{\mu}\gamma_5 \mu \right\},$$
(2.1)

where $P_{L,R} = (1 \mp \gamma_5)/2$. The operators \mathcal{O}_i (i = 1, ..., 6) correspond to the P_i in ref. [31], and $m_b = m_b(\mu)$ is the running *b*-quark mass in the $\overline{\text{MS}}$ scheme. We use the SM Wilson coefficients as given in ref. [61]. In the magnetic dipole operator with the coefficient C_7 , we neglect the term proportional to m_s .

We now add new physics to the effective Hamiltonian for $b \to s \mu^+ \mu^-$, so that it becomes

$$\mathcal{H}_{\rm eff}(b \to s\mu^+\mu^-) = \mathcal{H}_{\rm eff}^{\rm SM} + \mathcal{H}_{\rm eff}^{VA} + \mathcal{H}_{\rm eff}^{SP} + \mathcal{H}_{\rm eff}^T \,, \tag{2.4}$$

where $\mathcal{H}_{\text{eff}}^{\text{SM}}$ is given by eq. (2.1), while

$$\mathcal{H}_{\text{eff}}^{VA} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha_{em}}{4\pi} V_{ts}^* V_{tb} \left\{ R_V \left(\bar{s} \gamma^\mu P_L b \right) \bar{\mu} \gamma_\mu \mu + R_A \left(\bar{s} \gamma^\mu P_L b \right) \bar{\mu} \gamma_\mu \gamma_5 \mu + R_V' \left(\bar{s} \gamma^\mu P_R b \right) \bar{\mu} \gamma_\mu \mu + R_A' \left(\bar{s} \gamma^\mu P_R b \right) \bar{\mu} \gamma_\mu \gamma_5 \mu \right\}, \quad (2.5)$$

$$\mathcal{H}_{\text{eff}}^{SP} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha_{em}}{4\pi} V_{ts}^* V_{tb} \left\{ R_S \left(\bar{s} P_R b \right) \bar{\mu} \mu + R_P \left(\bar{s} P_R b \right) \bar{\mu} \gamma_5 \mu + R'_S \left(\bar{s} P_L b \right) \bar{\mu} \mu + R'_P \left(\bar{s} P_L b \right) \bar{\mu} \gamma_5 \mu \right\},$$
(2.6)

$$\mathcal{H}_{\text{eff}}^{T} = -\frac{4G_{F}}{\sqrt{2}} \frac{\alpha_{em}}{4\pi} V_{ts}^{*} V_{tb} \left\{ C_{T}(\bar{s}\sigma_{\mu\nu}b)\bar{\mu}\sigma^{\mu\nu}\mu + iC_{TE}(\bar{s}\sigma_{\mu\nu}b)\bar{\mu}\sigma_{\alpha\beta}\mu \ \epsilon^{\mu\nu\alpha\beta} \right\}$$
(2.7)

are the new contributions. Here, $R_V, R_A, R'_V, R'_A, R_S, R_P, R'_S, R'_P, C_T$ and C_{TE} are the NP effective couplings. We do not consider NP in the form of the $O_7 = \bar{s}\sigma^{\alpha\beta}P_R b F_{\alpha\beta}$ operator or its chirally-flipped counterpart $O'_7 = \bar{s}\sigma^{\alpha\beta}P_L b F_{\alpha\beta}$. This is because there has been no hint of NP in the radiative decays $\bar{B} \to X_s \gamma, \bar{K}^{(*)} \gamma$ [45], which imposes strong constraints

