Precision measurements of the CKM parameters (Mainly γ/ϕ_3 measurements)

Prasanth Krishnan (On behalf of Belle II Collaboration)

TIFR

July 17, 2018

16th FPCP, Hyderabad

Prasanth Krishnan (On behalf of Belle II Collaboration)

Outline of the talk

- Status of CKM parameters
- CKM angle γ/ϕ_3
 - Methods
 - Constraints
- Belle II experiment
- ▶ φ₃ from Belle II
- Summary

See Malcom John's plenary talk

Prasanth Krishnan (On behalf of Belle II Collaboration)

Current experimental limit on CKM parameters

Tree level only

Extraction of CKM angle ϕ_3

 \blacktriangleright Via the interference between $B^-
ightarrow D^0 K^-$ and $B^-
ightarrow ar{D}^0 K^-$

4/14

Methods to extract ϕ_3 : GLW and ADS

GLW method:

- Both D⁰ and D
 ⁰ are decaying to same CP eigenstate
- Four observables are

$$R_{CP}^{\pm} = 2 \frac{\Gamma(B^- \to D_{CP}^{\pm} \kappa^-) + \Gamma(B^+ \to D_{CP}^{\pm} \kappa^+)}{\Gamma(B^- \to D_{fav}^{\pm} \kappa^-) + \Gamma(B^+ \to D_{fav}^{\pm} \kappa^+)}$$

$$A_{CP}^{\pm} = 2 \frac{\Gamma(B^- \to D_{CP}^{\pm}) - \Gamma(B^+ \to D_{CP}^{\pm}K^+)}{\Gamma(B^- \to D_{CP}^{\pm}) + \Gamma(B^+ \to D_{CP}^{\pm}K^+)}$$

Then,

 $R_{CP}^{\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3$ $A_{CP}^{\pm} = \pm 2r_B \sin \delta_B \sin \phi_3 / R_{CP}^{\pm}$

No need of external inputs

ADS method:

- D from a favored amplitude decays to a DCS state
- Two observables are

$$R_{ADS} = \frac{\Gamma(B^- to[K^+\pi^-]_D K^-) + \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- to[K^-\pi^+]_D K^-) + \Gamma(B^+ \to [K^+\pi^-]_D K^+)}$$

$$A_{ADS} = \frac{\Gamma(B^- to[K^+\pi^-]_D K^-) - \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- to[K^-\pi^+]_D K^-) + \Gamma(B^+ \to [K^+\pi^-]_D K^+)}$$

Then,

$$\begin{split} R_{ADS} &= r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \phi_3 \\ A_{ADS} &= 2r_B r_D (\sin \delta_B + \phi_3) / R_{ADS} \end{split}$$

• r_D and δ_D from charm factories

Methods to extract ϕ_3 : GGSZ

- For self-conjugate multi-body D final states such as K⁰_Sπ⁺π[−] ^[7]
- ▶ Bin the Dalitz plot symmetrically about m²_− = m²₊
- Fraction of *D* events for K_i & \bar{K}_i from $D^{*\pm} \to D\pi^{\pm}_{slow}$
- External charm factory inputs needed- avg. cosine (c_i) and sine (s_i) of the strong phase difference between D⁰ and D
 ⁰ decay amplitude ith bin
- ▶ $e^+e^- \rightarrow \psi$ (3770) $\rightarrow D^0 \overline{D^0}$
- Advantage: r_B and δ_B from single mode

⁷PRD **85** (2012) 112014

Prasanth Krishnan (On behalf of Belle II Collaboration)

Constraints on γ/ϕ_3

- From all measurements of $B \rightarrow D(^*)K(^*)$ from GLW, ADS, and GGSZ
- All data from *B* factories: Belle & BaBar
- + LHCb run I

- \rightarrow Dominated by GGSZ
- \rightarrow PRD $\boldsymbol{87}$ (2013) 052015
- \rightarrow LHCb-CONF-2018-002

