PROSPECTS OF DIRECT CPV MEASUREMENTS IN CHARM DECAYS AT Belle II

Giulia Casarosa on behalf of the Belle II Collaboration

Belle II

10th International Workshop on the CKM Unitary Triangle

Universität Heidelberg ~ Sept. 18th, 2018

Outline

SuperKEKB and Belle II Design and Current Status

Selle II Prospects on Direct CPV in Charm

Belle II will provide a significantly larger data sample (x50 Belle) that will allow to continue the investigation with a much more powerful instrument

On the leading edge of Luminosity

High-Luminosity Asymmetric B Factory

- Target luminosity is ℒ = 8x10³⁵ cm⁻²s⁻¹ (x40 w.r.t. KEKB)
- Achievable in the nano-beam scheme (P. Raimondi for SuperB)
 - double beam currents
 - squeeze beams @ IP by 1/20

parameters		КЕКВ		SuperKEKB		units
		LER	HER	LER	HER	unics
beam energy	Eb	3.5	8	4	7	GeV
CM boost	βγ	0.425		0.28		
half crossing angle	φ	11		41.5		mrad
beam currents	Ь	I.64	1.19	3.6	2.6	А
beam size at IP	$\sigma_x * / \sigma_y *$	100/2		10/0.059		μm
Luminosity	\mathscr{L}	2.1×10 ³⁴		8x10 ³⁵		cm ⁻² s ⁻¹

→ squeezed beams @ IP → greatly improved constraint for decay chain vertex fitting

- → reduced CM boost → increased detector hermiticity
- ➡ but also higher bkg & event rates, reduced vertex separation → require an improved detector

The Belle II Detector

 $K_L \& \mu$ Detector

Resistive Plate Counter (barrel outer layers), **EM** calorimeter 7.4 m Scintillator + WLSF + MPPC CsI(TI), waveform sampling (end-caps, inner 2 barrel layers) electronics (barrel) Pure Csl + waveform sampling (end-caps) later electrons (7 GeV) **Vertex Detector** PXD: 2 layers Si pixels (DEPFET), 5.0 m SVD: 4 layers double sided Si Positrons (4 GeV) strips (DSSD) Particle Identification Time-of-Propagation counter (barrel), **Central Drift Chamber** Proximity focusing Aerogel Cherenkov $He(50\%):C_2H_6(50\%),$ Ring Imaging detector (forward) smaller cell size, longer lever arm, fast electronics L1 trigger rate = 30kHz HLT trigger rate = 10kHz Giulia Casarosa charm – direct CPV @ Belle II 6

Belle II Performance Improvements

- B-Factory advantages over hadron collider detectors:
 - clean event environment
 - high trigger efficiency
 - high-efficiency detection of neutrals (γ , π^0 , η , η' , ...)
 - many control samples to study systematics
 - good kinematic resolution (Dalitz plots analysis)
 - missing energy and missing mass analysis are straightforward (for B physics)

Giulia Casarosa

charm – direct CPV @ Belle II

SuperKEKB and Belle II Schedule

2019

JFY2019

Summer shutdown

(power saving)

w/ full Belle II

assumes Phase 3 operation 9 months/year

. . .

Luminosity Run, 26th April 2018 First Hadronic Event

Ű

note: vertex detector not shown

Reconstruction Highlights

- Phase2 data taking is crucial to exercise calibration and reconstruction in order to be ready for the beginning of the Physics run
 - $\Phi \rightarrow K^+K^-$ reconstruction, impact of the PID using TOP detector:

• Neutral pion reconstruction: $D^0 \rightarrow K^-\pi^+$ from $D^{*+} \rightarrow D^0 \pi^+$ and $D^{*0} \rightarrow D^0 \pi^0$

Calibration of the reconstruction is continuously improving, promising an efficient start of the physics run next year, and first results coming soon after

Giulia Casarosa

Charm from $e^+e^- \rightarrow c \overline{c}$

Belle II is ready for charm physics!

