

Tau physics prospect at Belle II

Outline

- B factory as tau factory
- Tau LFV search
- CPV in tau hadronic decay

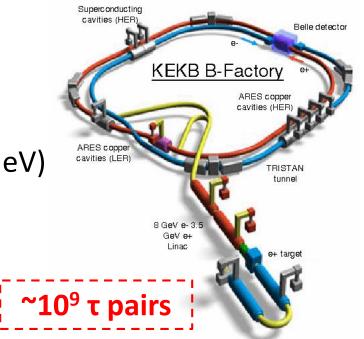
Tomoyuki Konno

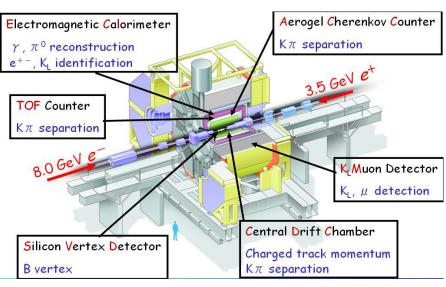
for the Belle II collaboration

Kitasato University

16/11/2018, Nagoya KMI, Japan

B factory as tau factory

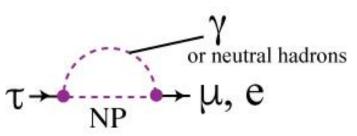

τ-factory at B-factory


B-factory is τ factory!

- KEKB: asymmetric e+(3.5 GeV) e-(8 GeV)
 - Peak luminosity: 2.1x10³⁴ cm⁻²s⁻¹
 - => World highest peak luminosity
 - $-\sigma(\tau\tau) \sim 0.9 \text{ nb}$
 - $-\sigma(bb) \sim 1.1 \text{ nb}$
 - => pure ττ can be collected
- Belle Detector:
 - Good tracking and PID
 - => Lepton efficiency: 90 %

Fake rate: O(0.1) % for e

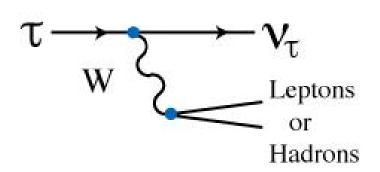
O(1) % for μ



Motivation to τ physics

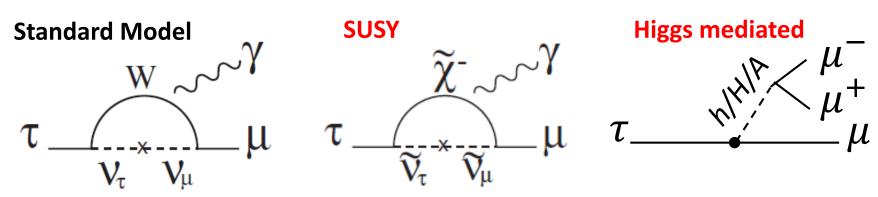
Quest for New Physics

 Lepton flavor (number) violating decays is suppressed in SM



Clear hints to New Physics models

$$\mathcal{B}(\tau \to l\gamma) = \frac{3\alpha}{32\pi} |\sum_{i} U_{\tau i}^{*} U_{\mu i} \frac{\triangle_{3i}^{2}}{m_{W}^{2}}|^{2}$$


Hadronic decays

 Unique tool for precise studies of low energy QCD and CP violation

Search for tau LFV

- Lepton Flavor Violation (LFV) is highly suppressed in the Standard Model (SM) even if neutrino oscillation is taken
 - Br $< O(10^{-45}) =>$ Experimentally unreachable
- Many extensions to SM predict to enhance LFV to be observable in current experiment facilities: Br ~ O(10⁻⁸)
- => Observation of LFV is an clear signature of the New Physics (NP)!
- Tau lepton the heaviest charged lepton coupling to the NP
- => Many possible LFV decay modes related to the NP models

