Improved study of $ar{B} ightarrow D^{(*)} au ar{ u}$ with vertexing at Belle II

Sourav Dey

Tel Aviv Iniversity, Israel

On behalf of the Belle II Collaboration

July 14, 2018

sourav dey (TAU, Israel)

FPCP 2018, Hyderabad, India

July 14, 2018 1 / 15

Introduction

- Largest cross section for au production in B decays
- Sensitive to new physics that couples more strongly to heavy fermions (e.g., charged Higgs)
- Important physics at LHCb and Belle II

•
$$R(D^{(*)}) \equiv \frac{Br(\bar{B} \to D^{(*)}\tau\bar{\nu})}{Br(\bar{B} \to D^{(*)}\ell\bar{\nu})}$$
 :currently 3.8 σ from SM prediction[1]

- An important background is $ar{B}
 ightarrow D^{**} \ell ar{
 u}$
 - $D^{**}(\text{Excited charm state}) \rightarrow D^{(*)} + pions/eta(\text{when unobserved})$
- In this talk, we will mostly focuse $\bar{B} \rightarrow D^{**} \ell \bar{\nu}$ background at Belle II using precise vertexing.

[1]:arXiv:1709.00129:Belle

< <>></>

sourav dey (TAU, Israel)

- Belle II is an e⁺e⁻ collider experiment operating primarily at the Y(4S) resonance
- Produces BB
 and τ+τ⁻ pairs, as well as qq
 background
- Phase 2 is currently in progress:
 - All Belle II subdetectors except vertex detector
 - D and B meson "rediscovery" in progress

July 14, 2018 3 / 15

Hadronic recoil-B reconstruction

this image is taken from Sophie Hollitt's talk at ICHEP2018

- Full Event reconstruction is helpful in missing energy studies and reducing backgrounds.
- These study uses Belle II's improved reconstruction algorithm
- This Hadronic full reconstruction is expected to be used for
 - semi-leptonic and semi-tauonic modes for R(D^(*))
 - B
 ightarrow au
 u decays

Missing Energy

$$m^2_{miss} = (p_{ee} - p_{tag} - p_D - p_\ell)^2$$

m^2_{miss} and $ar{B} ightarrow D^{**} \ell ar{ u}$ background

S.	F			$D^{\prime}(\ell/\tau)\nu$		
57 60	· - ·	•		$D(\ell/\tau)\nu$		
0)/8	F			DAg.		
19 40						
ш 20	T. T	1 1	T . T			
20		┺╋╋	$-T_{1}++T_{1}$			
0	* ********	1	PF 1 414 14			
0	-2 () 2	4	6		
$m_{\rm miss}^2 ~({\rm GeV}^2)$						

Simultaneous fit to $\bar{B}
ightarrow D^{*\,*} \ell \bar{
u} + \pi^0$ candidate

D** systematic(%)	R(D)	$R(D^*)$
Relative efficiencies	5.0	2.0
$Br(D^{**} ightarrow D^{(*)}\pi^0/\pi^\pm)$	0.7	0.5
$Br(D^{**} o D^{(*)}\pi\pi)$	2.1	2.6
$Br(ar{B} o D^{**} \ell ar{ u})$	0.8	0.3
${\it Br}(ar{B} o D^{**} au ar{ u})$	1.8	1.7

• $\sim 1.3 - 3.3\%$ error in Belle [2] and LHCb [3] analyses with $\tau \rightarrow \ell \nu \bar{\nu}$

At Belle II ...

2% will already be a large error with 5 ${\rm ab}^{-1}$

sourav dey (TAU, Israel)

Known D^{**} states

State	~Width (MeV)	J^P	Seen/allowed decays
$D_0^*(2400)$	270	0+	$D\pi, D\eta$
$D_1(2420)$	27	1+	$D^*\pi$, $D\pi\pi$, $D^*\pi\pi$
$D_1'(2430)$	380	1+	$D^*\pi$, $D^*\eta$, $D^{(*)}\pi\pi$
$D_2^*(2460)$	50	2+	$D^{(*)}\pi, D^{(*)}\pi\pi, D^{(*)}\eta$
D(2550)	130	0-	$D^*\pi$
D(2600)	90	??	$D^{(*)}\pi$
D*(2640)	< 15	??	$D^*\pi\pi$
D(2750)	65	??	$D^{(*)}\pi$

- Exclusive $\bar{B} \to D^{**} \ell \bar{\nu}$ decays observed only for the 4 lightest resonances
- Non-resonant $\bar{B} \to D^{**} \ell \bar{\nu}$ decays

 m^2_{miss} shape in the fit depends on our assumption. We need a model-independent handle on $\bar{B} \to D^{**} \ell \bar{\nu}$ background in $\bar{B} \to D^{(*)} \tau \bar{\nu}$

Distance between B vertex and lepton

Background:

Distance between B vertex and lepton

Background:

- Belle II spatial resolution is is twice as good as @ BABAR/Belle.
- Pixels @ r = 14mm:
- Nanobeam collision scheme:

- Average τ flies only 45 μ m, less than the Belle II spatial resolution,
- S-B separation weaker than for m_{miss}^2 etc.
- But exploit model independence to check $\overline{B} \rightarrow D^{**} \ell \overline{\nu}$ yield in the analysis fit

Distance between B vertex and lepton

Exploit:

- Reconstruction of recoil B
- Very small beamspot
- Detector spatial resolution

- Not a complete analysis
- Studies only the separation between signal and $ar{B}
 ightarrow D^{**} \ell ar{
 u}$
- Study only $B^- \rightarrow D^0 \tau^- \bar{\nu}(\text{signal}) \ B^- \rightarrow D^{**0} \ell^- \bar{\nu}(\text{background})$
- Assume correct tag-B and signal-B reconstruction
- Misreconstruction background is already handled with other analysis variables
- Results reflect a current snapshot of the reconstruction and analysis software

July 14, 2018 11 / 15

The distance d in $\tau \rightarrow \ell \nu \bar{\nu}$

- Signal-Background separation is partly due to larger signal σ_d, which is due mostly to the softer lepton

- The S-B separation is small
- But sufficient for verifying that the kinematic-variable fit gives the correct fraction of non-\u03c6 vents.

• Approximating signal and background yields from the BABAR analysis scaled to Belle II luminosity (×100), we find that a fit to the *d* distribution gives the prompt-lepton background yield with a ~10% error per mode $(D^0, D^+, D^{*0}, D^{*+})$

The distance d in $au ightarrow 3\pi u$

Simulated background chosen just to test the capability to "see" the τ displacement: $\overline{B} \rightarrow D3\pi 2\nu$ with same kinematic distributions as signal

in background, τ is replaced by $\rho(3s)^-$

sourav dey (TAU, Israel)

July 14, 2018 14 / 15

- $\bar{B} \to D^{(*)} \tau \bar{\nu}$ is an important part of the the physics programs of Belle II and LHCb
- In the $\tau \to \ell \nu \bar{\nu}$ mode, $\bar{B} \to D^{**} \ell \bar{\nu}$ background presents a systematic challenge
- Exploit Belle II's spatial resolution and small beamspot to obtain a new, model-independent handle on this background: distance , between the signal-B decay position and the lepton
- In the $\tau \rightarrow 3\pi\nu$ mode, 3 pions give improved precision on d and additional background suppression from the angle θ between d and the 3-pion momentum vector.
- Even better resolution expected for $\bar{B} \rightarrow \tau \bar{\nu}$. Currently under study.