

B to semitauonic decays at Belle/Belle II

Outline:

- Physics motivation & experimental situation
- Polarization measurements in $B \rightarrow D^* \tau \nu$ by Belle
- Prospects for Belle/Belle II

Karol Adamczyk H. Niewodniczański Institute of Nuclear Physics

for the Belle Collaboration

A B M A B M

Physics motivation

$$egin{aligned} \mathcal{R}(\mathcal{D}^{(*)}) &= rac{\mathcal{B}(\mathcal{B} o ar{\mathcal{D}}^{(*)} au^+
u_ au)}{\mathcal{B}(\mathcal{B} o ar{\mathcal{D}}^{(*)} \ell^+
u_\ell)} \ & F_L^{\mathcal{D}^*} &= rac{\Gamma(\mathcal{D}_L^*)}{\Gamma(\mathcal{D}_\ell^*) + \Gamma(\mathcal{D}_T^*)} \end{aligned}$$

 $F_L^{D^*}$: fraction of longitudinal polarization of D^* SM: $F_L^{D^*} = [0.44 - 0.46] \pm < 10\%$

$$P_{\tau} = \frac{\Gamma(\lambda_{\tau} = +1/2) - \Gamma(\lambda_{\tau} = -1/2)}{\Gamma(\lambda_{\tau} = +1/2) + \Gamma(\lambda_{\tau} = -1/2)}$$

SM: $P_{ au}(D^*) \approx -0.5$

The Belle Experiment

KEKB

KEKB B-factory - asymmetric e^+e^- collider $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ (772 x 10⁶ $B\overline{B}$)

- clean source of *B* meson pairs
- reconstruction of one B meson (B_{tag}) provides information on momentum vector and other quantum numbers of another B (B_{sig})

$$\blacktriangleright \ E_B = E_{\text{beam}} = \frac{\sqrt{s}}{2}$$

<ロト < 同ト < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 1 = < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1

Experimental techniques

Tagging techniques

SM predictions

$$\begin{split} R(D^*)^{\text{SM}} &= \frac{\mathcal{B}(B \to \bar{D}^* \tau^+ \nu_{\tau})}{\mathcal{B}(B \to \bar{D}^* \ell^+ \nu_{\ell})} = \\ & 0.258 \pm 0.005 \\ R(D)^{\text{SM}} &= \frac{\mathcal{B}(B \to \bar{D} \tau^+ \nu_{\tau})}{\mathcal{B}(B \to \bar{D} \ell^+ \nu_{\ell})} = \\ & 0.299 \pm 0.003 \end{split}$$

HFLAV

 $R_D = 0.407 \pm 0.039_{stat} \pm 0.024_{syst}$ $R_{D^*} = 0.306 \pm 0.013_{stat} \pm 0.007_{syst}$

deviation from SM: $\sim 2.3\sigma$ for R(D)

 \sim 3.4 σ for $R(D^*)$

 $\sim 4\sigma$ tension between SM and combined $R(D^{(*)})$ by BaBar, Belle and LHCb

<ロト < 同ト < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 1 = < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1

Kinematic variables describing $B \rightarrow D^* \tau \nu$

 $q^2 \equiv M_W^2$ - effective mass squared of the au
u system

 θ_{τ} - angle between $\tau\&B$ in W^* rest frame

 χ - angle between the $\tau\nu$ and D^* decay planes

 $\begin{array}{l} \theta_{\rm hel}(D^*) \mbox{ - angle between } D\&B \mbox{ in } D^* \\ {\rm rest frame} \\ \theta_{\rm hel}(\tau) \mbox{ - angle between } \pi\& \mbox{ direction} \\ {\rm opposite to } W^* \mbox{ in } \tau \mbox{ rest frame} \end{array}$

$$\frac{d\Gamma}{d\cos\theta_{hel}(\tau)} = \frac{1}{2}(1 + \alpha P_{\tau}\cos\theta_{hel}(\tau))$$

$$\alpha = 1.0 \text{ for } \tau \to \pi\nu; \quad \alpha = 0.45 \text{ for } \tau \to \rho\nu$$

