Dark Sector Searches with Belle II

Enrico Graziani
INFN – Roma 3
on behalf of the Belle II Collaboration

OUTLINE OF THE TALK
• Belle II and SuperKEKB
• Search of the invisible dark photon
• Search of ALP
• Search of Z' (invisible)
• Search of magnetic monopoles
• Summary

SUSY2018
26th International Conference on Supersymmetry and Unification of Fundamental Interactions
Barcelona, July 23-27, 2018 susy2018.ifae.es
Peak luminosity trend

e+e- colliders

40 times higher luminosity

SuperKEKB

Very rich physics program

Flavour physics
- CKM matrix
- CPV in B decays

BSM physics
- Rare decays
- NP in loops in b→sγ, b→sll
- B →D(*)τν
- LFV in τ decays

New particles (quarkonium)

Dark sector
From KEKB to SuperKEKB

Beam current

Vertical beta function@IP

Beam size ratio@IP
1 ~ 2 % (flat beam)

Lorentz factor

Classical electron radius

Beam-beam parameter

Lumi. reduction factor (crossing angle)&
Tune shift reduction factor (hour glass effect)
0.8 ~ 1
(short bunch)

1. Smaller β_y^*
2. Increase beam currents
3. Increase ξ_y

For a 40x increase in intensity you have to make the beam as thin as a few x100 atomic layers

$E^*y = 0.27/0.30 \text{ mm}$

$I_{+/-} = 3.6/2.6 \text{ A}$

$\sigma_x \sim 100 \mu \text{m, } \sigma_y \sim 2 \mu \text{m}$
Belle II detector

Electromagnetic calorimeter (ECL):
Csl(Tl) crystals, waveform sampling to measure time and energy (possible upgrade: pulse-shape)
Non-projective gaps between crystals

K_{L} and muon detector (KLM):
Resistive Plate Counters (RPC) (outer barrel)
Scintillator + WLSF + MPPC (endcaps, inner barrel)

Magnet:
1.5 T superconducting

Trigger:
L1: < 30 kHz
HLT: < 10 kHz

Vertex detectors (VXD):
2 layer DEPFET pixel detectors (PXD)
4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):
He(50%):C_{2}H_{6} (50%), small cells, fast electronics

Particle Identification (PID):
Time-Of-Propagation counter (TOP) (barrel)
Aerogel Ring-Imaging Cerenkov Counter (ARICH)

Belle II vs Belle
better resolution, PID and capability to cope with higher background
Belle II data taking plan

Phase 2
- 1/8 of vertex detector
- Low backgrounds
- Pass-through HLT (software) trigger

Good conditions for dark searches

Phase 3
- $L \approx 50 \text{ ab}^{-1}$ with the full detector
Belle II data taking plan: today

Phase 2

Phase 2 finished July 17th 9 am
- Nano-beam scheme works!
- $L = 5.5 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ achieved
- $L_{\text{int}} > 0.5 \text{ fb}^{-1}$ collected

- 1/8 of vertex detector
- Low backgrounds
- Pass-through HLT (software) trigger

- Tracking and clustering L1 trigger
- Bhabha veto L1 trigger
- Some single photon L1 trigger

Good conditions for dark searches
Belle II & SuperKEKB Phase 2

Start of collisions: April 25th
Belle II performance snapshots

\(k_S \rightarrow \pi \pi \)

\(J/\psi \rightarrow \mu \mu \)

\(\pi^0 \rightarrow \gamma \gamma \)

2 days after first collisions

\(\mu = (497.159 \pm 3.013) \text{ MeV/c}^2 \)

\(\sigma = (3.462 \pm 0.075) \text{ MeV/c}^2 \)
Dark photon: introduction

Some astrophysical observations suggest the possibility of the existence of a new light (GeV scale) hidden dark sector with a mediator \(A' \) (dark photon), weakly coupled to the Standard Model via kinetic mixing, and light dark matter.

