

Prospects of charm mixing and indirect CPV measurements at Belle II

Jitendra Kumar On behalf of Belle II collaboration

Outline

Introduction

Mixing and Indirect CPV in Charm Sector

- Brief overview
- Status so far
- Prospects with Belle II
- Summary

Mixing in neutral meson

- Their mass eigenstates do not a priori coincide with flavor eigenstates
- .these states are produced, oscillate and then decay

$$|M_{1,2}
angle = p|M^0
angle \pm q|\overline{M}^0
angle$$

$$\begin{split} |M^{0}(t)\rangle &= f_{+}(t)|M^{0}\rangle + \frac{q}{p}f_{-}(t)|\overline{M}^{0}\rangle \\ |\overline{M}^{0}(t)\rangle &= f_{+}(t)|\overline{M}^{0}\rangle + \frac{p}{a}f_{-}(t)|M^{0}\rangle \\ \overline{f_{\pm}(t)} &= \frac{1}{2}e^{-\imath m_{1}}e^{-\Gamma_{1}t/2}\left(1 \pm e^{-\imath \Delta m t}e^{\Delta \Gamma t/2}\right) \end{split}$$

$$\begin{split} P(M^{0}(t) \to M^{0}) &= P(\overline{M}^{0}(t) \to \overline{M}^{0}) = |f_{+}(t)|^{2} = \frac{1}{2}e^{-\Gamma t}(\cosh(y\Gamma t) + \cos(x\Gamma t)), \\ P(M^{0}(t) \to \overline{M}^{0}) &= \left|\frac{q}{p}\right|^{2}|f_{-}(t)|^{2} = \frac{1}{2}\left|\frac{q}{p}\right|^{2}e^{-\Gamma t}(\cosh(y\Gamma t) - \cos(x\Gamma t)) \\ P(\overline{M}^{0}(t) \to M^{0}) &= \left|\frac{p}{q}\right|^{2}|f_{-}(t)|^{2} = \frac{1}{2}\left|\frac{p}{q}\right|^{2}e^{-\Gamma t}(\cosh(y\Gamma t) - \cos(x\Gamma t)) \end{split}$$

Mixing parameters x, and y; characteristic of neutral meson mixing

source: Chin.Phys. C38 (2014) 090001.

source: Chin.Phys. C38 (2014) 090001.

Mixing in neutral mesons

5

 $|D_{1,2}\rangle = p |D^0\rangle \mp q |\overline{D}^0\rangle$

Mixing in charm mesons

- Heavily suppressed (both CKM, and GIM suppressed)
- Small x, y parameters ~ 10⁻³-10⁻²
- Non-SM particles contributing to the box diagram could significantly affect the measured values : Towards NP

Why mixing measurement need to be improved

- For non-CPV mixing, the theory is limited by "long-distance effects" -> low-energy QCD.
- For fits allowing for CPV (hope to see more than expected -> towards NP)

Experiment	Year	\sqrt{s}	$\sigma_{acc}(D^0)$	L	$n(D^0)$
CLEO-c	2003-2008	3.77 GeV	8 nb	$0.5\mathrm{fb}^{-1}$	4.0×10^{6}
BESIII	2010-2011	3.77 GeV	8 nb	$3\mathrm{fb}^{-1}$	$2.4 imes 10^7$
BaBar	1999-2008	10.6 GeV	1.45 nb	$500\mathrm{fb}^{-1}$	$7.3 imes 10^8$
Belle	1999-2010	10.6 – 10.9 GeV	1.45 nb	$1000\mathrm{fb}^{-1}$	$1.5 imes 10^9$
CDF	2001-2011	2 TeV	13 µb	$10\mathrm{fb}^{-1}$	1.3×10^{11}
LHCb	2011	7 TeV	1.4 mb	$1{\rm fb}^{-1}$	$1.4 imes 10^{12}$
LHCb	2012	8 TeV	1.6 mb*	$2\mathrm{fb}^{-1}$	$3.2 imes 10^{12}$
Belle II	2017-2022,	, L=50 ab-1,	and	more charm	will arrive

source: arXiv:1503.00032v2

What variables we can measure for indirect CPV ?