JHEP11(2011)121/122

NP couplings

 $R_V, R_A, R'_V, R'_A, R_S, R_P, R'_S, R'_P, C_T$ and C_{TE} are

Real...CP conserving Complex...CP violating

$B \rightarrow K^{(*)} \ell \ell$ angular analysis

$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{d\cos\theta_{\ell}d\cos\theta_{\kappa}d\phi dq^{2}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{L})\sin^{2}\theta_{\kappa} + F_{L}\cos^{2}\theta_{\kappa} + \frac{1}{4} (1 - F_{L})\sin^{2}\theta_{\kappa} \cos 2\theta_{\ell} \right]$$

$$= F_{L}\cos^{2}\theta_{\kappa} \cos 2\theta_{\ell} + S_{3}\sin^{2}\theta_{\kappa} \sin^{2}\theta_{\ell} \cos 2\phi + S_{4} \sin 2\theta_{\kappa} \sin 2\theta_{\ell} \cos \phi$$

$$+ S_{5}\sin 2\theta_{\kappa} \sin \theta_{\ell} \cos \phi + S_{6}\sin^{2}\theta_{\kappa} \cos 2\phi + S_{7} \sin 2\theta_{\kappa} \sin \theta_{\ell} \sin \phi$$

$$+ S_{8}\sin 2\theta_{\kappa} \sin \phi + S_{9}\sin^{2}\theta_{\kappa} \sin^{2}\theta_{\ell} \sin^{2}\theta_{\ell} \sin 2\phi \right],$$

$$K_{FB} = 3/4S_{6}$$

$$F_{L} = S_{1c} = \frac{|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2}}{|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + |A_{0}^{R}|^{2}$$

Figure 1. Feynman diagrams in the SM of the $B^0 \to K^{*0}\ell^+\ell^-$ decay for the (top left) electroweak penguin and (top right) box diagram. Possible NP contributions violating LU: (bottom left) a tree-level diagram mediated by a new gauge boson Z' and (bottom right) a tree-level diagram involving a leptoquark LQ.

$B^0 \rightarrow K^{*0} \ell^+ \ell^- CP$ -conserving/violating observables

JHEP11(2011)121 (CP Conserving)

Observable	SM	Only new VA	Only new SP	Only new T
$\bar{B}^0_d \to \bar{K}^* \mu^+ \mu^-$ DBR		• E (×2) • S (÷2)	No effect	• E (×2)
A_{FB}	$\rm ZC{\approx}~3.9~GeV^2$	• E at low q ² • ZC shift / disappearence	No effect	• Significant S • ZC shift
f_L	• $0.9 \rightarrow 0.3$ (low \rightarrow high q^2)	• Large S	No effect	• Significant S
$A_{T}^{(2)}$	 † with q² No ZC 	• E (×2) • ZC possible	No effect	• Significant S
A_{LT}	 ZC at low q² more -ve at large q² 	• Significant S • ZC shift / disappearence	No effect	• Significant S

Table 1. The effect of NP couplings on observables. $E(\times n)$: enhancement by up to a factor of n, $S(\div n)$: suppression by up to a factor of n, ZC: zero crossing.

JHEP11(2011)122(CP violating)

Observ	able	SM	Only new VA	Only new SP	Only new T
$\bar{B}^0_d \rightarrow I$	$\overline{K}^*\mu^+\mu^-$				
	$A_{\rm CP}$	• $10^{-3} \rightarrow 10^{-4}$	 (9 → 14)% 	No effect	• < 1%
		$(low \rightarrow high q^2)$	$(low \rightarrow high q^2)$		
	ΔA_{FB}	• $10^{-4} \rightarrow 10^{-6}$	 (6 → 19)% 	No effect	• < 1%
		$(\text{low}{\rightarrow}\text{high }q^2)$	$(low \rightarrow high q^2)$		
	Δf_L	• $10^{-4} \rightarrow 10^{-7}$	 (9 → 16)% 	No effect	• < 1%
		$(low \rightarrow high q^2)$	$(low \rightarrow high q^2)$		
	$\Delta A_T^{(2)}$	Zero	• $\sim 12\%$	No effect	No effect
	ΔA_{LT}	Zero	$\bullet < 3\%$	No effect	No effect
	$A_T^{(im)}$	Zero	$\bullet \sim 50\%$	No effect	No effect
	$A_{LT}^{(im)}$	Zero	$\bullet \sim 10\%$	No effect	No effect

1808.10567

Observables	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$A_{\rm T}^{(2)}$ ([0.002, 1.12] GeV ²)	0.21	0.066
$A_{\rm T}^{\rm Im}~([0.002, 1.12]{ m GeV^2})$	0.20	0.064

Table 1. The effect of NP couplings on observables. E: enhancement, S: suppression. The numbers given are optimistic estimates.

