$ar{B} \longrightarrow D^{(*)} \ell^- ar{ u}_\ell$ at Belle and Belle II

Kilian Lieret Ludwig Maximilian University of Munich

(On behalf of the Belle Collaboration)

10th International Workshop on the CKM Unitarity Triangle 17-21 September 2018, Heidelberg, Germany

Measuring $|V_{cb}|$

- Pure leptonic: $B_c \longrightarrow \ell \bar{\nu}$. Unavailable @*B*-factories
- Pure hadronic: Theoretical difficulties

Semileptonic:

Theory: Small EW corrections; QCD uncertainties under control Experiment: Only one neutrino missing, good BRs ($\approx 10\%$) \implies Best opportunity to measure $|V_{cb}|$

 $\bar{B} \longrightarrow D^{(*)} \ell^- \bar{\nu}_\ell$

Exclusive vs Inclusive Tension

Exclusive Analysis

Specific decay modes

Inclusive Analysis

Anything + $\ell \nu$

However:

Current PDG review (Oct. 2017):

$$\begin{split} |V_{cb}| &= (41.9 \pm 2.0) \times 10^{-3} \quad (\text{excl.}) \\ |V_{cb}| &= (42.2 \pm 0.8) \times 10^{-3} \quad (\text{incl.}) \end{split}$$

 $|V_{cb}|$ extraction from $\bar{B} \longrightarrow D^{(*)} \ell^- \bar{\nu}_{\ell}$

Assuming $m_\ell = 0$

 $ar{B} \longrightarrow D^* \ell^- ar{
u}_\ell$ HFLAV Eur.Phys.J. C77 no.12, 895

$$\frac{\mathsf{d}\Gamma(\bar{B}\longrightarrow D^{*}\ell^{-}\bar{\nu}_{\ell})}{\mathsf{d}w} = \frac{G_{F}^{2}m_{D^{*}}^{3}}{48\pi^{3}}(m_{B}-m_{D^{*}})^{2}\eta_{\mathsf{EW}}^{2}\chi(w)\mathcal{F}^{2}(w)|V_{cb}|^{2},$$

with
$$\chi(w)\mathcal{F}^2(w) = h_{A_1}^2(w)\sqrt{w^2 - 1}(w+1)^2 \times \left(2\left(\frac{1 - 2wr + r^2}{(1 - r)^2}\right)\left(1 + R_1^2(w)\frac{w^2 - 1}{w+1}\right) + \left(1 + (1 - R_2(w))\frac{w - 1}{1 - r}\right)^2\right)$$

 $ar{B} \longrightarrow D\ell^- ar{
u}_\ell$ HFLAV Eur.Phys.J. C77 no.12, 895

$$\frac{\mathrm{d}\Gamma(\bar{B} \longrightarrow D\ell^{-}\bar{\nu}_{\ell})}{\mathrm{d}w} = \frac{G_{F}^{2}m_{D}^{3}}{48\pi^{3}}(m_{B} + m_{D})^{2}(w^{2} - 1)^{3/2}\eta_{\mathrm{EW}}^{2}\mathcal{G}^{2}(w)|V_{cb}|^{2}$$

with $\mathcal{G}^{2}(w) = \frac{4r}{(1+r)^{2}}f_{+}^{2}(w)$

Where,

• $w = \vec{v}_B \vec{v}_{D(*)} = \frac{m_B^2 + m_{D(*)}^2 - q^2}{2m_B m_{D(*)}}$ • $r = m_{D(*)} / m_B$

■ η²_{EW}: Small EW correction (+ long distance EM radiation effect = Coulomb correction)

Form factor (FF) parametrizations

Different FF parametrization \implies Different $|V_{cb}| \implies$ Might solve incl. vs. excl. tension!