- Direct measurement of |q/p| or ϕ
- ACP for interference between mixing and decay

OP violation in charm sector is special !

- Charm, after strange and beauty (in B⁰), where CP violation remains to be discovered !
- Only up-type quark family, where mixing and CPV (may) occur
- Mixing is heavily suppressed (both CKM, and GIM suppressed)
 - Small x, y parameters ~10⁻³-10⁻²
 - Non-SM particles contributing to the box diagram could significantly affect x, y (NP?)
- Study of their oscillations in time can provide insights into CPV in mixing

Powerful SuperKEKB

- Provide clean signal of BB pairs; low background with respect to hadron colliders
- Large samples of B and D decays (5×10¹⁰ pairs of b and c over planned operation)
- Output: Lorentz boost (asymmetric energy) allows precision measurement mixing parameters, and CP violations.
 - Better reconstruction of final states containing photons from particle decays such as π^0 , η etc
 - Straight forward Dalitz plot analyses with low background
 - Many control samples to study systematics

Belle II improvements in view of charm measurement

- New VXD of Belle II provides better vertex resolution (for D⁰ its around 40 μ m \rightarrow next slide)
- IP resolution is improved by PXD being at radius of 1.4 cm (better D⁰ proper time resolution: **next slide**)
- Better particle identification w/ upgraded SVD, CDC, TOP and ARICH; better K/ π separation (D⁰ \rightarrow K^{- π +)}
- Better reconstruction efficiency with improved tracking efficiency: eg: $D^* \rightarrow D^0 \pi^+$ etc
- More tracking volume from upgraded CDC and SVD provides higher K_s efficiency ~ 30%

see more at Belle II TDR: arXiv: 1011.0352

*with respect to previous generation B factories.

-300

-400 -400

-300

-200

-100

0

see more at Belle II TDR: arXiv: 1011.0352

200

400

300

xmea - xpen (µm)

200

100

Belle II Physics Book: https://arxiv.org/pdf/1808.10567.pdf)

Charm Mixing and Indirect CPV prospects at Belle II

Decay Type	Final State	LHCb	Belle	BaBar	\mathbf{CDF}	CLEO	BES III
DCS 2 -body(WS)	$K^+\pi^-$	*	*	•	*	\checkmark	
DCS 3 -body(WS)	$K^+\pi^-\pi^0$		$\checkmark_{A_{CP}}$	•		$\checkmark_{A_{CP}}$	
CP-eigenstate	$K^{+}K^{-}, \pi^{+}\pi^{-}$	$\bullet^{(a)}_{A_{CP}}$	•	•	$\checkmark_{A_{CP}}$	\checkmark	
Self-conjugated	$K_S^0 \pi^+ \pi^-$	\checkmark	\checkmark	$\checkmark_{A_{CP}}$	\checkmark		
3-body decay	$K^0_S K^+ K^-$		✓ ^(b)	\checkmark			
Self-conjugated	$\pi^+\pi^-\pi^0$	$\checkmark_{A_{CP}}$	$\checkmark_{A_{CP}}$	$\checkmark_{A_{CP}}^{mixing}$			
SCS 3-body decay	$K^+K^-\pi^0$			$\checkmark_{A_{CP}}$			
SCS 3-body	$K^0_S K^{\pm} \pi^{\mp}$	$\checkmark_{\delta^{K^0_SK\pi}}$				$\checkmark_{\delta^{K^0_SK\pi}}$	
Semileptonic decay	$K^+\ell^-\nu_\ell$		\checkmark	\checkmark		\checkmark	
	$\pi^+\pi^-\pi^+\pi^-$	$\checkmark_{A_{CP}}$					
Multi-body $(n \ge 4)$	$K^+\pi^-\pi^+\pi^-$	*	$\checkmark_{A_{CP}}$	\checkmark			
	$K^+K^-\pi^+\pi^-$	$\checkmark^{(c)}_{A_{CP}}$		\checkmark_{A_T}		$\checkmark A_{CP}$	
$\psi(3770) \to \overline{D}^0 \overline{D} \text{ v}$	ia correlations					$\sqrt{\delta^{K\pi}}$	$\sqrt{y_{CP}}$

The experimental status of $D^0\overline{D}^0$ mixing and CP violation in different decays.