Fig. 7. Cartoon illustrating the dimuon mass squared, q^2 , dependence of the differential decay rate of $B \to K^* \ell^+ \ell^-$ decays. The different contributions to the decay rate are also illustrated. For $B \to K \ell^+ \ell^-$ decays there is no photon pole enhancement due to angular momentum conservation.

Long distance charm loop effect ?

Slide from

Inclusive $B \rightarrow X_s \ell^+ \ell^-$

Exclusive Fit $\begin{cases} B^{0} \rightarrow K^{(*)0} \ell^{+} \ell^{-} \\ B_{s}^{0} \rightarrow \phi \mu \mu \\ B^{0} \rightarrow X_{s} \gamma \\ B_{s} \rightarrow \mu \mu \end{cases}$

Input from mainly LHCb

Inclusive $b \rightarrow sll$

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] {\rm GeV^2})$	26%	9.7~%	$3.1 \ \%$
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV}^2)$	21%	7.9~%	2.6~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	21%	$8.1 \ \%$	2.6~%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV^2})$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	19%	7.3%	2.4%
$\Delta_{\rm CP}(A_{\rm FB}) \; ([1.0, 3.5] {\rm GeV}^2)$	52%	19%	6.1%
$\Delta_{\rm CP}(A_{\rm FB})~([3.5, 6.0]{ m GeV^2})$	42%	16%	5.2%
$\Delta_{\rm CP}(A_{\rm FB}) \ (> 14.4 \ {\rm GeV^2})$	38%	15%	4.8%

1808.10567

If $C_9^{NP} = -1$, Bellell@ 50 ab⁻¹ has a 5 σ determination.

$$B \rightarrow K^{(*)} \tau \tau$$

Br $(B \to K\tau^+\tau^-)_{\rm SM}^{[15,22]} = (1.20 \pm 0.12) \times 10^{-7},$

Phys.Rev.Lett.120.181802

$$Br(B \to K^* \tau^+ \tau^-)_{SM}^{[15,19]} = (0.98 \pm 0.10) \times 10^{-7},$$

 $\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}. \quad \text{BaBar}$

Phys.Rev.Lett.118.031802

Primary BG: $B_{sig} \rightarrow D^{(*)} \ell \overline{\nu}_{\ell}$ with $D^{(*)} \rightarrow K \ell' \nu_{\ell'}$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
$Br(B^0 \to \tau^+ \tau^-) \cdot 10^5$	< 140	< 30	< 9.6
$Br(B_s^0 \to \tau^+ \tau^-) \cdot 10^4$	< 70	< 8.1	—
${\rm Br}(B^+\to K^+\tau^\pm e^\mp)\cdot 10^6$	—	—	< 2.1
${\rm Br}(B^+\to K^+\tau^\pm\mu^\mp)\cdot 10^6$	_	—	< 3.3
${\rm Br}(B^0\to\tau^\pm e^\mp)\cdot 10^5$	_	_	< 1.6
${\rm Br}(B^0\to\tau^\pm\mu^\mp)\cdot 10^5$	_	_	< 1.3

arXiv.1808.10567

32

May enhance x100 in Gino Ishidori's talk yesterday

Belle II may have a chance for $B \rightarrow K^{(*)}\tau\tau$ and $B \rightarrow K^{(*)}\tau\mu$ if the BR enhance to ~10⁻⁵

$B \rightarrow \tau v vs sin 2\phi_1$

$$\frac{BR(B \to \tau \nu)}{\Delta m_d} = \frac{3\pi}{4} \frac{m_{\tau}^2 \tau_B}{m_W^2 \eta_B S(x_t) |V_{ud}|^2} \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 \frac{\sin^2(\beta)}{\sin^2(\gamma)} \frac{1}{B_{B_d}}$$

QCD parameter $\begin{array}{c} B_{Bd}...bag parameter \\ \eta_{B}...QCD correction factor \\ S(x_t)...Inami-Lin function x_t=m_t^2/m_w^2 \end{array}$

