The Belle II Experiment: status and physics prospects

Steven Robertson Institute of Particle Physics & McGill University

On Behalf of the Belle II Collaboration

Kruger2018 December 3 - 7, 2018

Belle II

Belle II is the successor of the Belle experiment at the KEK laboratory in Tsukuba, Japan

- Intensity frontier "Super B Factory" flavour physics experiment
- Target data set of ~30x the combined integrated luminosity of BABAR + Belle
- ~800 collaborators from 26 countries, including over 260 graduate students

First collisions achieved in 2018 during "Phase 2" accelerator commissioning run!

Outline:

- SuperKEKB and Belle II
- Physics program
- Phase 2 commissioning results
- Future prospects

December 6, 2018 The Belle II Experiment

Kruger2018

*

Belle II Detector

Anticipate ~40x increased instantaneous luminosity, and greatly increased beam background rates

Very substantial "upgrades" to the original Belle detector:

- Replacement of beam pipe and redesign of entire inner detector (including vertex detectors and drift chamber)
- New quartz-bar Time-of-Propagation PID in barrel region
- Retain existing CsI(TI) calorimeter crystals, but front-end electronics, feature extraction and reconstruction software entirely new
- Entirely new software framework and distributed computing environment

Kruger2018

 $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$ collisions provide a very rich data set and a clean analysis environment

Kruger2018

"Inclusive" hadronic and low multiplicity datasets are key features:

Target data sample has a cross section of ~ 5 – 10 nb

8 x10³⁵ cm⁻²s⁻¹ luminosity yields ~5 kHz of "interesting" physics events

- O(1 kHz) of $B\overline{B}$ events
- ~30 kHz Bhabhas within detector acceptance
 - Level 1 trigger rejection essential!
 - Probability of multiple collisions per bunch crossing (aka "pileup"): <0.02%

50 ab⁻¹ integrated luminosity implies ~55 billion BB pairs in target data sample

• Analysis sensitivity in B, τ and charm to O(10⁻⁹) branching fractions

Process	σ (nb)
bb	1.1
<u> </u>	1.3
Light quark qq	~2.1
$ au^+ au^-$	0.9
e⁺e⁻	~40

Belle II Physics Program

Objective of the BABAR and Belle experiments was to validate the Kobayashi-Maskawa mechanism for CP violation within the SM

• i.e. demonstrated that measurements were consistent with CKM "Unitarity Triangle" expectations

Belle II will look for deviations from this picture to provide evidence of beyond SM physics

• Compare precise measurements with (equally precise) theoretical predictions

$$V_{\rm CKM} \propto \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| e^{-i\beta} & -|V_{ts}| e^{-i\beta_s} & |V_{tb}| \end{pmatrix}$$
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Very broad program of research spanning B, charm and τ physics, but also QED/QCD, quarkonium, light new physics direct searches etc.

Electroweak FCNCs

Wilson coefficients qu (calculated perturbatively; encode short-distance physics)

Products of field operators

(non-perturbative hadronic matrix elements; Heavy quark expansion in inverse powers of m_b)

New physics could result in a distinctive pattern of deviations in observables across a variety of related FCNC modes

 C_7 , C_9 (Vector EW) and C_{10}

C₇ (Photon penguin)

C₁₀ (Axial vector EW)

Potentially many observables:

• Branching fractions, CP asymmetries, kinematic distributions, angular distributions and asymmetries

Kruger2018

$$B \longrightarrow K^{(*)}\mu^{+}\mu^{-}$$
$$B \longrightarrow K^{(*)}e^{+}e^{-}$$

LHCb measurements in tension with SM expectations for ratio of muon and electronic final states:

$$R_{K(^*)}(q^2) = \frac{BF(B \rightarrow K^{(^*)}\mu^+\mu^-)}{BF(B \rightarrow K^{(^*)}e^+e^-)}$$

$$\begin{split} B &\longrightarrow K^{(*)}\mu^{+}\mu^{-} \\ B &\longrightarrow K^{(*)}e^{+}e^{-} \\ B^{0} &\longrightarrow K^{(*)0}l^{+}l^{-} \\ B^{+} &\longrightarrow K^{(*)+}l^{+}l^{-} \\ B &\longrightarrow \pi l^{+}l^{-} \\ B &\longrightarrow X_{s/d} l^{+}l^{-} \end{split}$$