CLN (Caprini, Lellouch, Neubert) Nucl.Phys. B530 153-181

HQET relations + corrections in powers of $\Lambda_{\rm QCD}/m_b$, α_s (effect of higher order corrections poorly known).

$$z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

For $\bar{B} \longrightarrow D^* \ell^- \bar{\nu}_{\ell}$: $h_{A_1}(w) = h_{A_1}(1) \left(-z^3 \left(231 \rho_{D^*}^2 - 91 \right) + z^2 \left(53 \rho_{D^*}^2 - 15 \right) - 8z \rho_{D^*}^2 + 1 \right),$ $R_1(w) = R_1(1) + 0.05(w - 1)^2 - 0.12(w - 1),$ $R_2(w) = R_2(1) - 0.06(w - 1)^2 + 0.11(w - 1)$ For $\bar{B} \longrightarrow D \ell^- \bar{\nu}_{\ell}$: $\frac{(1+r)^2}{4r} f_+^2(w) = \mathcal{G}(1)(1 - 8\rho_D^2 z + (51\rho_D^2 - 10)z^2 + (252\rho_D^2 - 84)z^3)$ BGL (Boyd, Grinstein, Lebed) Nucl.Phys. B461 493-511

No HQET input (some questions remain, see e.g. 1708.07134)

For
$$\bar{B} \longrightarrow D^* \ell^- \bar{\nu}_{\ell}$$
: Phys.Lett. B769 441-445
 $h_{A_1}(w) = \frac{f(w)}{\sqrt{m_B m_D^*} (1+w)}$
 $R_1(w) = (w+1)m_B m_{D^*} \frac{g(w)}{f(w)}$
 $R_2(w) = \frac{w-r}{w-1} - \frac{\mathcal{F}_1(w)}{m_B(w-1)f(w)}$

For $\overline{B} \longrightarrow D^* \ell^- \overline{\nu}_\ell$ and $\overline{B} \longrightarrow D \ell^- \overline{\nu}_\ell$: f_+ and f, g, \mathcal{F}_1 are parametrized as

$$\frac{1}{P_i(z)\phi_i(z)}\sum_{n=0}^N a_{i,n} z^n$$

Cut off at N = 2, 3, ... (when χ^2 /ndf is satisfying).

Tagged vs Untagged Analyses

Tagged Analysis

- + High purity
- Low efficiency (0.3% @Belle \rightarrow 0.55% @Belle II)

Untagged Analysis

- Low purity
- + High efficiency

Basic analysis steps

- Reconstruction
- 2 Projection into bins of kinematic variable
- 3 Fitting signal yields
- 4 Compare measured yields to expected yields
 - = Fit to determine $|V_{cb}|$ and form factors

Theory Tag Reco Project Fit Results Belle II

$\bar{B} \longrightarrow D^* \ell^- \bar{\nu}_\ell$ at Belle and Belle II

Red: New reconstruction modes

Improved hadronic tagging @Belle II

$\begin{array}{l} \mbox{Hadronic tagging @Belle II:} \\ \mbox{Around 5000 channels!} \\ \mbox{2.5}\times \mbox{ efficiency!} \end{array}$

Algorithm	Efficiency @0.25 Purity
Belle Cut	0.1%
Belle NB	0.2%
Belle II FEI	0.5%

Calibration for tagged
$\bar{B} \longrightarrow D^{(*)} \ell^- \bar{\nu}_\ell \colon B \longrightarrow X \ell \nu$
(systematics limited)