$B \rightarrow \mu \nu$

- $B_{SM}(B \rightarrow \mu \nu) = (3.46 \pm 0.28) \times 10^{-7}$
- The presence of NP with different chiral structure would be observed through the modifications $B(B \rightarrow \mu \nu)$.
 - Naively just scaling statistics,
 - Next: High efficiency Hadronic tag using the Full Event Interpretation(FEI)

...Neural Network based tag side reconstruction

t_1 tag side signal side to ν_{τ}	Tag	FR^{10} @ Belle	FEI @ Belle MC	FEI @ Belle II MC
to $\gamma(49)$	Hadronic B^+	0.28~%	0.49~%	0.61~%
ν_e	Semileptonic B^+	0.67~%	1.42~%	1.45~%
t_3 B_{tag} B_{sig}	Hadronic B^0	0.18~%	0.33%	0.34~%
t_4	Semileptonic B^0	0.63~%	1.33%	1.25~%

$B \rightarrow (D) \tau v$ Wilson coefficient

The effective Lagrangian that contains all conceivable four-Fermi operators is written as

$$-\mathcal{L}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \sum_{l=e,\mu,\tau} \left[(\delta_{l\tau} + C_{V_1}^l) \mathcal{O}_{V_1}^l + C_{V_2}^l \mathcal{O}_{V_2}^l + C_{S_1}^l \mathcal{O}_{S_1}^l + C_{S_2}^l \mathcal{O}_{S_2}^l + C_T^l \mathcal{O}_T^l \right], \quad (4)$$

where the four-Fermi operators are defined by

$$\mathcal{O}_{V_1}^l = \bar{c}_L \gamma^\mu b_L \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,, \tag{5}$$

$$\mathcal{O}_{V_2}^l = \bar{c}_R \gamma^\mu b_R \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,, \tag{6}$$

$$\mathcal{O}_{S_1}^l = \bar{c}_L b_R \, \bar{\tau}_R \nu_{Ll} \,, \tag{7}$$

$$\mathcal{O}_{S_2}^l = \bar{c}_R b_L \, \bar{\tau}_R \nu_{Ll} \,, \tag{8}$$

$$\mathcal{O}_T^l = \bar{c}_R \sigma^{\mu\nu} b_L \,\bar{\tau}_R \sigma_{\mu\nu} \nu_{Ll} \,, \tag{9}$$

and $C_X^l (X = V_{1,2}, S_{1,2}, T)$ denotes the Wilson coefficient of \mathcal{O}_X^l . Here we assume that the light neutrinos are left-handed.¹ The neutrino flavor is specified by l, and we take all cases of $l = e, \mu$ and τ into account in the contributions of new physics. Since the neutrino flavor is not observed in the experiments of bottom decays, the neutrino mixing does not affect the following argument provided that the Pontecorvo-Maki-Nakagawa-Sakata matrix is unitary. The SM contribution is expressed by the term of $\delta_{l\tau}$ in Eq. (4). We note that the tensor

PhysRevD.87.034028

We note that the tensor operator \mathcal{O}_T does not contribute to this $B^- \to \tau^- \bar{\nu}_{\tau}$

PTEP. **2017**, 013B05

The SM condition requires that $C_X = 0$ for all type X

$B \rightarrow D^* \tau v$ angular analysis

PRD90, 074013(2014)

36

$$\frac{d^4\Gamma}{dq^2d\cos\theta_l d\cos\theta_{D^*}d\chi} = \frac{9}{32\pi}NF\{\cos^2\theta_{D^*}(V_1^0 + V_2^0\cos2\theta_l + V_3^0\cos\theta_l) + \sin^2\theta_{D^*}(V_1^T + V_2^T\cos2\theta_l + V_3^T\cos\theta_l) + V_4^T\sin^2\theta_{D^*}\sin^2\theta_l\cos2\chi + V_1^{0T}\sin2\theta_{D^*}\sin2\theta_l\cos\chi + V_2^{0T}\sin2\theta_{D^*}\sin\theta_l\cos\chi + V_5^T\sin^2\theta_{D^*}\sin^2\theta_l\sin2\chi + V_3^{0T}\sin2\theta_{D^*}\sin\theta_l\sin\chi + V_4^{0T}\sin2\theta_{D^*}\sin2\theta_l\sin\chi\},$$