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{hel}(D^*)} = \frac{3}{4}[2F_L^{D^*}\cos^2(\theta_{hel}(D^*)) + (1 - F_L^{D^*})\sin^2(\theta_{hel}(D^*))]$$

 M_W^2 , M_M^2 and $\cos \theta_{\rm hel}(\tau)$, $\cos \theta_{\rm hel}(D^*)$ can be reconstructed at B-factories with hadronic decays of $B_{\rm tag}$

Measurement of au polarization in B decays

Phys. Rev. Lett. 118, 211801 (2017); Phys. Rev. D 97, 012004 (2018)

- both B⁰ and B⁻ decays are used; only 2 body τ decays: τ → πν, ρν
- ► sample divided into two bins of $cos\theta_{hel}$: I: $-1 < cos\theta_{hel} < 0$; II: $0 < cos\theta_{hel} < 0.8$ (for $\tau \to \pi\nu$)

Experimental challenges

- Distribution of $\cos \theta_{hel}(\tau)$ is modified by:
 - cross-feeds from other τ decays (contribute mainly in the region of cos θ_{hel}(τ) < 0)
 - ▶ peaking background (concentrated around $\cos \theta_{hel}(\tau) \approx 1$)
- corrections for detector effects: acceptance, asymmetric cosθ_{hel} bins, crosstalks between different τ decays
- for $\tau \to \pi(\rho)\nu$ modes combinatorial background from poorly known hadronic B decays

$$P_{\tau} = \frac{2}{\alpha} \frac{\Gamma_{\cos\theta_{\rm hel} > 0} - \Gamma_{\cos\theta_{\rm hel} < 0}}{\Gamma_{\cos\theta_{\rm hel} > 0} + \Gamma_{\cos\theta_{\rm hel} < 0}}$$

Result on $P_{\tau}(D^*)$

Phys. Rev. Lett. 118, 211801 (2017); Phys. Rev. D 97, 012004 (2018)

 $egin{aligned} & P_{ au}(D^*) = -0.38 \pm 0.51(\textit{stat.})^{+0.21}_{-0.16}(\textit{syst.}) \ & R(D^*) = 0.270 \pm 0.035(\textit{stat.})^{+0.028}_{-0.025}(\textit{syst.}) \end{aligned}$

dominant systematics: - hadronic B decays composition (+0.13 +7.6%) - MC stat. for PDF shapes

- ► first measurement of $P_{\tau}(D^*)$; the result excludes $P_{\tau}(D^*) > +0.5$ at 90% C.L.
- ► combined $R(D^*)$ and $P_{\tau}(D^*)$ result is consistent with the SM within 0.6 σ

 D^* polarization studies $R(D^{(*)})$ systematically above the SM expectations, surprisingly large effect for $R(D^*) \Rightarrow D^*$ polarization measurement

Measure $F_L^{D^*}$ from fit to $\cos \theta_{hel}(D^*)$ distribution:

 $\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{\rm hel}(D^*)} = \frac{3}{4}[2\boldsymbol{F}_L^{D^*}\cos^2(\theta_{\rm hel}(D^*)) + (1-\boldsymbol{F}_L^{D^*})\sin^2(\theta_{\rm hel}(D^*))]$

In comparison to τ polarization:

- + all τ decays are useful \rightarrow larger statistic
- + not affected by cross-feeds between different τ decays Theoretical papers (D^* polarization

studies):

- M. A. Ivanov, J. G. Koerner, C. T. Tran, Phys. Rev. D 94, 094028 (2016)
- A.K. Alok, D. Kumar, S. Kumbahar, and S U. Sankar, Phys. Rev. D 95, 115038 (2017)
- Z.-R. Huang et al., arXiv:1808.03565 [hep-ph].

