Measurement of the CKM angle ϕ_3 using $B \rightarrow DK$ at Belle II

M. Kumar^{1*}, K. Lalwani², K. Trabelsi³, P. Krishnan⁴ for the Belle II Collaboration Malaviya National Institute of Technology Jaipur, INDIA^{1,2}, High Energy Accelerator Research Organization (KEK), Tsukuba, JAPAN³, Instytut Fizyki Jadrowej PAN, Krakow, POLAND⁴

Abstract We present the preliminary results of the physics analysis dedicated for the measurement of the CKM angle ϕ_3 using $B^{\pm} \rightarrow D^0(K_S^0\pi^+\pi^-)K^{\pm}$ at Belle II. In this work, invariant masses of K_S^0 and D^0 are reconstructed using the Phase II data. Further, these results are compared with the Dress rehearsal data. The extrapolated results of ϕ_3 measurement at 50 ab⁻¹ with imporved precision is also presented.

1 Introduction

The CKM angle ϕ_3 is one of the least well constrained parameters of the Unitarity Triangle [1, 2]. The precise measurement of ϕ_3 is highly desirable to scrutinise the consistency of the Standard Model and to detect presence of new physics. The measurement that currently dominates sensitivity to ϕ_3 uses $B^{\pm} \rightarrow DK^{\pm}$ decays with the neutral D mesons decaying to a three-body final state such as $K_S^0 \pi^+ \pi^-$. As

Fig. 1: Feynman diagram for $B^- \rightarrow D^0 K^-$ (left) and $B^- \rightarrow \overline{D}^0 K^-$ (right) [3].

the sensitivity of ϕ_3 comes from the interference of $b \to c\overline{u}s$ and $b \to u\overline{c}s$, therefore, measurement of ϕ_3 is performed by exploiting the difference between $K_S^0 \pi^+ \pi^-$ Dalitz plots for D mesons from B⁺ and B⁻ decay. The measurement of ϕ_3 from B[±] $\to D^0 K^{\pm}$ and B[±] $\to \overline{D}^0 K^{\pm}$ decays is theoretically clean as they occur at the tree

^{*} e-mail: 2016rpy9052@mnit.ac.in

level (Fig. 1). Various methods for extracting ϕ_3 have been proposed, from which the Dalitz plot analysis method [4] is one of the novel methods to measure the ϕ_3 . There have been many efforts by BaBar, Belle and LHCb to measure this angle but due to the small data samples so far produced, ϕ_3 is poorly determined. Therefore, an in-

Sr. No.	Experiment	Measurement of ϕ_3
1	Belle	$(73^{+13}_{-15})^{\circ}$ [5]
2	BaBar	$\left(69^{+17}_{-16}\right)^{\circ}$ [6]
3	LHCb	$\left(74^{+5.0}_{-5.8}\right)^{\circ}$ [7]

Table 1: Previous results for the measurement of ϕ_3 .

dependent measurement with high statistics is required to measure ϕ_3 . In this work, the experimental facility Belle II at SuperKEKB is used for the physics analysis of $B \rightarrow DK$ to measure ϕ_3 . The Belle II [8] experiment at the SuperKEKB collider [9], KEK will accumulate e^+e^- collision data at an unprecedented instantaneous luminosity of 8×10^{35} cm⁻²sec⁻¹, which is 40 times larger than preceding experiment, Belle. Due to large statistics, an improved measurement of ϕ_3 is expected and the extrapolated results on the measurement at 50 ab⁻¹ is shown in figure 2 (right) and current status is shown in figure 2 (left). In addition, Belle II will also have a better

Fig. 2: UT fit today (left) and extrapolated to the 50 ab^{-1} scenario (right) for an SM-like scenario and world average values [10].

particle identification with the Central Drift Chamber (CDC), Time of Propagation (TOP) and the Aerogel Ring Imaging Cherenkov Counter (ARICH), which is functioning in different momentum ranges. Due to larger acceptance of the detector, an improved reconstruction efficiency of K_S^0 is anticipated. Recently, Belle II has collected Phase II data incorporating single ladder per layer of the vertex detector (VXD) and all other subdetectors at integrated luminosity of 250 pb⁻¹.

Measurement of the CKM angle ϕ_3 using $B \rightarrow DK$ at Belle II

2 Physics Analysis of $B \rightarrow DK$

The physics analysis of $B^{\pm} \rightarrow D^0(K_S^0\pi^+\pi^-)K^{\pm}$ is carried out using the Phase II data collected at 250 pb⁻¹. The analysis begins with the reconstruction of K_S^0 from the two charged tracks of π^+ and π^- . The invariant mass of K_S^0 is shown in figure

Fig. 3: Invariant mass of K_S^0 with DR2 (left) and data (right).

3 (left) with Dress rehearsal 2 (DR2) collected at integrated luminosity 1 fb^{-1} and with Phase II data shown in figure 3 (right). Here, black points are data and red line is fitting. As can be seen from the figure, the invariant mass resolution shows

Fig. 4: Invariant mass of D^0 with Phase II data.

the good aggrement between data and DR2. Further, the D⁰ is reconstructed from one K_S⁰ and two charged tracks of π^+ and π^- and invariant mass of D⁰ is shown in figure 4. The reconstruction of B meson is in progress by using the two important variables, energy difference, $\triangle E = \sum E_i - E_{beam}$ and the beam constrained mass, $M_{bc} = \sqrt{(E_{beam})^2 - \sum (\vec{p_i})^2}$, where E_{beam} is the center-of-mass (CM) beam energy, E_i and p_i are the CM energies and momenta of B candidates decay product.

3 Summary

The large statistics with Belle II at SuperKEKB will provide the precision measurement of ϕ_3 . Extrapolated results are expected to provide a more precise measurement of the CKM angle ϕ_3 at integrated luminosity 50 ab⁻¹. Recently Belle II has collected Phase II data incorporating single ladder per layer of the vertex detector and all other subdetectors. In this work, we have performed the physics analysis of $B^{\pm} \rightarrow D^0 K^{\pm}$ with Phase II data. Invariant masses of K_s^0 and D^0 are reconstructed and compared with DR2 and Phase II data. The reconstruction of B meson is in progress.

References

- 1. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- 2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- 3. J. Brodzicka et al., Physics achievements from the Belle experiment, PTEP 2012, 04D001.
- 4. H. Aihara, K. Arinstein *et al.*, First Measurement of ϕ_3 with a Model- independent Dalitz Plot Analysis of $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_S^0 \pi^+ \pi^-$ Decay, Phys. Rev. D **85**, 112014 (2012).
- 5. Karim Trabelsi, World average and experimental overview of ϕ_3 , CKM CONF 2014.
- 6. J. P. Lees et al., (The BaBar Collaboration), Phys. Rev. D 87 052015 (2013).
- 7. The LHCb Collaboration, CERN-LHCb-CONF-2018-002.
- 8. T. Abe et al., Belle II Technical Design Report (2010), [arXiv:1011.0352].
- Golob B, (The Belle II Collaboration), Super KEKB / Belle II Project, Nuovo Cim. C33 319-326 (2010).
- 10. Emi Kou et al., (The Belle II Collaboration), The Belle II Physics Book, PTEP 2018.

4