Predicted BF in various models

• Various models predict BF for $\tau \to \mu \gamma$ and $\tau \to \mu \mu \mu$

	Reference	$ au o \mu\gamma$	$ au o \mu\mu\mu$
SM+ ν mixing	EPJ C8 (1999) 513	10 ⁻⁴⁵	
SM + heavy Maj ν_R	PRD 66 (2002) 034008	10-9	10 ⁻¹⁰
Non-universal Z'	PLB 547 (2002) 252	10-9	10-8
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10-9
SUSY Higgs	PLB 566 (2003) 217	10-10	10 ⁻⁷

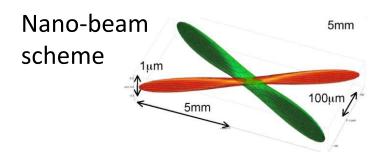
Numbers correspond to the most optimistic case

Super B factory will reach a possible region to τ LFV!

Predicted BF in various models

Ratio of Tau LFV decay BF provides discrimination of NP models

(M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al., PLB547, 252 (2002))


	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z' boson
$\left(\frac{\tau \to \mu\mu\mu}{\tau \to \mu\gamma}\right)$	$\sim 2 \times 10^{-3}$	0.06~0.1	0.4~2.3	~16
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	$\sim 1 \times 10^{-2}$	~1 × 10 ⁻²	0.3~1.6	~16
Br $(au o \mu \gamma)$	< 10 ⁻⁷	< 10 ⁻¹⁰	< 10 ⁻¹⁰	< 10 ⁻⁹

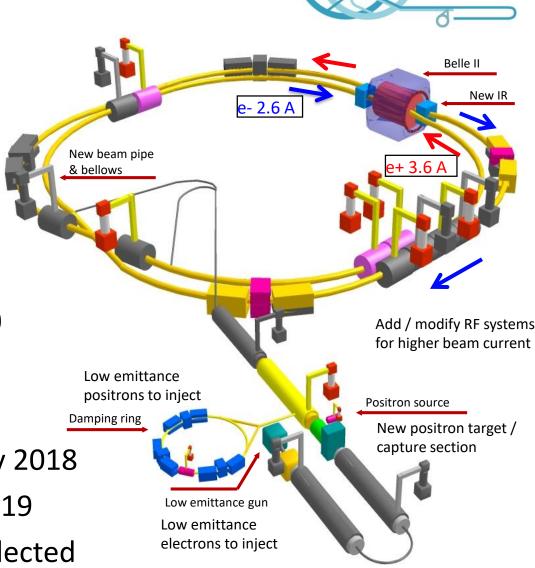
- It is important to search for various kinds of τ LFV
- => Almost all decay modes were studied using the Belle data

SuperKEKB / Belle II

Super B factory is also Super τ factory!