The longitudinal V^0 's ($\lambda_1 \lambda_2 = 00$) are given by

Đ,

D

θ'

 D^{\star}

π

В

$$\begin{split} V_1^0 &= 2 \left[\left(1 + \frac{m_l^2}{q^2} \right) (|\mathcal{A}_0|^2 + 16|\mathcal{A}_{0T}|^2) + \frac{2m_l^2}{q^2} |\mathcal{A}_{tP}|^2 \\ &- \frac{16m_l}{\sqrt{q^2}} \mathrm{Re}[\mathcal{A}_{0T}\mathcal{A}_0^*] \right], \\ V_2^0 &= 2 \left(1 - \frac{m_l^2}{q^2} \right) [-|\mathcal{A}_0|^2 + 16|\mathcal{A}_{0T}|^2], \\ V_3^0 &= -8 \mathrm{Re} \left[\frac{m_l^2}{q^2} \mathcal{A}_{tP} \mathcal{A}_0^* - \frac{4m_l}{\sqrt{q^2}} \mathcal{A}_{tP} \mathcal{A}_{0T}^* \right]. \end{split}$$

The transverse V^T 's $(\lambda_1 \lambda_2 = ++, --, +-, -+)$ are given by

$$\begin{split} V_{1}^{T} &= \left[\frac{1}{2}\left(3 + \frac{m_{l}^{2}}{q^{2}}\right)(|\mathcal{A}_{\parallel}|^{2} + |\mathcal{A}_{\perp}|^{2}) + 8\left(1 + \frac{3m_{l}^{2}}{q^{2}}\right)(|\mathcal{A}_{\parallel T}|^{2} + |\mathcal{A}_{\perp T}|^{2}) - \frac{16m_{l}}{\sqrt{q^{2}}}\operatorname{Re}[\mathcal{A}_{\parallel T}A_{\parallel}^{*} + \mathcal{A}_{\perp T}A_{\perp}^{*}]\right] \\ V_{2}^{T} &= \left(1 - \frac{m_{l}^{2}}{q^{2}}\right)\left[\frac{1}{2}(|\mathcal{A}_{\parallel}|^{2} + |\mathcal{A}_{\perp}|^{2}) - 8(|\mathcal{A}_{\parallel T}|^{2} + |\mathcal{A}_{\perp T}|^{2})\right], \\ V_{3}^{T} &= 4\operatorname{Re}\left[-\mathcal{A}_{\parallel}A_{\perp}^{*} - \frac{16m_{l}^{2}}{q^{2}}\mathcal{A}_{\parallel T}\mathcal{A}_{\perp T}^{*} + \frac{4m_{l}}{\sqrt{q^{2}}}(\mathcal{A}_{\perp T}\mathcal{A}_{\parallel}^{*} + \mathcal{A}_{\parallel T}\mathcal{A}_{\perp}^{*})\right], \\ V_{4}^{T} &= \left(1 - \frac{m_{l}^{2}}{q^{2}}\right)[-(|\mathcal{A}_{\parallel}|^{2} - |\mathcal{A}_{\perp}|^{2}) + 16(|\mathcal{A}_{\parallel T}|^{2} - |\mathcal{A}_{\perp T}|^{2})], \\ V_{5}^{T} &= 2\left(1 - \frac{m_{l}^{2}}{q^{2}}\right)\operatorname{Im}[\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*}]. \end{split}$$