B^+ modes	B ⁰ modes	D^+, D^{*+}, D^+_s modes	D^0, D^{*0} modes
$B^+\to \overline{D}{}^0\pi^+$	$B^0 \rightarrow D^- \pi^+$	$D^+ ightarrow K^- \pi^+ \pi^+$	$D^0 ightarrow K^- \pi^+$
$B^+ ightarrow \overline{D}{}^0 \pi^+ \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^0$	$D^+ ightarrow K^- \pi^+ \pi^+ \pi^0$	$D^0 ightarrow K^- \pi^+ \pi^0$
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^0 \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^+ \pi^-$	$D^+ \rightarrow K^- K^+ \pi^+$	$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
$B^+ \to \overline{D}{}^0 \pi^+ \pi^+ \pi^-$	$B^0 \rightarrow D_s^+ D^-$	$D^+ ightarrow K^- K^+ \pi^+ \pi^0$	$D^0 ightarrow \pi^- \pi^+$
$B^+ \rightarrow D_s^+ \overline{D}{}^0$	$B^0 \rightarrow D^{*-} \pi^+$	$D^+ \rightarrow K^0_s \pi^+$	$D^0 \rightarrow \pi^- \pi^+ \pi^0$
$B^+ \rightarrow \overline{D}^{*0} \pi^+$	$B^0 \rightarrow D^{*-}\pi^+\pi^0$	$D^+ \rightarrow K_s^0 \pi^+ \pi^0$	$D^0 \rightarrow K_s^0 \pi^0$
$B^+ \to \overline{D}{}^{*0} \pi^+ \pi^0$	$B^0 \rightarrow D^{*-}\pi^+\pi^+\pi^-$	$D^+ \to K^0_s \pi^+ \pi^+ \pi^-$	$D^0 ightarrow K^0_s \pi^+ \pi^-$
$B^+ \to \overline{D}{}^{*0}\pi^+\pi^+\pi^-$	$B^0 \rightarrow D^{*-} \pi^+ \pi^+ \pi^- \pi^0$	$D^{*+} \rightarrow D^0 \pi^+$	$D^0 \rightarrow K_s^0 \pi^+ \pi^- \pi^0$
$B^+\to \overline{D}{}^{*0}\pi^+\pi^+\pi^-\pi^0$	$B^0 \rightarrow D_s^{*+} D^-$	$D^{*+} \rightarrow D^+ \pi^0$	$D^0 \rightarrow K^- K^+$
$B^+ ightarrow D_s^{*+} \overline{D}{}^0$	$B^0 \rightarrow D_s^+ D^{*-}$	$D_s^+ ightarrow K^+ K_s^0$	$D^0 ightarrow K^- K^+ K_s^0$
$B^+ \rightarrow D_s^+ \overline{D}^{*0}$	$B^0 \rightarrow D_s^{*+} D^{*-}$	$D^+_s ightarrow K^+ \pi^+ \pi^-$	$D^{*0} \rightarrow D^0 \pi^0$
$B^+ \rightarrow \overline{D}{}^0 K^+$	$B^0 \rightarrow J/\psi K_s^0$	$D_{\rm s}^+ ightarrow K^+ K^- \pi^+$	$D^{*0} \rightarrow D^0 \gamma$
$B^+ \to D^- \pi^+ \pi^+$	$B^0 ightarrow J\!/\psi K^+ \pi^+$	$D^+_s ightarrow K^+ K^- \pi^+ \pi^0$	
$B^+ \rightarrow J\!/\psi K^+$	$B^0 \rightarrow J/\psi K^0_s \pi^+ \pi^-$	$D_s^+ \rightarrow K^+ K_s^0 \pi^+ \pi^-$	
$B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$		$D_s^+ \rightarrow K^- K_s^0 \pi^+ \pi^+$	
$B^+ ightarrow J\!/\psi K^+ \pi^0$		$D_s^+ ightarrow K^+ K^- \pi^+ \pi^+ \pi$	-
$B^+ \rightarrow D^- \pi^+ \pi^+ \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^0 \pi^0$	$D_{\rm s}^+ \to \pi^+\pi^+\pi^-$	
$B^+\to \overline{D}{}^0\pi^+\pi^+\pi^-\pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^+ \pi^- \pi^0$	$D_{\rm s}^{*+} ightarrow D_{\rm s}^+ \pi^0$	
$B^+ ightarrow \overline{D}{}^0 D^+$	$B^0 ightarrow \overline{D}{}^0 \pi^+ \pi^-$	$D^+ ightarrow \pi^+ \pi^0$	$D^0 ightarrow K^- \pi^+ \pi^0 \pi^0$
$B^+ ightarrow \overline{D}{}^0 D^+ K^0_s$	$B^0 \rightarrow D^- D^0 K^+$	$D^+ \to \pi^+\pi^+\pi^-$	$D^0 ightarrow K^- \pi^+ \pi^+ \pi^- \pi^0$
$B^+ \rightarrow \overline{D}^{*0} D^+ K_s^0$	$B^0 \rightarrow D^- D^{*0} K^+$	$D^+ ightarrow \pi^+ \pi^+ \pi^- \pi^0$	$D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$
$B^+ ightarrow \overline{D}{}^0 D^{*+} K^0_s$	$B^0 ightarrow D^{*-} D^0 K^+$	$D^+ ightarrow K^+ K^0_s K^0_s$	$D^0 ightarrow \pi^- \pi^+ \pi^0 \pi^0$
$B^+ ightarrow \overline{D}{}^{*0} D^{*+} K^0_s$	$B^0 \rightarrow D^{*-} D^{*0} K^+$	$D^{*+} ightarrow D^+ \gamma$	$D^0 ightarrow K^- K^+ \pi^0$
$B^+ ightarrow \overline{D}{}^0 D^0 K^+$	$B^0 \rightarrow D^- D^+ K_s^0$	$D^+_s ightarrow K^0_s \pi^+$	
$B^+ ightarrow \overline{D}{}^{*0} D^0 K^+$	$B^0 ightarrow D^{*-} D^+ K_s^0$	$D^+_{ m s} ightarrow K^0_{ m s} \pi^+ \pi^0$	
$B^+ ightarrow \overline{D}{}^0 D^{*0} K^+$	$B^0 \rightarrow D^- D^{*+} K_s^0$	$D^{*+}_{\mathrm{s}} ightarrow D^+_{\mathrm{s}} \pi^0$	
$B^+ ightarrow \overline{D}^{*0} D^{*0} K^+$	$B^0 \rightarrow D^{*-}D^{*+}K_s^0$		
$B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^0 \pi^0$	$B^0 \rightarrow D^{*-} \pi^+ \pi^0 \pi^0$		

