Precision measurements of the CKM parameters (Mainly γ/ϕ_3 measurements)

Prasanth Krishnan
(On behalf of Belle II Collaboration)

TIFR

July 17, 2018

16th FPCP, Hyderabad
Outline of the talk

▶ Status of CKM parameters

▶ CKM angle γ/ϕ_3
 ▶ Methods
 ▶ Constraints

▶ Belle II experiment

▶ ϕ_3 from Belle II

▶ Summary

\[
\frac{\gamma}{\phi_3} \equiv \arg \left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right)
\]
Current experimental limit on CKM parameters

Figure: Current status of the CKM parameters\cite{1}.

- \(\phi_3 = (73.5^{+4.2}_{-5.1})^\circ \) \([\phi_1 = (21.9 \pm 0.7)^\circ] \) \cite{2}
- \(\delta(\phi_3)/\phi_3 = \mathcal{O}(10^{-7}) \) \cite{3}

\cite{1}ckmfitter.in2p3.fr/www/html/ckm_results.html
\cite{2}www.slac.stanford.edu/xorg/hflav/triangle/moriond2018/index.shtml
\cite{3}J. Brod, J. Zupan, arxiv:1308.5663
Extraction of CKM angle ϕ_3

- Via the interference between $B^- \to D^0 K^-$ and $B^- \to \bar{D}^0 K^-$

\[
A \sim A \lambda^3
\]

\[
r_B = \frac{|A_{\text{suppressed}}|}{|A_{\text{favored}}|} \sim 0.1 \quad \text{for } B^{\pm} \to DK^{\pm} \text{ decays}
\]

- Generally three types of D final states used:
 - CP eigenstates (GLW^4): $K^+ K^-, \pi^+ \pi^-, K^0 \pi^0$
 - $K^+ X^-$ (ADS^5) DCS: ($X^- = \pi^-, \pi^- \pi^0, \pi^- \pi^- \pi^+$)
 - Self-conjugate multi-body states ($GGSZ^6$): $K^0 h^+ h^-, K^0 \pi^+ \pi^- \pi^0$

5. PRD 63, 036005 (2001)
Methods to extract ϕ_3: GLW and ADS

GLW method:

- Both D^0 and \bar{D}^0 are decaying to same CP eigenstate
- Four observables are

$$R_{CP}^\pm = 2 \frac{\Gamma(B^- \to D_{CP}^\pm K^-) + \Gamma(B^+ \to D_{CP}^\pm K^+)}{\Gamma(B^- \to K^-_{fav} K^-) + \Gamma(B^+ \to K^-_{fav} K^+)}$$

$$A_{CP}^\pm = 2 \frac{\Gamma(B^- \to D_{CP}^\pm) - \Gamma(B^+ \to D_{CP}^\pm K^+)}{\Gamma(B^- \to D_{CP}^\pm) + \Gamma(B^+ \to D_{CP}^\pm K^+)}$$

Then,

$$R_{CP}^\pm = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3$$

$$A_{CP}^\pm = \pm 2r_B \sin \delta_B \sin \phi_3 / R_{CP}^\pm$$

- No need of external inputs

ADS method:

- D from a favored amplitude decays to a DCS state
- Two observables are

$$R_{ADS} = \frac{\Gamma(B^- \to [K^+ \pi^-]_D K^-) + \Gamma(B^+ \to [K^- \pi^+]_D K^+)}{\Gamma(B^- \to [K^- \pi^+]_D K^-) + \Gamma(B^+ \to [K^+ \pi^-]_D K^+)}$$

$$A_{ADS} = \frac{\Gamma(B^- \to [K^+ \pi^-]_D K^-) - \Gamma(B^+ \to [K^- \pi^+]_D K^+)}{\Gamma(B^- \to [K^- \pi^+]_D K^-) + \Gamma(B^+ \to [K^+ \pi^-]_D K^+)}$$

Then,

$$R_{ADS} = r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \phi_3$$

$$A_{ADS} = 2r_B r_D (\sin \delta_B + \phi_3) / R_{ADS}$$

- r_D and δ_D from charm factories
Methods to extract ϕ_3: GGSZ

- For self-conjugate multi-body D final states such as $K_S^0\pi^+\pi^-$ \[7\]
- Bin the Dalitz plot symmetrically about $m_2^- = m_2^+$
- Fraction of D events for K_i & \bar{K}_i from $D^{*\pm} \rightarrow D\pi^{\pm}_{\text{slow}}$
- External charm factory inputs needed- avg. cosine (c_i) and sine (s_i) of the strong phase difference between D^0 and \bar{D}^0 decay amplitude i^{th} bin
- $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\bar{D}^0$
- Advantage: r_B and δ_B from single mode

\[7\] PRD 85 (2012) 112014
Constraints on γ/ϕ_3

From all measurements of $B \to D(*)K(*)$ from GLW, ADS, and GGSZ

All data from B factories: Belle & BaBar

+ LHCb run I

ϕ_3 Measurements from Belle, BaBar, and LHCb:

- Belle: $(73^{+13}_{-15})^\circ$
- BaBar: $(69^{+17}_{-16})^\circ$
- LHCb: $(74.0^{+5.0}_{-5.8})^\circ$

Combined: $(73.5^{+4.2}_{-5.1})^\circ$

Figure: Current status of ϕ_3 [1].