VXD Commissioning

PiXel Detector (PXD):

- the first layer of the PXD has been installed on the beam pipe
- issues occurred during the assembly of the second layer, its installation has been postponed until problems are understood and solved

VerteX Detector Assembly = PXD + SVD

- SVD half shells will be closed around the beam-pipe+PXD soon, the procedure will begin in a few weeks
- VXD installed in Belle II by the end of the year

Silicon Vertex Detector (SVD):

• both half-shells of the final SVD detector have been taking cosmic data *smoothly* and *stably* since more than one month, first efficiency measurements expected soon

Giulia Casarosa

charm – direct CPV @ Belle II

Model of the II Prospects on Direct CPV in Charm

The following projections are extrapolated from Belle measurements

$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

- we assumed that most of the systematics scale with statistics
- There maybe (other) sources of systematic errors that do not scale with statistics, that show up only in very high statistics samples
 - Belle II will have high statistics control samples to keep them under control
- The detector improvements w.r.t. Belle will be helpful, but their effect is not included in these extrapolations unless otherwise stated

Direct CPViolation

- ➡ CPViolation in the charm sector is predicted to be small, but not zero.
- → The observable that is sensitive to direct CPV is the time-integrated CP asymmetry (A_{CP}):

$$A_{CP} = \frac{N(D \to f) - N(\overline{D} \to \overline{f})}{N(D \to f) + N(\overline{D} \to \overline{f})}$$

- No experimental evidence of CPV in charm so far, so the first goal is to measure CPV in charm (then we can look for NP)
 - $D^0 \rightarrow K_s K_s$: A_{CP} up to 1% within SM, could give first evidence of CPV in charm

[Nierste Schacht 1508.00074]

- SM predictions on A_{CP} are hard^(*). Theory needs experimental inputs not only to check the final predictions but also to test the model hypotheses
 - employ a parameterisation that is appropriate for the level of precision expected in the BelleII/LHCb-upgrade era (true mostly for indirect CPV)
 - infer the presence of NP in direct CPV measurements using SM SU(3) relations (+ evaluate SU(3) breaking) → A_{CP} sum rules involving >2 channels [Grossman Kagan Nir 2006]
- ★ (*)... but there are exceptions:
 - $D^+ \rightarrow \pi^+\pi^0$: $A_{CP} = 0$ in the SM, search for NP with straightforward interpretation of the results

[Buccella et al PLB302, 319 (1993)] [Grossman et al PRD85, 114036 (2012)]

Prospects for CP Asymmetries

→ Belle II will be able to measure A_{CP} on many channels, reaching precisions of the order of 10^{-4} :

	Mode	\mathcal{L} (fb ⁻¹)	A_{CP} (%)	Belle II 50 $ab^{-1}(\%)$	
	$D^0 \to K^+ K^-$	976	$-0.32\pm 0.21\pm 0.09$	± 0.03	
important for ACP sum rules	$D^0 ightarrow \pi^+\pi^-$	976	$+0.55\pm 0.36\pm 0.09$	± 0.05	
	$D^0 \rightarrow \pi^0 \pi^0$	966	$-0.03\pm 0.64\pm 0.10$	± 0.09	
	$D^0 \rightarrow K_S^0 \pi^0$	966	$-0.21\pm 0.16\pm 0.07$	± 0.02	
	$D^0 \rightarrow K^0_S K^0_S$	921	$-0.02\pm1.53\pm0.02\pm0.17$	$\pm 0.23 \longrightarrow SM A_{CP} \simeq 1\%$	
	$D^0 ightarrow K_S^0 \eta$	791	$+0.54\pm 0.51\pm 0.16$	± 0.07	
	$D^0 ightarrow K^0_S \eta'$	791	$+0.98\pm 0.67\pm 0.14$	± 0.09	
	$D^0 \to \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13	
	$D^0 \to K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40	
	$D^0\to K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.33	
	$D^+ \rightarrow \phi \pi^+$	955	$+0.51\pm 0.28\pm 0.05$	± 0.04	
	$D^+ \to \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	$\pm 0.17 \longrightarrow SM A_{CP} = 0$	
	$D^+ o \eta \pi^+$	791	$+1.74\pm 1.13\pm 0.19$	± 0.14	
	$D^+ \to \eta' \pi^+$	791	$-0.12\pm 1.12\pm 0.17$	± 0.14	
	$D^+ o K^0_S \pi^+$	977	$-0.36\pm 0.09\pm 0.07$	± 0.02	
	$D^+ \to K^0_S K^+$	977	$-0.25\pm 0.28\pm 0.14$	± 0.04	
	$D_s^+ \to K_S^0 \pi^+$	673	$+5.45\pm 2.50\pm 0.33$	± 0.29	
	$D_s^+ \to K_S^{0} K^+$	673	$+0.12\pm 0.36\pm 0.22$	± 0.05	