1808.10567

Reconstruction signal side

π , K meson

Identification via PID likelihood ratio, impact parameters.

 π^0 : From γ candidates (clusters in calorimeter not matched to any track)

D, D^* meson

arXiv	Signal	Tag	D^0 modes	D^+ modes	D^{*-} modes
Phys.Rev. D82 112007 1809.03290	$D^*\ell^- \bar{ u}_\ell$	No	$K^-\pi^+$		$D^{-}\pi^{-}$
1702.01521	$D^*\ell^- \bar{ u}_\ell$	Had.	$K^-\pi^+(\pi)(\pi)$	$K^{-}\pi^{+}\pi^{+}$	$ar{D}^0\pi^-$, $D^-\pi^0$
Phys.Rev. D93 no.3, 032006	$D\ell^-ar{ u}_\ell$	Had.	$\begin{array}{c} K^{-}\pi^{+}(\pi)(\pi),\\ K^{0}_{S}\pi^{+}\pi^{-}(\pi^{0}),\\ K^{0}_{S}\pi^{0}, K^{+}K^{-},\\ \pi^{+}\pi^{-}(\pi^{0}),\\ K^{0}_{S}K^{0}_{S}, \pi^{0}\pi^{0},\\ K^{0}_{S}\pi^{0}\pi^{0},\\ K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \end{array}$	$\begin{array}{c} K^{-}\pi^{+}\pi^{+}(\pi^{0}),\\ K^{0}_{S}\pi^{+}(\pi^{0}),\\ K^{+}K^{-}\pi^{+},\\ K^{0}_{S}K^{+},\\ K^{0}_{S}\pi^{+}\pi^{+}\pi^{-},\\ \pi^{+}\pi(\pi),\\ K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\end{array}$	

Projection in bins of kinematic variable

 $\bar{B} \longrightarrow D \ell^- \bar{\nu}_\ell$

10 equal-size bins in w. Good resolution (0.005) vs bin width (0.06) \implies Bin migration neglected

$\bar{B} \longrightarrow D^* \ell^- \bar{\nu}_\ell$

- 10 equal size bins in w, χ, cos θ_ℓ, cos θ_{D*} (Projections)
- Correlation between the 4 distributions (→ toy experiments)
- Finite resolution \implies Migration!
 - \rightarrow Mig. matrix from truth vs reco MC. \rightarrow Fold theory (easy) or
 - unfold measurement (hard)