Belle II can measure absolute branching fractions, and has symmetric e/µ PID performance

... but there are also two distinct B charge/flavour states

...and two different final-state quark flavours (s,d)

... and also "inclusive" $X_{s/d}$ hadronic systems vs exclusive π ,K, K* reconstruction

$$\begin{split} B &\to K^{(*)}\mu^{+}\mu^{-} \\ B &\to K^{(*)}e^{+}e^{-} \\ B^{0} &\to K^{(*)0}l^{+}l^{-} \\ B^{+} &\to K^{(*)+}l^{+}l^{-} \\ B &\to \pi l^{+}l^{-} \\ B &\to \chi_{s/d} l^{+}l^{-} \end{split}$$

Belle II can measure absolute branching fractions, and has symmetric e/µ PID performance

... but there are also two distinct B charge/flavour states

...and two different final-state quark flavours (s,d)

... and also "inclusive" $X_{s/d}$ hadronic systems vs exclusive $\pi,\,K,\,K^*$ reconstruction

 $B \rightarrow K^{(*)}\mu^{+}\mu^{-}$ $B \rightarrow K^{(*)}e^+e^ \mathbf{B}^0 \longrightarrow \mathbf{K}^{(*)0} l^+ l^ \mathbf{R}^+ \longrightarrow \mathbf{K}^{(*)+} l^+ l^ B \rightarrow \pi l^+ l^ B \rightarrow X_{s/d} l^+ l^ B \rightarrow K^{(*)} \tau^+ \tau^ B \rightarrow K^{(*)} v \overline{v}$ $B \rightarrow K^{(*)} \tau^+ l^-$

...also two additional lepton species (τ, v) which can be studied

...and of course lepton flavour violating modes.

All with distinct experimental sensitivities and systematics, and theoretical sensitivities to various new physics scenarios

Unique capability to study B decay modes with missing energy:

- FCNC modes such as $B \rightarrow K^{(*)} \bar{vv}$, $B^0 \rightarrow v\bar{v}$, $B \rightarrow K^{(*)} \tau^+ \tau^-$ etc.
- Semileptonic B decays such as $B \rightarrow D^{(*)}\tau^+\nu$, $B^+ \rightarrow \mu^+\nu$, and $B^+ \rightarrow \tau^+\nu$

Precisely known CM energy, combined with exclusive hadronic reconstruction of the accompanying B, permit the decay daughters of missing energy decays to be uniquely identified:

Similar methodology exists for reconstructing semileptonic B tags

 $B \rightarrow D\tau v$ and $B \rightarrow D^* \tau v$ are tree-level SM decays containing 3rd generation quarks and leptons

 Ratio of heavy-to-light lepton modes provides robust theoretical prediction

$$R = \frac{\mathcal{B}(b \to q \tau \,\bar{\nu}_{\tau})}{\mathcal{B}(b \to q \,\ell \,\bar{\nu}_{\ell})}$$
$$\ell = e, \mu$$

 Measurements from BABAR, Belle and LHCb all independently deviate from SM (combined ~4σ)

Belle II can precisely measure R(D) and R(D*) to constrain or identify BSM physics

Both charged and neutral B and various final states

Rare and forbidden decays

Processes that are suppressed or forbidden within the SM can potentially be dramatically enhanced by new physics contributions

- e.g. Lepton flavour violation in τ decays:
 - "forbidden" in SM, but many new physics models saturate existing limits

Very clean searches at B factories and unambiguous signal of new physics

Phase 2 performance

2018 running provided opportunity to validate detector performance

- Achieved instantaneous luminosity of 5.5 x 10³³ cm⁻² s⁻¹
- Recorded 472 pb⁻¹ integrated luminosity (~1 million B mesons)

Particle identification:

December 6, 2018 The Belle II Experiment

Kruger2018

Steven Robertson

Phase 2 performance

Kruger2018

Clear evidence of B mesons in the Phase 2 dataset

Indicates that SuperKEKB was on the • Υ (4S) resonance peak

Exclusively reconstructed B decays:

Event shapes:

*

Prospects: Phase 3

Currently preparing for "factory mode" data taking

- Vertex detector has been installed
- Phase 3 run beginning March 2019;
 ~8 months of operation in 2019

- Exceed existing world $e^+e^- \rightarrow \Upsilon(4S)$ dataset by 2021
- Target of 50 ab⁻¹ recorded by 2025

Conclusion

18

Belle II recorded its first data in 2018 during Phase 2 accelerator commissioning run

- Peak luminosity of 5.5x10³³ cm⁻²s⁻¹ and 472 pb⁻¹ integrated
- "Modest" data sample permits validation of detector performance, exercising of physics tools
- Background rates are manageable; vertex detector has been installed for Phase 3

Physics data taking beginning in March 2019 with full detector capability

- "Early" physics prospects include exotic/dark photon searches which can be performed with modest data statistics
- Aim to supersede existing B factory data sets by ~2021

More information about the expected physics performance of Belle II can be found in arXiv:1808.10567[hep-ex]

Backup Slides

Belle II vs Belle

Belle II vertex detector has been installed for Phase 3 data taking

- Two distinct detectors:
 - Pixel Detector (PXD)
 - 2 layers DEPFET modules
 - Pixel size: 50 x 55-85 µm.
 - Thickness: 75 μm, 0.21% X₀ per layer

SVD PXD

Silicon Vertex Detector(SVD)

- 4 layers of double-sided silicon strip detectors
- Slant in FWD region.
- material budget: 0.7% Xo per layer

56 layer large-volume drift chamber

He:C₂H₆ 1:1 gas mixture Total of 14336 sense wires

Smaller azimuthal cell sizes relative to Belle CDC

Proximity focusing aerogel RICH n = 1.045-1.055

- Hybrid Avalanche Photo Detectors
- 420 units, 144 channels each

MCP-PM1

Barrel particle identification based on Cherenkov radiation in quartz bars

• Exploit propagation time of Cherenkov photons to infer Cherenkov angle

- 16 quartz bars: 2x1.25 m x 0.45 m x 2 cm
- 32 Micro-channel plate PMTs Hamamatsu SL-10 MCP PMT

SuperKEKB

	KEKB Achieved	SuperKEKB LER HER
RF frequency f [MHz]	508.9	
# of Bunches N	1584	2500
Horizontal emittance ɛx [nr	n] 18 24	3.2 4.6
Beta at IP $\beta x^* / \beta y^*$ [mm]	1200/5.9	32/ 0.27 25/ 0.30
beam-beam param. ξy	0.129 0.090	0.088 0.081
Bunch Length Sz [mm]	6.0 6.0	6.0 5.0
Horizontal Beam Size sx*	[µm] 150 150	10 11
Vertical Beam Size sy [*] [[nm] 0.94	48 62
Half crossing angle φ [mr	ad] 11	41.5
Beam energy Eb [GeV]	3.5 8	4 7.007
Beam currents lb [A]	1.64 1.19	3.6 2.6
Lifetime t [min]	133 200	6 6
Luminosity L [cm ⁻² s ⁻¹]	2.1 x 10 ³⁴	8 x 10 ³⁵

Substantial upgrade of KEKB collider to provide e⁺e⁻ collisions at 8x10³⁵cm⁻²s⁻¹ luminosity for Belle II

- Low-emittance "nanobeam" scheme exploiting ILC and light-source technologies
- 4 GeV (e⁺) on 7 GeV (e⁻)
- New positron damping ring and positron beam vacuum chamber

Kruger2018

BEAST – phase 2

Belle II detector in position at IP, but without vertex detectors

 Dedicated background monitoring detectors positioned close to the IP to ensure radiation safety Belle II
 2 DVD and 4 SVD layers in caster

2 PXD and 4 SVD layers in sector where the highest backgrounds are expected.

FANGS - FE-I4 based hybrid pixel to study Synchrotron Radiation background

CLAWS - scintillators with SiPM to study trickle injection background

PLUME - double-sided high granularity MIMOSA pixels

Also "permanent" background monitors installed along beam line outside of nominal Belle II angular acceptance:

- PIN diodes
- Scintillator/MPPC (trickle injection backgrounds)
- He3 tubes (neutrons)

Signals relayed to Belle II and SuperKEKB control rooms for beam tuning

Dark Forces

- Search for decay of $e^+e^- \rightarrow \gamma A'$ via $A' \rightarrow \chi \overline{\chi}$ or into SM particles
 - "visible" $A' \rightarrow l^+ l^-$, or
 - "Invisible" A' decays, with A' mass determined from photon energy $E_{\gamma}^{*} = \frac{s - M_{X}^{2}}{2\sqrt{s}}$

.... however, dark sector could be much more extensive, with one or more Abelian or non-Abelian interactions, fermions and Higgs bosons

Can potentially be detected via one of a number of "portals" coupling the Dark Sector to the SM	Vector Portal \rightarrow	Dark Photon
	Scalar Portal \rightarrow	Higgs/Dark Scalars
	Pseudoscalar Portal $ ightarrow$	Axion-like Particles
	Neutrino Portal \rightarrow	Sterile Neutrinos

- Sensitivity studies performed in the context of "Belle II physics book" (B2TiP), to be published in near future
- ALP sensitivity studies: arxiv: 1709.00009

Typically, these are narrow resonance ("bump hunt") searches in low multiplicity data samples

Purely leptonic decays, $B^+ \rightarrow l^+ v$ are helicity suppressed in the SM, with substantial potential for enhancement by new physics

- Theoretical uncertainties only from $|V_{ub}|$ and decay constant f_B

$$\mathcal{B}r(B^+ \to \ell^+ \nu_\ell) = \frac{G_f^2}{8\pi} |V_{ub}|^2 f_B^2 m_B m_\ell^2 \tau_B \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2$$

$$r_{H^+} = [1 - \tan^2\beta (m^2_B/m^2_{H^+})]^2$$

- Experimental measurements of B⁺ → τ⁺ν are in tension wrt UT fit, but these results are not currently very precise
- Current limits on ${\rm B^+} \to \mu^+ \nu\,$ from BABAR & Belle data close to SM

Lots of potential for discovery even with modest Belle II data set (2021?)

ر۷)

BR(B

• l^+l^- forward-backward asymmetry A_{FB}

$$\frac{1}{\Gamma(s)}\frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4}F_{L}(s)(1-\cos^{2}\theta_{\ell}) + \frac{3}{8}(1-F_{L}(s))(1+\cos^{2}\theta_{\ell}) + \mathcal{A}_{FB}\cos\theta_{\ell}$$

Many decay modes with potential sensitivity to new physics contributions:

Hadronic decays:

Electroweak FCNCs:

Precision measurements of one-loop processes probe new physics mass scales which can far exceed direct searches

Many observables:

Branching fractions, CP asymmetries, kinematic distributions, angular observables and asymmetries

Other topics

Many potential analysis topics beyond the usual "flavour" of B factories:

- Quarkonium and new states
- QED and continuum production cross sections
- Direct searches for light new particles
 - dark matter candidates, "dark sector", light Higgs, ALP searches etc.

Dark Forces:

Various models exist in which dark matter arises as part of a "dark sector" containing its own gauge interactions and particles

- Simplest scenario is to add a new U(1) gauge symmetry, with associated charge carried by dark-sector fermions
 - Spin-1 gauge boson "dark photon" A' can mix with SM photon, providing a "portal" to the dark sector. Mixing strength characterized by ϵ

Flavour and New Physics

 $\mathscr{L}_{eff} = \mathscr{L}_{SM} + \sum_{k=1} (\sum_{i} \mathcal{C}_{i}^{k} Q_{i}^{(k+4)}) / \Lambda^{k}$

Effective flavour-violating couplings

In explicit models:

A ~ mass of virtual particles

(e.g. Fermi theory: m_W)

C ~ (loop coupling) x (flavour coupling)

(e.g. SM/MFV: $\alpha_w x CKM$)

Precision flavour measurements provide bounds on ratio C / Λ i.e. constrain coupling strengths at any given mass scale

New Physics scale

Kruger2018