Challenges for *D*^{*} polarization measurement

Main experimental problem: strong acceptance effects for $\cos \theta_{\rm hel}(D^*) \ge 0.0$

efficiency

distribution of slow π^{\pm} from D^*

Effectively only $\cos \theta_{hel}(D^*) < 0$ is useful for $F_L^{D^*}$ measurement

D* polarization - analysis method

Extract signal yield in bins of $\cos \theta_{hel}(\tau)$ in the range of $-1 < \cos \theta_{hel}(\tau) < 0$

• Extract F_L from fit to $\cos \theta_{hel}(D^*)$ distribution

- ► Employ **inclusive** *B*_{tag} reconstruction method
- ► Select clean decay chains: $B^0 \rightarrow D^{*-}(\rightarrow \overline{D^0}\pi^-)\tau^+\nu;$ $D^0 \rightarrow K\pi, K\pi\pi^0, K\pi\pi\pi;$ $\tau \rightarrow e\nu\nu; \mu\nu\nu; \pi\nu$

<ロト < 同ト < 目 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 1 = < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1 = < < 1

Method of **inclusive** reconstruction of *B*_{tag}

- 1. Create candidates for B_{sig} daughters: $D^* + (d_{\tau} = h \text{ or } \ell))$
- 2. Reconstruct B_{tag} inclusively form all remaining particles $E_{tag} = \sum_i E_i \quad \mathbf{p}_{tag} = \sum_i \mathbf{p}_i$

consistency of B_{tag} candidates checked using $M_{tag} = \sqrt{E_{beam}^2 - \mathbf{p}_{tag}^2}$,

$$\Delta E_{tag} = E_{beam} - E_{tag}$$

- 3. Suppres bkg using observables sensitive to multiple neutrion final states (e.g. visible energy, missing mass, ...)
- 4. Extract number of signal events by fitting M_{tag} distribution

This approach allows for signal extraction using **known** PDF's (CrystalBall and Argus) parametrizations;

CKM, September 19, 2019

September 18, 2018 12 / 18

PRL 99, 191807

Signal extraction

- the signal yields are extracted from a simultaneous, extended UML-fit to all 9 sub-channels in the M_{tag} distributions
- procedure is performed in 3 bins of $\cos \theta_{\text{hel}}(D^*)$ in the range [-1,0]; $I:-1.0 < \cos \theta_{\rm hel}(D^*) < -0.67$ II: $-0.67 < \cos \theta_{\rm hel}(D^*) < -0.33$ III : $-0.33 < \cos \theta_{\rm hel}(D^*) < 0.0$
- example fit projection to M_{tag} distribution in the range
 - $-1.0 < \cos \theta_{\rm hel}(D^*) < -0.67$

13/18

Result on $F_L^{D^*}$ for $B^0 \rightarrow D^* \tau \nu$ $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{hel}(D^*)} = \frac{3}{4} [2F_L^{D^*} \cos^2(\theta_{hel}(D^*)) + (1 - F_L^{D^*}) \sin^2(\theta_{hel}(D^*))]$

September 18, 2018 14 / 18

Prospects @ Belle

• $F_L^{D^*}$ also for B^{\pm}

• simultaneous measurement of R(D) and $R(D^*)$ with semileptonic tag

▶ in the previous analysis only: $B^0\overline{B^0} \to (D^{*-}\ell^+)(D^{*+}\ell^-)$

▶ add B decays modes:
$$B^0\overline{B^0} \to (D^-\ell^+)(D^+\ell^-))$$

 $B^+B^- \to (\overline{D}^{(*)0}\ell^+)(D^{(*)0}\ell^-))$

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to \overline{D}^{(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B \to \overline{D}^{(*)}\ell^+\nu_{\ell})} = \frac{\text{signal}}{\text{normalization}}$$

analysis made in BASF2 (Belle II software framework) using FEI (Full Event Interpretation - a new exclusive tagging algorithm for multivariate analysis with BDT classifier)

more details about FEI

in Moritz Gelb talk on "B to I nu gamma at Belle"