Fit variables

Tagged analyses

Fit variable: $m_{\text{miss}}^2 := (p_B - p_{D^{(*)}} - p_{\ell})^2$ with $p_B = p_{\text{LER}} + p_{\text{HER}} - p_{\text{tag}}$ Correct reco \implies Peak at 0; Missed particles \implies Peak > 0; Particles from tag side \implies Peak < 0

Untagged analyses Fit variables: $\cos \theta_{B,D^*\ell} := \frac{2E_B^* E_{D^*\ell}^* - m_B^2 - m_{D^*\ell}^2}{2|\vec{p}_B^*||\vec{p}_{D^*\ell}^*|}$ Correct reco $\Rightarrow -1 \le \cos \theta_{B,D^*\ell} \le 1$ $\Delta m = m_{D^*} - m_D$ p_ℓ

Fit variable m^2_{miss} TemplatesFrom

Fixed Norm.

Float. Norm.

$$\begin{split} m_{\text{miss}}^{2} &:= (p_{B} - p_{D} - p_{\ell})^{2} \\ \text{From MC} \\ \text{``other'' background from MC} \\ \mathbf{2} \colon \bar{B} \longrightarrow D\ell^{-}\bar{\nu}_{\ell} \text{ and } \bar{B} \longrightarrow D^{*}\ell^{-}\bar{\nu}_{\ell} \text{ normalization} \end{split}$$

Float. Norm. 6: Normalizations for signal and backgrounds

¹For $\ell = \mu$: Shape of fake ℓ corr. with data from $K_s^0 \longrightarrow \pi^+\pi^-$; ℓ PID eff. corr. with data from $2\gamma \longrightarrow e^+e^-/\mu^+\mu^-$

Fit variable	$\cos \theta_{B,D^*\ell}$,	Δm ,	р
--------------	-----------------------------	--------------	---

Templates Continuum from off-resonance, rest from MC¹

Fixed Norm. Continuum from off-resonance (corrected for 1/s dependency, kinematics)

Float. Norm. 6: Normalizations for signal and backgrounds

¹Shape of fake ℓ corr. with data from $D^* \longrightarrow D^0 \pi$, $D^0 \longrightarrow K \pi$; lepton PID eff. corr. with data from $ee \longrightarrow ee\gamma$, $ee \longrightarrow \mu\mu(\gamma)$ and $J/\psi \longrightarrow \ell^+\ell^-$; low momentum track reco. eff. corr. with control sample of $\bar{B} \longrightarrow D^*\ell^-\bar{\nu}_\ell$

 $\chi^2~{\rm fit}$

$$\chi^2 = \left(\vec{\nu}_{\rm sig} - \vec{\nu}_{\rm sig}^{\rm pred}\right) {\rm C}^{-1} \Big(\vec{\nu}_{\rm sig} - \vec{\nu}_{\rm sig}^{\rm pred}\Big) + \chi^2_{\rm nuisance}, \label{eq:chi}$$

where:

- $\vec{\nu}_{sig}$ yields in bins of kinematic variables $(D\ell^- \bar{\nu}_\ell: w, D^* \ell^- \bar{\nu}_\ell: w, \chi, \cos \theta_\ell, \cos \theta_{D^*})$
- $\vec{\nu}_{sig}^{pred} = (\epsilon_{reco}\epsilon_{tag})\mathcal{M}_{mig}\vec{\Delta\Gamma}$ $\Delta\Gamma_i: \text{ theory expectation diff. CS in bin } i$ $(depends on FF param, |V_{cb}|),$ $\mathcal{M}_{mig}: migration matrix$
- C: Covariance matrix
- χ^2_{nuisance} : Account for multiplicative factors degenerate with $|V_{cb}|$