Belle II is favoured with respect to other experiments in channels with neutrals in the final state, but its measurements of A_{CP} on channels with charged tracks in the final state will be important too

Giulia Casarosa

Radiative Decays $D^0 \rightarrow V\gamma$

- <u>CP Violation</u>: SM expectations on the order of 10⁻³, NP contributions can enhance it up to an order of magnitude
- 2. tests of QCD: transitions dominated by long-range diagrams
 - → A_{CP} and BR measurements of decays $D^0 \rightarrow V \gamma$ completed at Belle
 - dominant error for A_{CP} is statistical, Bellell can significantly improve the precision
 - Studies on Bellell official MC have shown that $m(D^0)$ and $cos(\theta_{hel})$ distributions have resolutions similar Belle, allowing an extrapolation based on luminosity

A _{CP} estimated error on	Belle	Belle II statistical error			
	l/ab	5/ab	l 5/ab	50/ab	
$D^0 \rightarrow \rho^0 \gamma$	± 0.152 ± 0.006	± 0.07	± 0.04	± 0.02	
$D^0 \rightarrow \Phi \gamma$	± 0.066 ± 0.001	± 0.03	± 0.02	± 0.01	
$D^0 \rightarrow \overline{K^{*0}} \gamma$	$\pm 0.020 \pm 0.000$	± 0.01	± 0.005	± 0.003	

Giulia Casarosa

Inclusive Λ_c^+ Sample

- → BELLE simulation scaled to 50 ab^{-1} yields 2.8x10⁶ inclusive Λ_c^+
- → Unique sample that allows to:
 - measure absolute branching fractions and **CP asymmetries**
 - measure semileptonic decays, search for rare decays with missing energy

Prompt D⁰ Flavour Tagging

- New reconstruction technique that allows to tag the flavour the rest 75% of produced D⁰ looking at the rest of the event (ROE)
 - select events with one single D^0 and one single charged K in the rest of the event

BONUS

- flavour mis-tagging due to ccss events that introduce un-correlated charged kaons into the rest of the event
- irreducible bkg due to DCS decays

preliminary studies indicate that combining A_{CP} measurements from D*-tagged and ROE-tagged samples is equivalent to an effective increase of luminosity of ~ 40%

Conclusions

A lot of lessons learnt during Phase2 data taking on accelerator and detector operation

Phase2 data very useful to exercise reconstruction and calibration on real data

- Physics Run will start soon, at the beginning of 2019
- Search of direct CPV will benefit from increased data sample, improved detector performances and new reconstruction algorithms

- A rich charm physics program ahead, ready to improve precision on:
 - O direct CP asymmetries, mixing and CPV parameters
 - O V_{cd} and V_{cs} from semileptonic decays, decay constants f_D, f_{Ds}
 - **O** measurements of charm baryons
 - limits on rare and forbidden decays

The Bellell Physics Book is now available online: https://arxiv.org/abs/1808.10567 https://inspirehep.net/record/1692393/

Full Charm Event Reconstruction

 \Rightarrow use the **recoil method** successfully exploited for D_s decays:

- use energy and momentum conservation to search for the desired final state:
 - example:

$$D_{\rm sig} = D^{*+} \rightarrow D^+ \pi_{\rm slow}; D^+ \rightarrow \mu^+ \nu$$

• "miss" quantities computed for the system: $D_{\rm tag} + X_{\rm frag} + \pi_{\rm slow} + \mu^+$

$$M_{miss}^2(\nu) = (E_{miss} - |\vec{p}|_{miss})(E_{miss} + |\vec{p}|_{miss})$$

Giulia Casarosa