<ロ> <同> <同> <日> <同> <日> <同> <日> <日> <同> <日</p>

Prospects @ Belle II

The Belle II Physics Book, arXiv:1808.10567

- ▶ Belle: 0.772 x 10⁹ BB;
- ▶ Belle II: \sim 50 x 10⁹ $B\overline{B}$ (x 50 Belle statistic) (50 ⁻¹ab)
- expected number of events for $P_{\tau}(D^*)$ measurement:
 - ~ 4000 in $B^0(\overline{B^0})$ mode (hadronic B_{tag} reconstruction)
 - ~ 10000 in $\vec{B^+}(\vec{B}^-)$ mode (hadronic \breve{B}_{tag} reconstrucion)
- expected number of events for $F_L^{D^*}$ measurement:
 - ▶ ~ 15000 in $B^0(\overline{B^0})$ mode (inclusive B_{tag} reconstruction)
- expected precision (the statistical and systematic errors respectively)

	$5 {\rm ~ab^{-1}}$	$50 {\rm ~ab^{-1}}$
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

CKM, September 19, 2019

Prospects @ Belle II

The Belle II Physics Book, arXiv:1808.10567

expected constraints on R_D vs. R_{D*}; R_{D*} vs. P^{D*}_τ
 compared to existing experimental constraints from Belle

higher statistics and better reconstruction efficiencies should allow for precise measurements of kinematic distributions, e.g. q² and polarizations

Summary

- ► R(D), $R(D^*)$, $P_{\tau}(D^{(*)})$ and $F_L^{D^*}$ in $\overline{B} \to D^{(*)}\tau\nu$ are good probes for NP
- Measurement of *τ* polarization:

 $P_{\tau}(D^*) = -0.38 \pm 0.51(stat.)^{+0.21}_{-0.16}(syst.)$

- ► First measurement of D^* polarization in $B^0(\overline{B}^0) \to D^* \tau \nu$ $F_L^{D^*} = 0.60 \pm 0.08(stat.) \pm 0.035(syst.)$
- measurements sensivity limited by the statistics
- measurments of characteristics of semitauonic B decays will be important topic @ Belle II

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

BACKUP

CKM, September 19, 2019

September 18, 2018 1 / 6

D* polarization - NP scenarios

- SM: F_L^{D*} = 0.46 ± 0.03 (Phys. Rev. D 95, 115038 (2017), A.K. Alok, et al)
 SM: F_L^{D*} = 0.441 ± 0.006 (arXiv:1808.03565, Z-R. Huang, et al)
- *F_L^{D*}* can be significantly modified in the presence of NP contributions; in particular *F_L^{D*}* is enhanced (decreased) by the scalar(tensor) operators

Phys. Rev. D 95, 115038

<ロト < 同ト < 目ト < 目ト < 目上 < のへの

Momentum spectra to examine NP scenarios

Phys. Rev. D 94, 072007 (2016); semileptonic B_{tag}

- Measured distributions of p_{D*} and p_l consistent with SM but statistically limited
- More observables with more data needed to clarify the situation

ヨトイヨト

Background callibration

Sources of peaking background:

 $D^*\ell\nu, D^{**}\ell\nu$

Phase space divided in four regions:

Simultanous fit to the following variables: $M_{tag}, X_{mis}, \Delta E, M_W^2, \pi$ energy, D^* energy, R_2 , $m_{D^*\pm} - m_{D^0}$

 \rightarrow find scale factors for bkg componentsCKM, September 19, 2019

control distributions for $\cos \theta_{\rm hel}(D^*)$ in I, II and III region for $B \to D^*(D \to K\pi)\tau(\to e\nu\nu)\nu$:

September 18, 2018

4/6

Check backgroud model with final selection criteria

September 18, 2018 5 / 6

Signal box opening - extraction of signal yield

DATA: number of events in I bin: 151±21

CKM, September 19, 2019