Results and Outlook @Belle

Link	Channel	Tag	$ V_{cb} imes 10^3 \text{ (CLN)}$	$ V_{cb} imes 10^3$ (BGL)	Unfold	Notes
Phys.Rev. D82 112007	$D^*\ell^-\bar{\nu}_\ell$	No	35.5 ± 1.5			
1809.03290	$D^*\ell^-\bar{\nu}_\ell$	No	38.4 ± 0.9	42.5 ± 1.0	Soon	
1702.01521	$D^*\ell^-\bar\nu_\ell$	Had.	37.4 ± 1.3		Yes	Soon: Separate re-
						sults $\ell = e$ and $\ell = \mu$
Phys.Rev. D93 no.3, 032006	$D\ell^- \bar{ u}_\ell$	Had.	39.9 ± 1.3	40.8 ± 1.1		

cf. current PDG: $V_{cb,incl.} = (42.2 \pm 0.8) \times 10^{-3}$

Prospects @Belle II

			Syst			
	ab^{-1}	Stat.	(Red.,Irred.)	$\sum Exp$	Theory	\sum
$\bar{\nu}_{\ell}$	0.7	0.6%	(2.8, 1.1)%	3.1%	1.8%	3.6%
-) ,	5	0.2%	(1.1, 1.1)%	1.5%	1.0%	1.8%
۵	50	0.1%	(0.3, 1.1)%	1.2%	0.8%*	1.4%
$\bar{\nu}_{\ell}$	0.4	4.5%	(3.1, 1.2)%	5.6%	2.2%	6.0%
-)	5	1.3%	(0.9, 1.2)%	2.0%	1.5%*	2.7%
Ω	50	0.6%	(0.4, 1.2)%	1.4%	1.0%*	1.7%

Table 1: Excpected errors on $|V_{cb}|$

Light lepton flavor universality tests:

$$\mathcal{R}_{e/\mu}^{(*)} := \frac{\mathsf{BR}(\bar{B} \longrightarrow D^{(*)}e^-\bar{\nu}_e)}{\mathsf{BR}(\bar{B} \longrightarrow D^{(*)}\mu^-\bar{\nu}_\mu)}$$

Observable	Belle	Belle II
$\mathcal{R}^*_{e/\mu} \ \mathcal{R}_{e/\mu}$	$5\% \approx 6\%$	1% 1%

1607.04918

Backup

Systematic uncertainties: Tagged $\bar{B} \longrightarrow D^* \ell^- \bar{\nu}_\ell$ 1702.01521

Error Source	$\Delta \mathcal{B}$ [%]
Tagging Calibration	3.6
Tracking Efficiency	1.6
N _{BĒ}	1.4
f_{+0}	1.1
PDF shapes	0.9
π^0 Efficiency	0.5
$\mathcal{B}(D o K\pi(\pi)(\pi))$	0.4
${\cal B}(D^* o D \pi)$	0.2
${\cal B}(ar B o D^{**} \ell ar u_\ell)$	0.2
e PID	0.2
μ PID	0.1
π_{slow} Eff.	0.1
${\cal B}(ar B o D\ellar u_\ell)$	< 0.1
$ar{B} o D^{(st,stst)} \ell ar{ u}_\ell$ FFs	< 0.1
Lepton Fakerates	< 0.1
K PID	< 0.1
Total Systematic	4.5
Statistics	2.2

Table 2: Summary of the relative systematic errors ordered by importance in the total branching fraction measurement.

Systematic uncertainties: Untagged $\bar{B} \longrightarrow D^* \ell^- \bar{\nu}_\ell$ 1809.03290

Systematic Uncertainties	ρ^2	$R_1(1)$	$R_{2}(1)$	$\mathcal{F}(1) V_{cb} $ [%]	B.F. [%]
Slow pion efficiency	0.005	0.002	0.001	0.65	1.29
Lepton ID combined	0.001	0.006	0.004	0.68	1.38
${\cal B}(B o D^{**} \ell u)$	0.002	0.001	0.002	0.26	0.52
$B ightarrow D^{**} \ell u$ Form factors	0.003	0.001	0.004	0.10	0.22
f_{+-}/f_{00}	0.001	0.002	0.002	0.52	1.06
Fake e/μ	0.004	0.006	0.001	0.11	0.21
Norm. continuum	0.002	0.002	0.001	0.01	0.06
Fast track efficiency	-	-	-	0.53	1.05
$N(\Upsilon(4S))$	-	-	-	0.68	1.37
B^0 life time	-	-	-	0.13	0.26
K/π ID	-	-	-	0.39	0.77
${\cal B}(D^{*+} o D^0 \pi_s^+)$	-	-	-	0.37	0.74
${\cal B}(D^0 o K\pi)$	-	-	-	0.51	1.02
Total Systematic	0.008	0.009	0.007	1.60	3.21

Table 3: Systematic uncertainty breakdown for $\mathcal{F}(1)|V_{cb}|$, branching fraction and form factor parameters in the CLN form factor parameterisation. For $\mathcal{F}(1)|V_{cb}|$ and the branching fraction, the *relative* errors are shown.