40 times higher luminosity

- Focus on small β^*_y : **x 20**


– Increase in current : x 2

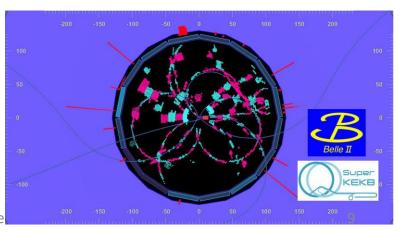
=> Integrated 50 ab⁻¹

Beam commissioning in July 2018

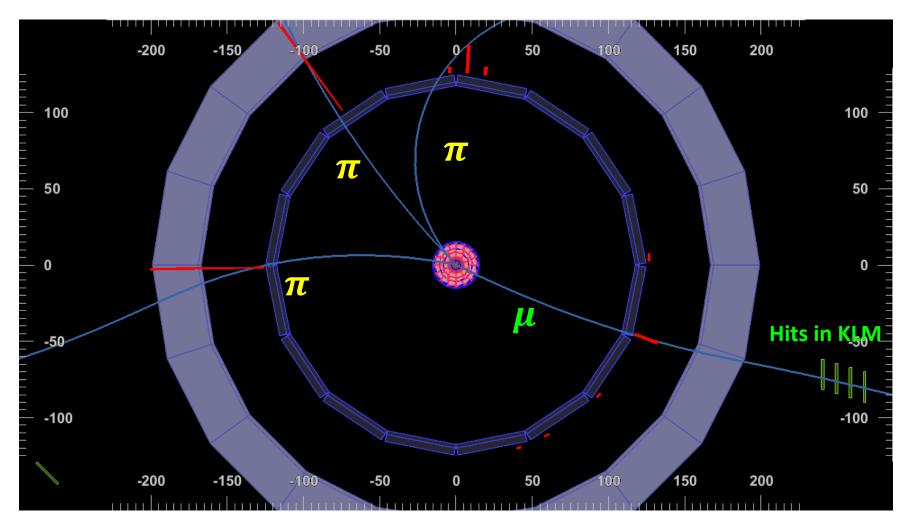
Start full operation in 2019

=> $4.6 \times 10^{10} \tau$ pairs will be collected

Belle II started Collision!



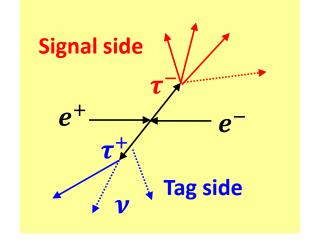
First collision at 26/04/2018

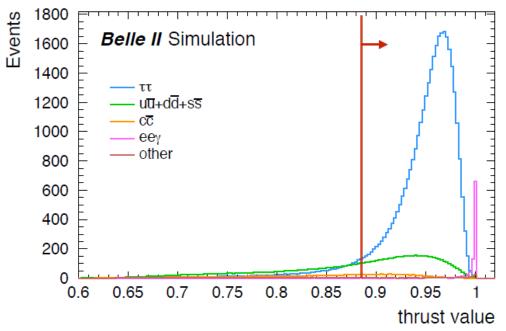

- 3 months operation until 18th July
- Almost full detector worked well

Integrated Luminosity: ~500 pb⁻¹

τ pair candidates with τ ->3 π ν

τ pair are also extracted in the beam commissioning data



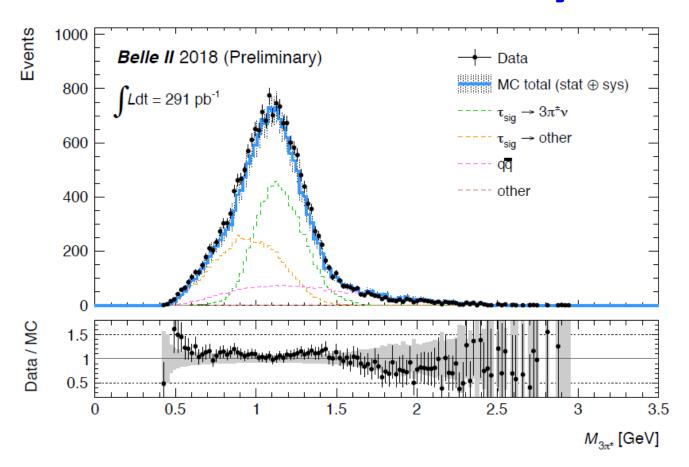

Extraction of τ pairs

Huge τ pairs samples are collected by tagging method

• $e^+e^- \rightarrow \tau^+\tau^-$ | Signal side: 3 tracks

| Tag side: 1 prong + missing

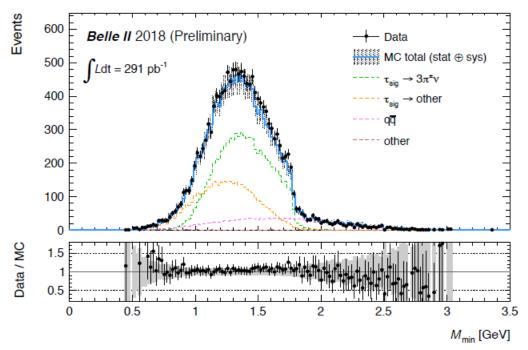
Event shapes helps to reduce backgrounds significantly


$$T = \frac{\sum_{i=1}^{N} |\mathbf{T} \cdot \mathbf{p_i}|}{\sum_{i=1}^{N} |\mathbf{p_i}|}$$