At \(e^+e^- \) colliders

\(\chi \equiv \text{dark matter particle} \)

Two basic scenarios depending on \(A' \) vs matter mass relationship

\[
\begin{align*}
\text{m}_\chi > 1/2 \text{ m}_{A'} & \Rightarrow A' \text{ visible decays (SM particles)} \\
\text{m}_\chi < 1/2 \text{ m}_{A'} & \Rightarrow A' \text{ invisible decays to LDMA}
\end{align*}
\]

\(A' \rightarrow l^+l^- \)

\(A' \rightarrow \pi^+\pi^- \)

h' A' dark higgstrahlung

h' \rightarrow A'A', A'A' \rightarrow 6 \ l^\pm + \pi^\pm \ A'+\text{missing}

\(A' \rightarrow \chi \chi \)

Access to light dark matter particles

Invisible dark photon: experimental signature

Only one photon in the detector. Needs a single photon trigger (not available in Belle, \approx 10\% of data in BaBar)

\[E_\gamma = \frac{s - M^2_{A'}}{2\sqrt{s}} \]

Bump in recoil mass or photon energy

Backgrounds
\[e^+e^- \rightarrow e^+e^-\gamma(\gamma), e^+e^- \rightarrow \gamma\gamma(\gamma) \]

<table>
<thead>
<tr>
<th>Trigger logic</th>
<th>L1 rate at full luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E > 1 GeV</td>
<td>4 kHz (barrel)</td>
</tr>
<tr>
<td>+ 2nd cluster E < 300 MeV</td>
<td>7 kHz (endcaps)</td>
</tr>
<tr>
<td>E > 2 GeV</td>
<td>5 kHz (barrel)</td>
</tr>
<tr>
<td>+ Bhabba & γγ vetoes</td>
<td></td>
</tr>
</tbody>
</table>

Limited mainly by acceptance

Probably not sustainable in deep Phase 3, where some prescaling or threshold adjustment will be needed
Invisible dark photon: backgrounds

ee → 2γ and 3γ
1γ in ECL 90° gap
1γ out of ECL acceptance

ee → eey
both electrons out of tracking acceptance

Crucial usage of KLM to veto photons in ECL gaps

ee → 2γ
1γ in ECL BWD or FWD gap

ee → 3γ
1γ in ECL BWD gap
1γ out of ECL acceptance
Invisible dark photon: sensitivity

![Graph showing the sensitivity of Belle II calorimeter compared to other experiments]

- Belle II calorimeter has no projective cracks in ϕ
- Lower trigger threshold wrt BaBar

Mathematical expression:

$$y = \varepsilon^2 \alpha_D \left(\frac{m_\chi}{m_{A'}} \right)^4$$

Parameters:

- $\alpha_D = 0.5$
- $3m_\chi = m_{A'}$
Visible dark photon: sensitivity

Competitive only in Phase 3

E. Graziani – Dark Sector Searches with Belle II – SUSY2018
Axion Like Particles (ALPs)

- Pseudo-scalars particles which couple to bosons.
- Differently from QCD axions, no relation between mass and coupling.
- Focus on coupling to photons: $g_{a\gamma\gamma}$
- Alp-strahlung + photon fusion production mechanisms
- $\tau \sim 1 / g_{a\gamma\gamma}^2 m_a^3$
- No results at B factories yet

$$W \sim \frac{1}{g_{a\gamma\gamma}} \frac{2}{m_a^3}$$

Photon fusion sensitivity under study

3 γ topology
Axion Like Particles (ALPs): signal

3 γ topology, but...

ALP decays outside of the detector or decays into invisible particles: Single photon final state.

ALPs can also decay to DM \rightarrow single photon topology

Two of the photons overlap or merge.

Three resolved, high energetic photons.

The searches for invisible and visible ALP decays veto this region.
Axion Like Particles (ALPs): sensitivity

Only coupling to γ

With coupling to Z

$g_{\gamma Z} = 0$

$g_{\gamma Z} = -2 \tan \theta_W g_{\gamma \gamma}$
L_\mu - L_\tau: Z' invisible decay

- A new gauge boson Z' which couples only to the 2° and 3° lepton family
- May explain (g-2)_\mu
- Invisible decay channel to be explored for the first time
- Invisible decay channel BR possibly enhanced by the presence of kinematically accessible dark matter (e.g. sterile neutrinos)
- Sometimes invoked to explain EDGES results

Invisible Branching Ratios

Branching ratios to SM v's:
- M_{Z'} < 2 M_\mu \rightarrow \Gamma(Z' \rightarrow \text{inv.}) = 1
- 2 M_\mu < M_{Z'} < 2 M_\tau \rightarrow \Gamma(Z' \rightarrow \text{inv.}) \sim 1/2
- M_{Z'} > 2 M_\tau \rightarrow \Gamma(Z' \rightarrow \text{inv.}) \sim 1/3

If LDMA kinematically available \rightarrow \approx 1
Look for bumps in recoil mass against a $\mu^+\mu^-$ pair

Main backgrounds:

\[e^+e^- \rightarrow \mu^+\mu^- (\gamma) \]
\[e^+e^- \rightarrow \tau^+\tau^- (\gamma), \tau^\pm \rightarrow \mu^\pm\nu\nu \]
\[e^+e^- \rightarrow e^+e^- \mu^+\mu^- \]
Look for bumps in recoil mass against a $\mu^+\mu^-$ pair.