Systematic uncertainties: Untagged $\bar{B} \longrightarrow D^* \ell^- \bar{\nu}_\ell$ Phys.Rev. D82 112007

	ρ^2	$R_1(1)$	$R_{2}(1)$	$\mathcal{F}(1) V_{cb} imes 10^3$	$\mathcal{B}(B^0 o D^* \ell u)$ [%]
Fast track efficiency				-0.78	-0.206
Slow track efficiency	+0.002	+0.003	-0.004	-0.28	-0.059
ρ_{π_s} stability	+0.001	-0.001	+0.000	-0.03	-0.003
LeptonID	+0.002	+0.006	-0.002	-0.38	-0.100
Norm - D**	+0.001	+0.001	-0.001	-0.03	-0.008
Norm - Signal Corr.	+0.002	-0.003	+0.002	+0.02	+0.006
Norm - Uncorr	+0.002	+0.008	-0.003	-0.02	-0.001
Norm - Fake ℓ	+0.003	-0.003	-0.001	-0.01	-0.003
Norm - Fake D*	+0.001	-0.001	+0.000	+0.00	+0.003
Norm - Continuum	+0.002	+0.002	-0.001	+0.00	-0.003
D** composition	+0.004	+0.009	-0.003	-0.10	-0.025
D ^{**} shape	+0.003	+0.005	-0.002	-0.04	-0.011
$N(\Upsilon(4S))$				-0.24	-0.063
f_{+-}/f_{00}	+0.004	-0.009	+0.003	+0.24	+0.062
B^0 life time				-0.10	-0.027
${\cal B}(D^* o D^0 \pi_s)$				-0.13	-0.034
${\cal B}(D^0 o K\pi)$				-0.22	-0.059
Value	1.214	1.401	0.864	34.6	4.58
Statistical Error	0.034	0.034	0.024	0.2	0.03
Systematic Error	0.009	0.018	0.008	1.0	0.26

Table 4: The breakup of the systematic uncertainty in the result of the fit to the full sample. The sign + (-) implies whether the fit result moves to larger (smaller) values, if the value of the corresponding systematic parameter is increased.

Systematic uncertainties: Tagged $\bar{B} \longrightarrow D\ell^- \bar{\nu}_\ell$ Phys.Rev. D93 no.3, 032006

	$\sigma \left(\Delta \Gamma_i \right) [\%]$									
	0	1	2	3	4	5	6	7	8	9
Tag correction	3.0	3.2	3.3	3.4	3.4	3.4	3.4	3.3	3.3	3.2
Charged tracks	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
$\mathcal{B}(D ightarrow hadronic$)	2.0	1.8	1.8	1.8	1.8	1.8	1.8	1.9	1.9	1.9
${\cal B}(B o D^{*(*)} \ell u)$	1.3	0.8	0.8	0.9	0.8	0.7	0.5	0.2	0.2	0.4
$\mathcal{B}(B o X_u \ell u)$	0.4	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
$FF(B ightarrow D^* \ell u)$	0.4	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.2
$FF(B \rightarrow D^{**} \ell \nu)$	2.5	1.2	0.9	0.7	0.5	0.5	0.7	0.5	0.1	0.4
Signal shape	5.0	0.8	0.6	0.5	0.5	0.4	0.3	0.3	0.2	0.1
Lifetimes	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
π^0 efficiency	0.9	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7
K/π efficiency	1.1	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0
K_S efficiency	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Luminosity	1.4	1.4	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total	7.3	4.7	4.7	4.7	4.7	4.6	4.7	4.6	4.5	4.5

Table 5: Itemization of the systematic uncertainty in $\Delta \Gamma_i$ in each w bin.