Thrust vector, minimizing T, shows sphericity of an event

spherical -

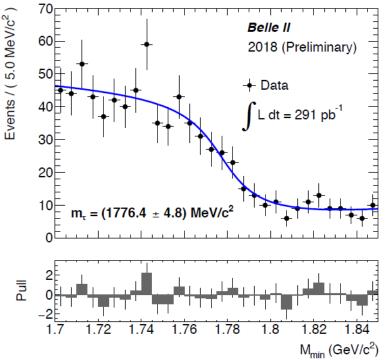
🔷 2 body-like


$\tau \rightarrow 3\pi v$ in Belle II early data

- Data has good agreement with MC after selection cuts
- Performance of the subsystems is enough as expected

τ mass in Belle II early data

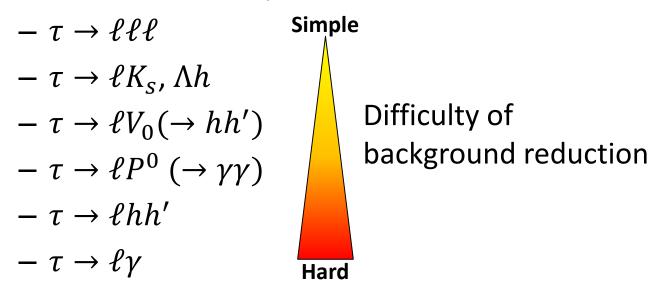
M_{min} distribution @ 291 pb-1:


 Tau mass from Belle early data is consistent to previous results

$$m_{\tau} = (1776.4 \pm 4.8 \text{ (stat)}) \text{ MeV/c2}$$

Measured in $\tau \rightarrow 3\pi v$

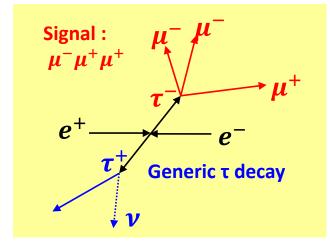
$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$


Distribution of the pseudomass is fitted to a empirical edge curve

τ LFV search

Analysis strategy

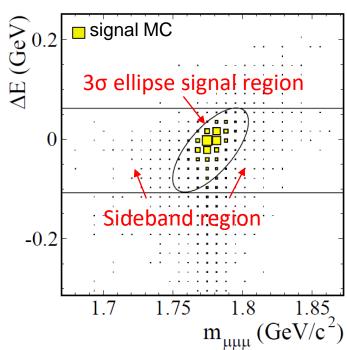
- Rare decay search :
 - => Understand backgrounds and reduce as much as possible
- Search various decay modes:

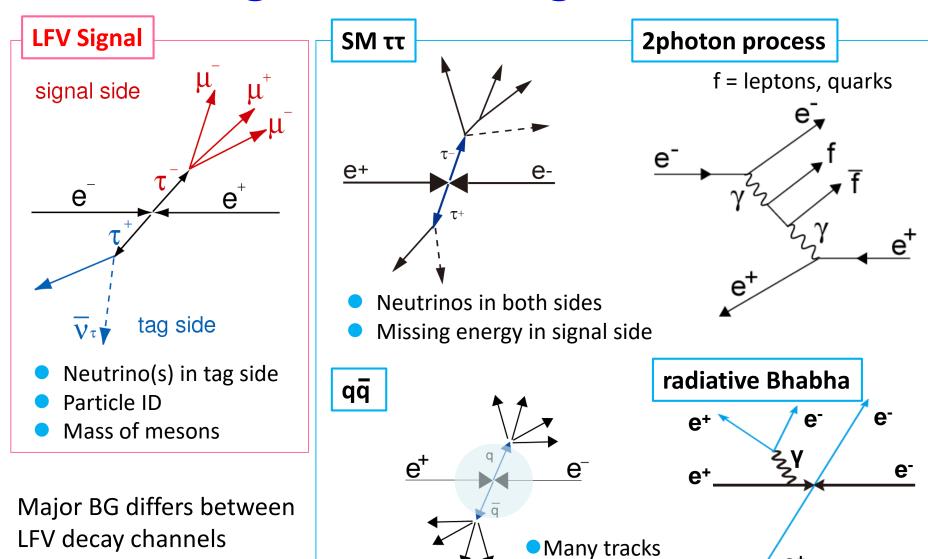

- Analyze the modes from simple selections to hard ones for background reduction
 - Provide feedback to next analysis of similar final state

Analysis procedure

• $e^+e^- \rightarrow \tau^+\tau^-$: No missing in signal side

| Signal side: $\mu\mu\mu$ - Fully reconstructed

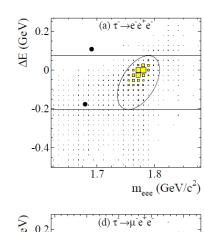

| Tag side: 1 prong + missing
- Br ~ 85 %

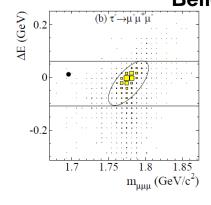

• Signal extraction: $m_{\mu\mu\mu} - \Delta E$ plane

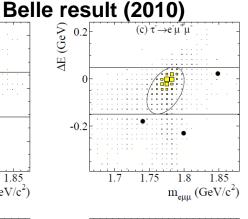
$$- m_{\mu\mu\mu} = \sqrt{E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2} \sim m_{\tau}$$
$$- \Delta E = E_{\mu\mu\mu}^{CM} - E_{\rm beam}^{CM} \sim 0$$

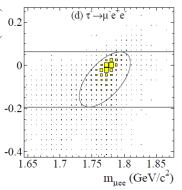
 Number of Background is estimated using sideband data and MC

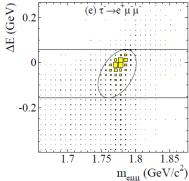
Signal and backgrounds

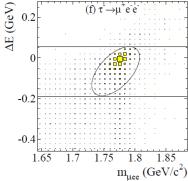


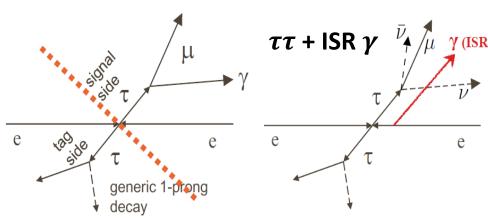

Belle result : $au o \ell\ell\ell$


Phys.Lett.B687,139 (2010)

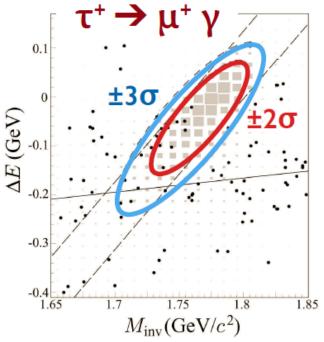

- Data: 782fb⁻¹
- No event s are found in the signal region.
- Almost BG free!
 - Expected # of BG:0.01-0.21
 - => Emphasize the low background compared to LHCb