Main backgrounds:

\[e^+ e^- \rightarrow \mu^+\mu^- (\gamma) \]
\[e^+ e^- \rightarrow \tau^+\tau^- (\gamma), \tau^\pm \rightarrow \mu^\pm \nu\nu \]
\[e^+ e^- \rightarrow e^+ e^- \mu^+\mu^- \]

$Z' \rightarrow$ visible decay (muonic dark force)

\[e^+ e^- \rightarrow \mu^+\mu^- Z'; Z' \rightarrow \mu^+\mu^- \] will be competitive in Phase 3 (due to BaBar result)
Look for bumps in recoil mass against a \(\mu^+\mu^- \) pair

Main backgrounds:
\[
\begin{align*}
e^+e^- &\rightarrow \mu^+\mu^- (\gamma) \\
e^+e^- &\rightarrow \tau^+\tau^- (\gamma), \tau^\pm \rightarrow \mu^\pm \nu \nu \\
e^+e^- &\rightarrow e^+e^- \mu^+\mu^-
\end{align*}
\]

Additional possibility

LFV Z’ (e\(\mu\) coupling)
\[
\begin{align*}
e^+e^- &\rightarrow e^+\mu^- Z’ ; Z’ \rightarrow \text{invisible} \\
e^+e^- &\rightarrow e^+\mu^- Z’ ; Z’ \rightarrow e^+\mu^- (\text{no SM background})
\end{align*}
\]

Z’ \rightarrow \text{visible decay (muonic dark force)
\[
e^+e^- \rightarrow \mu^+\mu^- Z’ ; Z’ \rightarrow \mu^+\mu^- \text{ will be competitive in Phase 3 (due to BaBar result)}
\]
Magnetic monopoles

- Particle carrying magnetic charge
- Recent searches for magnetic charges $g > 68.5e$
- Small charges $g < 10e$ are not excluded
- Weaker ionisation due to absence of $1/\beta^2$ factor for magnetic charges
- Tracks are straight in XY and curved in RZ
- They need a dedicated tracking (parabolas rather than helices)

\[z(s) = z_0 + \frac{p_z}{p_T} s + \frac{g B m}{2p_T^2} s^2 \]
Summary

• Belle II Phase2 finished one week ago
• Early data taking mostly devoted to commissioning
• $L_{\text{int}} > 0.5 \text{ fb}^{-1}$, with $L_{\text{MAX}} = 5.5 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
• Hardware L1 trigger extensively studied (both tracks and neutrals)
• Resonances, b-physics and charm physics «rediscovered»

Some dark sector searches may lead to interesting new limits even with small data sets

- Invisible dark photon search
- ALP search
- Z' to invisible search
- Z' LFV search
- Magnetic monopoles search

They will be performed in the next months, aiming at more sensitive results in (the beginning of) Phase 3

Phase 3 (full detector, higher luminosity) will start in February 2019
SPARE SLIDES
Invisible dark photon: sensitivity

Belle II calorimeter has no projective cracks in ϕ

Lower trigger threshold wrt BaBar
Axion Like Particles (ALPs): sensitivity

ALP \rightarrow DM decay

![Graph showing ALP → DM decay sensitivity](image-url)
Z’ LFV: invisible + visible

What if symmetries of SM are not kept in the Dark Sector?

What if DM violates Lepton Flavour?

One can imagine, for example, $e\mu$ coupling

$$e^+e^- \rightarrow e^+\mu^-Z' ; Z' \rightarrow \text{invisible}$$

Dominant background: $e^+e^- \rightarrow \tau^+\tau^- (\gamma) , \tau^\pm \rightarrow \mu^\pm, e^\pm \nu\nu$

$$e^+e^- \rightarrow e^+\mu^-Z' ; Z' \rightarrow e^+\mu^- + c.c.$$
no SM background