→ Dominated by GGSZ

→ PRD 87 (2013) 052015

→ LHCb-CONF-2018-002
SuperKEKB and Belle II experiment

- Improved K_S^0 reconstruction efficiency
- Better K/π separation

Prasanth Krishnan (On behalf of Belle II Collaboration)

Precision measurements of the CKM parameters (Mainly γ/ϕ_3 measurements)
Status of phase 2 of Belle II experiment

- First collision on 25 April 2018 & completes on 17 July
- Accumulated $> 0.5 \text{ fb}^{-1}$ data
- Phase 3 kick-off from early 2019
- $\mathcal{L}_{\text{int}} = 50 \text{ ab}^{-1}$ (50 \times Belle)
- $\mathcal{L}_{\text{peak}} = 8 \times 10^{35} \text{ cm}^{-1}\text{s}^{-1}$ (40 \times KEKB)

Prasanth Krishnan (On behalf of Belle II Collaboration)

Precision measurements of the CKM parameters (Mainly γ/ϕ_3 measurements)
ϕ_3 sensitivity with $B^\pm \rightarrow D(K_S\pi^+\pi^-)K$ decays in Belle II

- Goal to go for precision $\approx 1^\circ$ \cite{8}
- Dominated by $B^\pm \rightarrow D(K_0^0\pi\pi)K^\pm$ mode
 - improvements, even modest, will have large impact on ϕ_3 sensitivity
- **GLW like states:** Interference of $B^- \rightarrow DK^-$, $D \rightarrow K_0^0\rho$
- **ADS like states:** Interference of $B^- \rightarrow DK^-$, $D \rightarrow K^*\pi$
- **Golden mode to determine ϕ_3!**
 - $\delta(\phi_3)^{50 \text{ ab}^{-1}} = 3.0^\circ$ by GGSZ (with 10 fb$^{-1}$ BES III data)
 - $\delta(\phi_3)^{50 \text{ ab}^{-1}} = 1.6^\circ$ when Belle GLW + ADS + GGSZ extrapolated

Further improvements:
- Additional modes
- Improved K_S^0 reconstruction
- $q\bar{q}$ background suppression ($q = u, d, s, c$)

8 J. Brod et. al, arXiv:1412.1446; BELLE2-PUB-DRAFT-2016-009
Results from phase 2 data-K_S^0 reconstruction

- Already resolutions in MC (left) & data (right) are in good agreement

- Inclusive $D^0 \rightarrow K_S^0\pi^+\pi^-$ decays
Rediscovering the **CP modes** from phase 2

- $D^{*\pm} \rightarrow D(K_S^0\pi^0)\pi^{\pm}_{\text{slow}}$ decays

- $D^{*\pm} \rightarrow D(K^+K^-)\pi^{\pm}_{\text{slow}}$ decays
Rediscovery of $D^*\pm \rightarrow D(K^0_S \pi^+ \pi^-)\pi^\pm_{\text{slow}}$ & B from phase 2

- Found ≈ 100 $B \rightarrow D \pi$ candidates, control modes for $B \rightarrow DK$ for ϕ_3!
Summary

- Current precision on ϕ_3 is $\approx 5^\circ$
- With 50 ab$^{-1}$ of Belle II data:
 - $B^\pm \rightarrow D(K^0_S \pi^+ \pi^-)K^\pm$: ϕ_3 sensitivity will improve to 3.0°
 - $B^\pm \rightarrow D(K^0_S \pi^+ \pi^- \pi^0)K^\pm$: ϕ_3 sensitivity will improve to 4.4° [9]
 (See talk by P.K. Resmi)
- Combined ϕ_3 sensitivity is 1.6°

Backup slides
ϕ_3 sensitivity with $B \to D(K_S^0\pi^+\pi^-\pi^0)K$ decays

- Four-body final state9
- $\epsilon \times B$ similar to $D^0 \to K_S^0\pi^+\pi^-$
- Many interesting resonant substructures such as $K_S^0\omega$, $K^{*\pm}\rho^\mp$

- From 1200 events in Belle, $\delta(\phi_3) = 25^\circ$
- Projection to 50 ab$^{-1}$ Belle II sample $\delta(\phi_3) = 4.4^\circ$

9JHEP, 01 (2018) 82