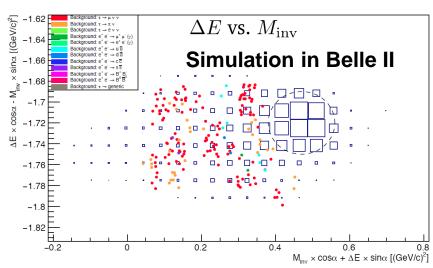

Br < $\sim 10^{-8}$ at 90%CL




Mode	ε (%)	N _{BG} EXP	σ _{syst} (%)	UL (x10 ⁻⁸)
$e^-e^+e^-$	6.0	0.21 <u>±</u> 0.15	9.8	2.7
$\mu^-\mu^+\mu^-$	7.6	0.13 <u>±</u> 0.06	7.4	2.1
$e^-\mu^+\mu^-$	6.1	0.10 <u>±</u> 0.04	9.5	2.7
$\mu^-e^+e^-$	9.3	0.04 <u>±</u> 0.04	7.8	1.8
$\mu^-e^+\mu^-$	10.1	0.02 <u>±</u> 0.02	7.6	1.7
$e^-\mu^+e^-$	11.5	0.01 <u>±</u> 0.01	7.7	1.5

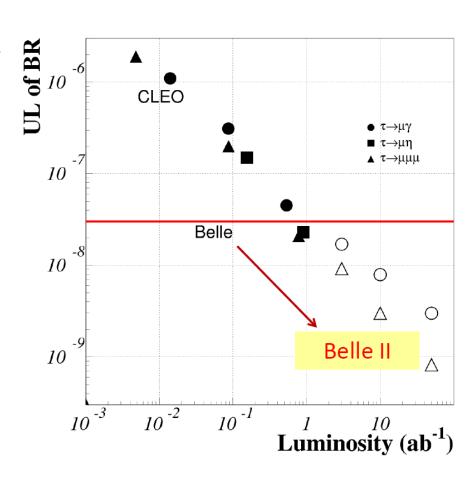
Belle result : $\tau \rightarrow \mu \gamma$, $e \gamma$


Phys. Lett. B 666, 16 (2008)


Blinding box approach evaluating BG out side the signal region

- Search with 545 fb⁻¹
 - − Main BG : $\tau \rightarrow \mu\nu\nu$ + ISR γ
 - miss/missing tracks
- $\tau \to \mu \gamma$: Br < 4.5 x 10⁻⁸ (90%CL)
- $\tau \to e \gamma$: Br < 1.2 x 10⁻⁸ (90%CL)

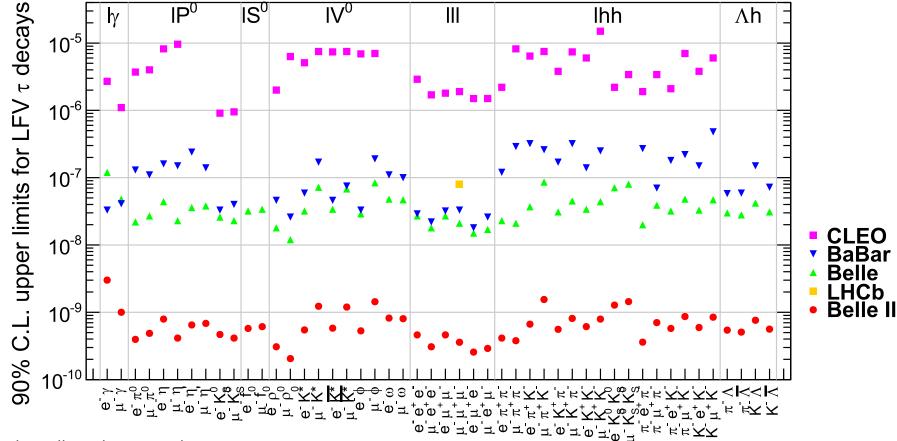
Belle result (2008)


Expectation of LFV search at Belle II

Belle II will reach the New Physics Models in first several years

Sensitivity depends on BG level
 => Improve achievable
 sensitivity

With final statistics at 50ab⁻¹

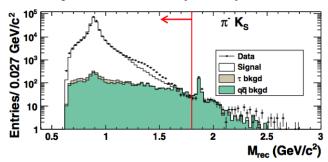

- $B(au o \mu \gamma) \sim O(10^{-9})$ and $B(au o \mu \mu \mu) \sim O(10^{-9})$
- Slopes depend on background

