Belle II Status and SuperKEKB Progress

Oskar Hartbrich University of Hawaii at Manoa

for the Belle2 Collaboration

25th Rencontres du Vietnam

The Belle II Collaboration

• Truly international: now ~800 researchers from 25 countries

B-Factory Experiments

- Asymmetric beam energies, high luminosity \rightarrow High statistics of boosted B, D and τ
- Flavour physics
 - CKM matrix, unitarity triangle
 - CPV in B system
- BSM limits
 - Rare B/D decays
 - $\quad b \to s \gamma, \ b \to s |^+|^-$
 - LFV in τ decays
- New particles
 - Tetraquarks

SuperKEKB

Challenges on the Detector Upgrade

- Significantly increased beam backgrounds (x10-20)
 - Faster frontend electronics to reduce background pileup
- Increased trigger rates, data transfer bandwidth (x10-100)
 - Overhauled DAQ system, pipelined readout
 - Full reconstruction in high level trigger farm (~3000 nodes)
- Reduced initial state boost (-30%)
 - Higher resolution vertexing detectors
 - Addition of two layers of pixel sensors

Belle II Detector Upgrade

Belle II Detector Upgrade

Key Technologies in Belle II

- Pixelated photo sensors
 - MCP-PMTs in TOP (barrel PID)
 - HAPDs in ARICH (end cap PID)
 - SiPMs in KLM
- Waveform sampling readouts
 - TOP: 8192 channels, 2.7GSa/s: IRSX (Hawaii)
 - Sci-KLM: 16800 channels, 1GSa/s: TARGETX (Hawaii)
 - SVD: 224k channels, 40MSa/s: APV25 (adapted from CMS)
 - CDC: 14336 channels, 30Msa/s
 - ECL: 8736 channels, 2MSa/s

SuperKEKB + Belle II Commissioning

- Phase 1: Operation without Belle II and without final focus system
 - Completed in June 2016
- Phase2: Start data taking with first collisions
 - Full outer Belle II detector
 - BEAST beam background detector instead of inner tracking, contains one ladder each of strip and pixel detectors
 - Luminosity goal ~1x10³⁴ cm⁻² s⁻¹
 - Completed in July 2018
- Phase3: Full Belle II operation
 - Final detector configuration
 - Luminosity goal ~8x1035 cm-2 s-1
 - Starting Spring 2019

First Collision in Belle II - 04/26/2018

Probably $e + e - \rightarrow \gamma^* \rightarrow q \overline{q}$

... and the Reaction

... and Later the same Night

Possibly $e+e- \rightarrow \gamma^* \rightarrow B\overline{B}$

SuperKEKB Phase 2 Beam Size

- Effective bunch length is **0.5mm**! (x20 smaller than KEKB)
 - Measured by Belle II using two track events
- Vertical beam spot size down to 330nm
 - Some beam-beam blowup observed at higher currents, increases up to ~700nm
 - Will decrease by another order of magnitude with focus tuning

14

SuperKEKB Phase 2 Luminosity

- Up to ~5.5x10³³ cm⁻² s⁻¹, 500 pb⁻¹ recorded in Phase 2
 - Focus on machine and detector commissioning

15

Outlook

- Inner detector almost fully assembled
- Installation in Fall 2019

PXD ladders and assembled half shell at DESY

SVD half shells assembled at KEK

Summary

- SuperKEKB will deliver highest luminosity e⁺e⁻ collisions to the full Belle II detector starting from Spring 2019
- First collisions and commissioning runs of phase 2 earlier this year were very successful
 - More about first results in Fabrizio Bianchi's talk in Friday HEP plenary session
- Soon, the intensity frontier will come to save particle physics once again