★ for observation (> 5σ); • for evidence (> 3σ); \checkmark for measurement.

(a) LHCb measured the indirect CP asymmetry in Phys. Rev. Lett. **112**, 041801 (2014).

(b) Belle measured y_{CP} in $D^0 \to K^0_S \phi$ in Phys. Rev. D 80, 052006 (2009).

(c) LHCb searched for CP violation using T-odd correlations in JHEP 10 (2014) 005.

Challenging: higher event rate and radiation damage to detectors from machine background processes

source: Belle II Physics Book: arXiv: 1808.10567

Belle II predictions

 $D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$?

 $D^0 \rightarrow K_s \pi^+ \pi^- \pi^0$?

?

1	Observable	Statistical	Syste	Systematic	
			red.	irred.	
	$y_{CP} \ [10^{-2}]$				
	$976 \ \mathrm{fb}^{-1}$	0.22	0.07	0.07	0.24
	5 ab^{-1}	0.10	0.03-0.04	0.07-0.04	0.11-0.12
	50 ab^{-1}	0.03	0.01	0.07-0.04	0.05 - 0.08

Source	$\Delta y_{CP} \ [10^{-2}]$
acceptance	0.050
SVD misalignments	0.060
mass window position	0.007
background	0.059
resolution function	0.030
binning	0.021
total syst. error	0.105
stat. error	0.220

Source Belle II Physics Book: arXiv: 1808.10567

Prospects of charm mixing and indirect CPV at Belle II

Jitendra Kumar

Mixing measurements

16

Category 2. Measurement of x and y variables

-- Simultaneous measurement of decay-time evolution and resonance amplitudes

-- $D^0 \rightarrow K_s K^-K^+$ for study which also allow to probe indirect CPV

Belle II predictions

- better precision is expected
 - -- by factor of 3 for x, y resolutions
- even more..
- --w/ improved decay time resolution

Mixing measurements

y' in 10⁻³

 4.3 ± 4.3

 4.8 ± 1.0

 4.6 ± 3.4

 x^{2} in 10^{-3}

 0.08 ± 0.18

 0.06 ± 0.05

 0.09 ± 0.22

Category 3. Mixing via interference

• Golden channel is $D^0 \rightarrow K^+\pi^-$ (many syst auto-cancelled)

Belle II predictions

Parameter	5 ab^{-1}	20 ab^{-1}	50 ab^{-1}
$\delta x'^2 (10^{-5})$	7.5	3.7	2.3
$\delta y'$ (%)	0.11	0.056	0.035

Luminosity	Belle	Belle II
(ab^{-1})		
0.400	4024	
0.976	11478	
5.0		58800
20		235200
50		588010

<u>/</u>
_

So far...

CDF

LHCb

Belle

17

Jitendra Kumar

Prospects of charm mixing and indirect CPV at Belle II

18 August 2018

Mixing measurements

19

Jitendra Kumar

So far... 1. Direct measurement of |p/q| and ϕ

- Golden channel are : $D^0 \rightarrow K_s K^- K^+$ or $D^0 \rightarrow K_s \pi^+ \pi^-$
- Provide most precise mixing parameters

To avoid systematic limitation > reduce model limitation OR improve model independent strong phase difference (at BESIII)