The mixed V^{0T} 's $(\lambda_1 \lambda_2 = 0\pm, \pm 0)$ are given by

$$\begin{split} V_{1}^{0T} &= \sqrt{2} \left(1 - \frac{m_{l}^{2}}{q^{2}} \right) \operatorname{Re}[\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*} - 16\mathcal{A}_{\parallel T}\mathcal{A}_{0T}^{*}], \\ V_{2}^{0T} &= 2\sqrt{2} \operatorname{Re}\left[-\mathcal{A}_{\perp}\mathcal{A}_{0}^{*} + \frac{m_{l}^{2}}{q^{2}} (\mathcal{A}_{\parallel}\mathcal{A}_{tP}^{*} - 16\mathcal{A}_{\perp T}\mathcal{A}_{0T}^{*}) + \frac{4m_{l}}{\sqrt{q^{2}}} (\mathcal{A}_{0T}\mathcal{A}_{\perp}^{*} + \mathcal{A}_{\perp T}\mathcal{A}_{0}^{*} - \mathcal{A}_{\parallel T}\mathcal{A}_{tP}^{*}) \right], \\ V_{3}^{0T} &= 2\sqrt{2} \operatorname{Im}\left[-\mathcal{A}_{\parallel}\mathcal{A}_{0}^{*} + \frac{m_{l}^{2}}{q^{2}} \mathcal{A}_{\perp}\mathcal{A}_{tP}^{*} + \frac{4m_{l}}{\sqrt{q^{2}}} (\mathcal{A}_{0T}\mathcal{A}_{\parallel}^{*} - \mathcal{A}_{\parallel T}\mathcal{A}_{0}^{*} + \mathcal{A}_{\perp T}\mathcal{A}_{tP}^{*}) \right], \\ V_{4}^{0T} &= \sqrt{2} \left(1 - \frac{m_{l}^{2}}{q^{2}} \right) \operatorname{Im}[\mathcal{A}_{\perp}\mathcal{A}_{0}^{*}]. \end{split}$$

$B \rightarrow D^* \tau v$ CP-violating observables

the D^* longitudinal and transverse polarization amplitudes A_L and A_T are

$$A_L = \left(V_1^0 - \frac{1}{3}V_2^0\right), \quad A_T = 2\left(V_1^T - \frac{1}{3}V_2^T\right).$$
(3.7)

The first TP is $A_T^{(1)}$, introduced above in eq. (3.17). One can find $A_T^{(1)}$ and $\bar{A}_T^{(1)}$ as

$$A_T^{(1)}(q^2) = \frac{4V_5^T}{3(A_L + A_T)}, \quad \bar{A}_T^{(1)}(q^2) = -\frac{4\bar{V}_5^T}{3(\bar{A}_L + \bar{A}_T)}.$$
(3.33)

In the absence of direct CP violation $\bar{A}_T^{(1)} = A_T^{(1)}$. We observe that $A_T^{(1)}$ depends on both the g_A and the g_V couplings and not on the g_P coupling. The CP-violating triple-product asymmetry is

$$\langle A_T^{(1)}(q^2) \rangle = \frac{1}{2} \Big(A_T^{(1)}(q^2) + \bar{A}_T^{(1)}(q^2) \Big) .$$
(3.34)

The second TP is $A_T^{(2)}$, introduced above in eq. (3.22). $A_T^{(2)}$ and $\bar{A}_T^{(2)}$ are given by

$$A_T^{(2)}(q^2) = \frac{V_3^{0T}}{(A_L + A_T)}, \quad \bar{A}_T^{(2)} = \frac{\bar{V}_3^{0T}}{(\bar{A}_L + \bar{A}_T)}.$$
(3.35)

We observe that $A_T^{(2)}(q^2)$ depends on all the three new couplings g_A , g_V , and g_P . This TP is proportional to the lepton mass and so is very small when the lepton is the electron or the muon. The CP-violating triple-product asymmetry is

$$\langle A_T^{(2)}(q^2) \rangle = \frac{1}{2} \Big(A_T^{(2)}(q^2) - \bar{A}_T^{(2)}(q^2) \Big) .$$
(3.36)

The third TP is $A_T^{(3)}$, introduced above in eq. (3.27). $A_T^{(3)}$ and $\bar{A}_T^{(3)}$ are given by

$$A_T^{(3)}(q^2) = \frac{V_4^{0T}}{(A_L + A_T)}, \quad \bar{A}_T^{(3)} = -\frac{\bar{V}_4^{0T}}{(\bar{A}_L + \bar{A}_T)}.$$
(3.37)

We observe that $A_T^{(3)}$ depends on both the new couplings g_A and g_V but does not depend on g_P . The CP-violating triple-product asymmetry is

$$\langle A_T^{(3)}(q^2) \rangle = \frac{1}{2} \left(A_T^{(3)}(q^2) + \bar{A}_T^{(3)}(q^2) \right) \,. \tag{3.38}$$

JHEP09(2013)059

CP-violating: Triple product correlations Non-zero TP's =>NP q² distribution of TP's differs NP scenarios

Hierarchical hadronic full reconstruction algorithm

NIM A654, 432(2011)

Effective luminosity factor 2 improvement comparing with the previous.