Prasanth Krishnan (On behalf of Belle II Collaboration)

SuperKEKB and Belle II experiment

Status of phase 2 of Belle II experiment

Precision measurements of the CKM parameters (Mainly γ/ϕ_3 measurements)

9/14

ϕ_3 sensitivity with $B^{\pm} \rightarrow D(\overline{K_S}\pi^+\pi^-)K$ decays in Belle II

- \blacktriangleright Goal to go for precision $pprox \mathbf{1}^{\circ}$ ^[8]
- Dominated by $B^{\pm} \rightarrow D(K^0_{S}\pi\pi)K^{\pm}$ mode
 - improvements, even modest, will have large impact on ϕ_3 sensitivity
- ▶ **GLW like states:** Interference of $B^- \rightarrow DK^-$, $D \rightarrow K_S^0 \rho$
- ▶ ADS like states: Interference of $B^- \rightarrow DK^-$, $D \rightarrow K^* \pi$
- Golden mode to determine ϕ_3 !

- ► $\delta(\phi_3)^{50 \text{ ab}^{-1}} = 3.0^\circ \text{ by GGSZ}$ (with 10 fb⁻¹ BES III data)
- $\delta(\phi_3)^{50 \text{ ab}^{-1}} = \mathbf{1.6}^\circ$ when Belle GLW + ADS + GGSZ extrapolated

Further improvements:

- Additional modes
- Improved K_{S}^{0} reconstruction
- qq̄ background suppression

(q=u,d,s,c)

10/14

⁸J. Brod et. al, arXiv:1412.1446; BELLE2-PUB-DRAFT-2016-009

Prasanth Krishnan (On behalf of Belle II Collaboration)

Results from phase 2 data- K_{c}^{0} reconstruction

• Already resolutions in MC (left) & data (right) are in good agreement

11/14

Prasanth Krishnan (On behalf of Belle II Collaboration)

Rediscovering the **CP modes** from phase 2

Rediscovery of $D^{*\pm} \rightarrow D(K_S^0 \pi^+ \pi^-) \pi_{\text{slow}}^{\pm}$ & B from phase 2

∆E (GeV)

Prasanth Krishnan (On behalf of Belle II Collaboration)

Precision measurements of the CKM parameters (Mainly γ / ϕ_3 measurements)

TIFR 13/14

Summary

- Current precision on ϕ_3 is $\approx 5^\circ$
- ▶ With 50 ab⁻¹ of Belle II data:
 - ► $\mathbf{B}^{\pm} \rightarrow \mathbf{D}(\mathbf{K}^{0}_{\mathbf{S}}\pi^{+}\pi^{-})\mathbf{K}^{\pm}$: ϕ_{3} sensitivity will improve to 3.0°
 - ► $\mathbf{B}^{\pm} \rightarrow \mathbf{D}(\mathbf{K}_{\mathbf{S}}^{0}\pi^{+}\pi^{-}\pi^{0})\mathbf{K}^{\pm}$: ϕ_{3} sensitivity will improve to $\mathbf{4.4}^{\circ}$ ^[9] (See talk by P.K. Resmi)
- Combined \u03c6₃ sensitivity is 1.6°

⁹JHEP **01** (2018) 082

Prasanth Krishnan (On behalf of Belle II Collaboration)

Backup slides

Prasanth Krishnan (On behalf of Belle II Collaboration)	TIFR
Precision measurements of the CKM parameters (Mainly γ/ϕ_3 measurements)	1/2

ϕ_3 sensitivity with $B \to D(K_S^0 \pi^+ \pi^- \pi^0) K$ decays

Four-body final state^[9]

See talk by P.K. Resmi

- $\epsilon imes \mathcal{B}$ similar to $D^0 o K^0_S \pi^+ \pi^-$
- Many interesting resonant substructures such as $K_S^0 \omega, K^{*\pm} \rho^{\mp}$