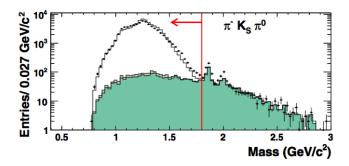
old plots, conservative

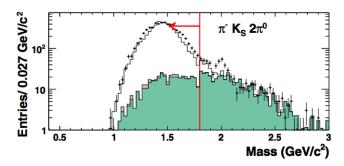
Upper limits at (Super) B factories

- Current estimation with Belle II final statistics: ~10-2 lower
 - => Many decay modes are reachable in Belle II!

Violations in τ hadronic decay


CP violation in $\tau \rightarrow K_s \pi (\geq 0\pi^0)\nu$


- τ decays with K_s meson in final states
 - Nonzero decay rate asymmetry due CP violation to Kaon sector


$$A_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu_{\tau}}) - \Gamma(\tau^- \to \pi^- K_S^0 \bar{\nu_{\tau}})}{\Gamma(\tau^+ \to \pi^+ K_S^0 \bar{\nu_{\tau}}) + \Gamma(\tau^- \to \pi^- K_S^0 \bar{\nu_{\tau}})}$$

- SM prediction : $(3.6\pm0.1) \times 10^{-3}$
- I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005).
- Y. Grossman and Y. Nir, JHEP 2012.4 (2012).
- BaBar results : $(-3.6\pm2.3\pm1.1) \times 10^{-3}$
- 2.8σ discrepancy from SM
- Belle II will provide an improvement

J.P. Lees et.al (BaBar) Phys.Rev D85 (2012) 031102

CP violation in $\tau \rightarrow K_s \pi \nu$

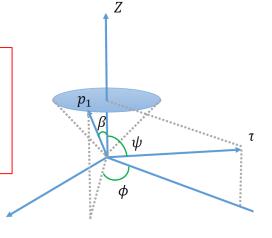
 CPV from a charged scalar boson exchange causes a difference in decay angular distributions

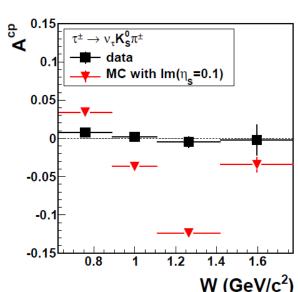
$$A_{i}^{CP} = \frac{\int \mathcal{Q}_{2,i}^{2} \cos\beta \cos\psi (\frac{d\Gamma_{\tau^{-}}}{d\omega} - \frac{d\Gamma_{\tau^{+}}}{d\omega}) d\omega}{\frac{1}{2} \int \mathcal{Q}_{2,i}^{2} (\frac{d\Gamma_{\tau^{-}}}{d\omega} + \frac{d\Gamma_{\tau^{+}}}{d\omega}) d\omega}$$
$$\simeq \langle \cos\beta \cos\psi \rangle_{\tau^{-}}^{i} - \langle \cos\beta \cos\psi \rangle_{\tau^{+}}^{i},$$

PRL 107 (2011) 131801

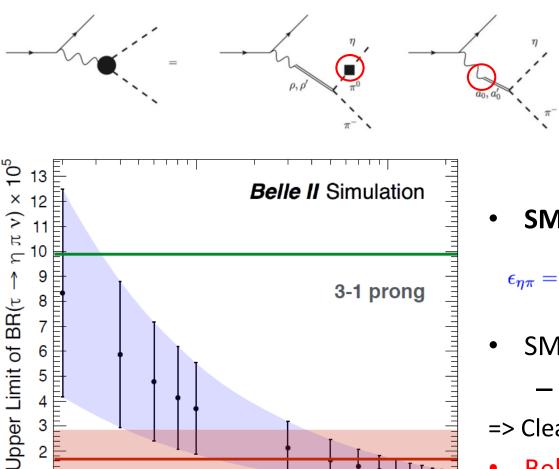
data $\tau \to v_{\tau} \pi K_{s} K_{L} n\pi^{0} (n \ge 0)$ $\tau \to v_{\tau} K_{s} \pi n\pi^{0} (n > 0)$ $\tau \to v_{\tau} K_{s} K_{n} n\pi^{0}$ $\tau \to v_{\tau} \pi K_{s} K_{n} n\pi^{0}$ $\tau \to v_{\tau} \pi K_{s} K_{n} n\pi^{0}$ other τ decays K_{s} sideband data