Full Event Interpretation(FEI)

- Developing for Belle II
- Full reconstruction: training MVC was done independently from signal-side B decay tag reconstruction independent
- FEI: can take into account signal-side. Signal specific training is possible.

Br($B \rightarrow D^{(*)}\tau v$) tagging

Tagging method for (semi)leptonic decay

- Hadronic tagging
 - Hadronic decay channels.
 - Good purity
- Semileptonic tagging
 - Semileptonic decay channels
 - Good efficiency
- Inclusive tagging
 - Combines the four-momenta of all particle in the rest of B_{sig}
 - bad purity, best efficiency
- Full event interpretation
 - Combines hadronic tagging and semileptonic tagging into single algorithm

$D^{(*)}\tau\nu$, τ ->h ν , hadronic tag measurement

		D ⁰ mode			D ⁺ mode
High-SNR	$K_{S}\pi^{0}$	$(1.2\pm0.04)\%$	High-SNR	K _s π ⁺	(1.53±0.06)%
	π+π-	$(1.420 \pm 0.025) \times 10^{-3}$	High-SNR	K _s K ⁺	$(2.95\pm0.15) \times 10^{-3}$
High-SNR	K ⁻ π ⁺	(3.93±0.04)%		$K_{s}\pi^{+}\pi^{0}$	(7.24±0.17)%
High-SNR	K ⁺ K ⁻	$(4.01\pm0.07) \times 10^{-3}$	High-SNR	$K^{-}\pi^{+}\pi^{+}$	(9.46±0.24)%
	$K^-\pi^+\pi^0$	(14.3±0.8)%		$K^+K^-\pi^+$	(9.96±0.26)×10 ⁻³
High-SNR	$K_{S}\pi^{+}\pi^{-}$	(2.85±0.20)%		$K^-π^+π^+π^0$	(6.14±0.16)%
	$K_{S}\pi^{+}\pi^{-}\pi^{0}$	(5.2±0.6)%		$K_{s}\pi^{+}\pi^{-}\pi^{+}$	(3.05±0.09)%
High-SNR	$K^{-}\pi^{+}\pi^{-}\pi^{+}$	(8.06±0.23)%		$K^-\pi^+\pi^-\pi^+\pi^+$	$(5.8\pm0.5)\times10^{-3}$
	$K_{S}K^{-}\pi^{+}$	$(3.6\pm0.5)\times10^{-3}$		$\pi^+\pi^+\pi^-$	$(3.29\pm0.20)\times10^{-3}$
	K _S K ⁻ K ⁺	$(4.51\pm0.34) \times 10^{-3}$		$\pi^+\pi^+\pi^-\pi^0$	(1.17±0.08)%
	$\pi^+\pi^-\pi^0$	(1.47±0.09)%			
	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(7.45\pm0.22)\times10^{-3}$	Can be a	added	

$q^2 \equiv (p_B - p_{D^{(*)}})^2$ sensitivity to NP

 $\leftarrow \mathbf{R}(\mathbf{D}^{(*)}) \text{ measurement constrained}$ ${}_{R(D)=0.421\pm0.058, R(D^*)=0.337\pm0.025, BaBar+Belle(by 2013)}$ ${}_{\mathcal{H}_{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb}[(1+C_{V_1})\mathcal{O}_{V_1} + C_{V_2}\mathcal{O}_{V_2} + C_{S_1}\mathcal{O}_{S_1}$ $+ C_{S_2}\mathcal{O}_{S_2} + C_T\mathcal{O}_T],$ ${}_{\mathcal{O}_{V_1}} = (\bar{c}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_L), \\ {}_{\mathcal{O}_{V_2}} = (\bar{c}_R\gamma^{\mu}b_R)(\bar{\tau}_L\gamma_{\mu}\nu_L), \\ {}_{\mathcal{O}_{S_1}} = (\bar{c}_Lb_R)(\bar{\tau}_R\nu_L), \\ {}_{\mathcal{O}_{S_2}} = (\bar{c}_Rb_L)(\bar{\tau}_R\nu_L), \\ {}_{\mathcal{O}_{T}} = (\bar{c}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_L), \end{cases}$

