

DANIEL ČERVENKOV ON BEHALF OF BELLE II COLLABORATION SEPTEMBER 26, 2018 | NEW TRENDS IN HIGH-ENERGY PHYSICS, MONTENEGRO

CHARLES UNIVERSITY

Past

- Belle and BaBar
- 1999 2010
- *e*⁺*e*⁻, asymmetric
- Collectively accumulated 1.5 ab⁻¹

Present

- LHCb
- 2008 today
- *pp*, symmetric
- \sim 8 fb⁻¹ (not directly comparable)

(Very near) Future

- Belle II
- 2018 -
- e^+e^- , asymmetric
- Plans to accumulate 50 ab^{-1} by 2026

- Low background (compared to hadronic machines)
 - Just above $\Upsilon(4S)$ threshold
 - Low multiplicity (\sim 15 20 vs hundreds in *pp*)
- Knowledge of collision 4-momentum can reconstruct decays with missing energy
 - · e^+e^- annihilation \Rightarrow initial 4-momentum is known
 - Hermeticity
- Good reconstruction efficiency of neutral particles

- Confirmation of CKM mechanism
- CPV in B decays
- D⁰ mixing
- Discoveries of exotic particles
 - X(3872)
 - Y(4340)
 - Z(4430)
 - ...
- Limits on New Physics scenarios

$$\mathcal{L} = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^*} \frac{R_L}{R_{\xi_y}}$$

Parameter	KEKB	SuperKEKB
/ _{+/} _[A]	1.6/1.2	3.6/2.6
$eta_{y+/-}^*$ [mm]	5.9/5.9	0.27/0.30
\mathcal{L} [cm ⁻² s ⁻¹]	2.1×10^{34}	8×10^{35}

Beams at interaction point:

- $\sigma_y^* = 42 \, \text{nm}$
- $\sigma_x^* = 6 \, \mu m$

- 40× higher luminosity
 - 20× higher background (shielding and collimator optimization)
 - Higher rate DAQ, trigger
 - Volume of data
 - Pile-up (faster SVD, CDC, ECL)
 - Radiation damage

BELLE II DETECTOR

9

FIRST HADRONIC EVENT (APRIL)

FIRST RESULTS

Invariant mass of J/ψ candidates

"Invariant mass" of B candidates

- Precise measurements of the CKM unitarity triangle
- Search for Lepton Flavor Violating (LFV) decays
- Dark sector searches
- Flavor Changing Neutral Current (FCNC) studies
- Hadronic spectroscopy

• Look for discrepancies in tree-level and loop decays

• Look for discrepancies in tree-level and loop decays

$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* l \nu)} \stackrel{\text{SM}}{=} 0.258 \pm 0.005, \qquad (l = e, \mu)$$

- (One of) the largest discrepancies between SM and measurement
- 4.1 σ disagreement

- Neutrino oscillations \Rightarrow neutral LFV beyond SM
- Some NP models also predict charged LFV of various degrees ($\mathcal{B} \in [10^{-7}, 10^{-40}]$) \Rightarrow powerful probe of NP
- B-factory exclusive, LHCb not competitive

- Vector portal (minimal scheme): massive dark photon A' mixes with SM photon γ with coupling ϵ

SM

$$SU(3)_{C} \times SU(2)_{L} \times U(1)_{\gamma}$$

Initial State Radiation

 ϵ
Lepton Pair

 γ
 A'
Dark Sector

 $U(1)_{D}$ (massive)

 u_{1}_{D}
 u_{2}_{A}
 u_{2}_{A}
 u_{3}_{C}
 u_{3}
 u_{3}_{C}
 u_{3}_{C}
 u_{3}
 u_{3}

• Belle II has a single photon trigger \Rightarrow can look for decay into dark matter

- Belle II offers high sensitivity to possible New Physics at the intensity frontier, largely complementary to LHCb
- Improved detector offers good neutral particle reconstruction, precise decay vertex determination, possibility to study decays with missing energy
- Physics program includes: CKM, CPV, LFV, dark sector, FCNC and many others
- Physics runs to start in February 2019

THANK YOU!