		Belle collaboration
Fit type	Parameter	Fit result
No CPV	x(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$
	y(%)	$0.30 \pm 0.15^{+0.04 + 0.03}_{-0.05 - 0.06}$
CPV	x(%)	$0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08}$
	y(%)	$0.30 \pm 0.15^{+0.04 + 0.03}_{-0.05 - 0.07}$
	q/p	$0.90\substack{+0.16+0.05+0.06\\-0.15-0.04-0.05}$
	$\arg(q/p)(^{\circ})$	$-6\pm 11\pm 3^{+3}_{-4}$
		Phys. Rev. D 89, 091103 (2014)

Belle II predictions

>	Data	stat.	sy	st.	Total	stat.	sy	st.	Total
CP			red.	irred.			red.	irred.	
ou fi			σ_x	(10^{-2})			σ_y (10^{-2})	
ing	$976 {\rm ~fb^{-1}}$	0.19	0.06	0.11	0.20	0.15	0.06	0.04	0.16
nn	5 ab^{-1}	0.08	0.03	0.11	0.14	0.06	0.03	0.04	0.08
Ase	$50 {\rm ~ab^{-1}}$	0.03	0.01	0.11	0.11	0.02	0.01	0.04	0.05
			q/p	(10^{-2})			ϕ	(°)	
	$976 {\rm ~fb^{-1}}$	15.5	5.2 - 5.6	7.0-6.7	17.8	10.7	4.4 - 4.5	3.8 - 3.7	12.2
	5 ab^{-1}	6.9	2.3 - 2.5	7.0-6.7	9.9-10.1	4.7	1.9-2.0	3.8 - 3.7	6.3 - 6.4
	$50 {\rm ~ab^{-1}}$	2.2	0.7 - 0.8	7.0-6.7	7.0-7.4	1.5	0.6	3.8 - 3.7	4.0-4.2

2. CP asymmetries in WS decay: $D^0 \rightarrow K^+\pi^-$

- \odot Measurement of R_D, x² and y²
- Small phase (ϕ) gives direct access to |q/p|

$$x^{\prime\pm} = \left|\frac{q}{p}\right|^{\pm 1} (x^{\prime}\cos\phi \pm y^{\prime}\sin\phi)$$
$$y^{\prime\pm} = \left|\frac{q}{p}\right|^{\pm 1} (y^{\prime}\cos\phi \mp x^{\prime}\sin\phi)$$

Belle: Phys.Rev.Lett. 96 151801,2006 BaBar: Phys. Rev. Lett. 98 (2007) 211802

Parameter	5 ab^{-1}	20 ab^{-1}	50 ab^{-1}
$\delta x'^2 \ (10^{-5})$	7.5	3.7	2.3
$\delta y'~(\%)$	0.11	0.056	0.035
$\delta x'$ (%)	0.37	0.23	0.15
$\delta y' ~(\%)$	0.26	0.17	0.10
$\delta q/p $	0.197	0.089	0.051
$\delta\phi$ (°)	15.5	9.2	5.7

Jitendra Kumar

- SuperKEKB and Belle II will be an excellent platform for charm measurements
 - SuperKEKB Will record 50 x larger data sample than KEKB / Belle (by 2025).
 - Upgraded VXD will provide factor two better D0 decay time resolution than Belle/BaBar.
 - First collision data successfully recorded this year.
 - First data with full vertex detector early 2019.
- Better precision on x and y variables ≤ 0.1 % is expected.
- Error extrapolations from Belle measurements is predicted as;

$$\sigma_{\text{Belle II}} = \sqrt{(\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2) \cdot (\mathcal{L}_{\text{Belle}}/50 \text{ ab}^{-1}) + \sigma_{irred}^2}$$

 σ_{stat} : Scaling Belle statistical error by the ratio of integrated luminosities σ_{syst} : Only those who scale with luminosity such as background shapes measured with control samples σ_{irred} : Those who do not scale with luminosity such as decay time resolution due to detector misalignment

Source Belle II Physics Book: arXiv: 1808.10567

Stay tuned.. for new and precise measurements..