 \leftarrow With R(D(*)) and the q² dependence at Belle II 5ab⁻¹(dotted) and 50ab⁻¹(solid). q² also has the sensitive to NP scenarios

DHMV

1407.8526 + 1503.03328

- Improved QCDF approach
- Ball-Zwicky Form Factor approach

ABSZ

1411.3161 + 1503.05534,

• Form factors from light cone sum rules

LFV enhancement in $\boldsymbol{\tau}$

EPJ C8 (1999) 513	10 ⁻⁴⁵	
PRD 66 (2002) 034008	10 ⁻⁹	10-10
PLB 547 (2002) 252	10 ⁻⁹	10 ⁻⁸
PRD 68 (2003) 033012	10 ⁻⁸	10-10
PRD 66 (2002) 115013	10-7	10 ⁻⁹
PLB 566 (2003) 217	10-10	10-7
	EPJ C8 (1999) 513 PRD 66 (2002) 034008 PLB 547 (2002) 252 PRD 68 (2003) 033012 PRD 66 (2002) 115013 PLB 566 (2003) 217	EPJ C8 (1999) 51310 ⁻⁴⁵ PRD 66 (2002) 03400810 ⁻⁹ PLB 547 (2002) 25210 ⁻⁹ PRD 68 (2003) 03301210 ⁻⁸ PRD 66 (2002) 11501310 ⁻⁷ PLB 566 (2003) 21710 ⁻¹⁰

Numbers corresponding to the most optimistic case

Slide from Tomoyuki Konno@NuFact2016

 $\tau \rightarrow \ell \ell \ell$

τ→μγ

Dark photon

Systematics $R(D^*)$ and $P_{\tau}(D^*)$

Source	$R(D^*)$	$P_{ au}(D^*)$
Hadronic <i>B</i> composition	+7.7%	+0.134
MC statistics for PDF shape	-0.9% +4.0%	+0.103 +0.146 0.108
Fake <i>D</i> *	-2.8% 3.4%	0.018
$\bar{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$	2.4%	0.048
$\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}$	1.1%	0.001
$\bar{B} \to D^* \ell^- \bar{\nu}_\ell$	2.3%	0.007
τ daughter and ℓ^- efficiency	1.9%	0.019
MC statistics for efficiency estimation	1.0%	0.019
$\mathcal{B}(\tau^- \to \pi^- \nu_\tau, \rho^- \nu_\tau)$	0.3%	0.002
$P_{\tau}(D^*)$ correction function	0.0%	0.010
Common sou	rces	
Tagging efficiency correction	1.6%	0.018
D^* reconstruction	1.4%	0.006
Branching fractions of the D meson	0.8%	0.007
Number of $B\bar{B}$ and $\mathcal{B}(\Upsilon(4S) \to B^+B^- \text{ or } B^0\bar{B}^0)$	0.5%	0.006
Total systematic uncertainty	$^{+10.4\%}_{-9.4\%}$	+0.21 -0.16

PRD97.012004(2018)

K*(892) and K*(1430)

K*(892) WIDTH

CHARGED ONLY, HADROPRODUCED

VALUE (MeV)EVTSDOCUMENT IDTECNCHGCOMMENT50.8±0.9 OUR FIT

50.8 \pm 0.9 OUR AVERAGE

K₀*(1430) WIDTH

 $\frac{VALUE (MeV)}{270 \pm 80 \text{ OUR ESTIMATE}} \xrightarrow{EVTS} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} \xrightarrow{CHG} \xrightarrow{COMMENT}$