utl, dd, ss

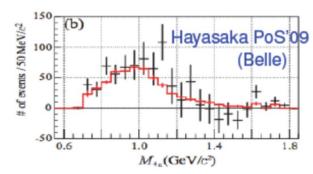

cc


W (GeV/c²)

M. Bischofberger et. al (Belle)


 $d\omega = dQ^2 d\cos\theta d\cos\beta$

70 times improvement is expected in Belle II => $|A^{CP}| < (0.5 - 3.8) \times 10^{-4}$



Second class currents : $\tau \rightarrow \eta \pi \nu$ decay

 2×10^{-1}

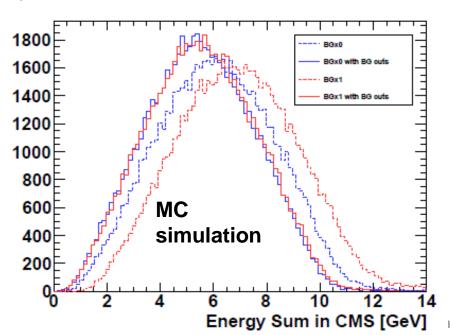
Br (Belle) $< 7.3 \times 10^{-5}$, 90%CL

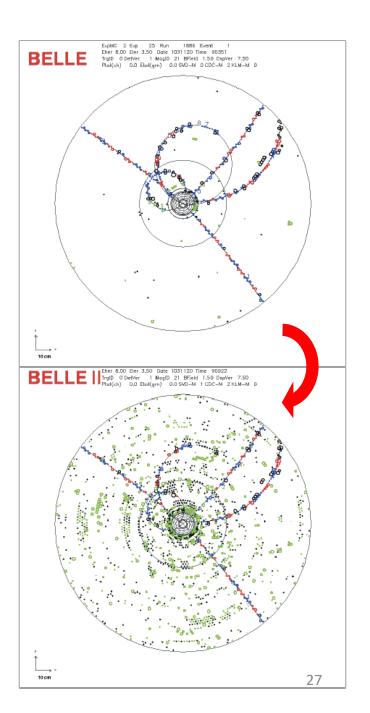
SM: Isospin violation

$$\epsilon_{\eta\pi} = \frac{\langle \pi^0 | H | \eta \rangle}{m_{\eta}^2 - m_{\pi^0}^2} = \frac{\sqrt{3}}{4} \frac{m_d - m_u}{m_s - \bar{m}} \sim 1.5 \times 10^{-2}$$

- SM contribution is suppressed
 - BR in SM $\sim 10^{-5}$
- => Clear signal will suggest new Physics
- Belle II will investigate in the first years of data taking

3-1 prong


Summary


- B factory is also open for τ physics in new physics search
 - Studies with τ pairs are carried out in Belle and BaBar
 - No significant result has been found yet
- Belle II experiment start operation in 2018 toward new physics
 - Will start full operation in early 2019
- Many of τ LFV channels are reachable in early years of Belle II
 - Improved Upper limit of Branching fraction by O(10⁻²)
- Hadronic decays of τ lepton is also interesting for New Physics
 - Limited by statistics and possible to be improved in Belle II
- More details are in "The Belle II Physics Book" <u>arXiv:1808.10567</u>

Beam background

Understanding beam background is essential for τ physics in Belle II

- Beam related background is expected to be 20 times higher than Belle
- Several hardware improvements applied
- => Beam related background is controllable by track reductions in an event

