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Abstract

This study aims at evaluating particle identification approaches.

First, the goodness of the detector yield is measured. Flaws are revealed and possible causes
evaluated. In addition, current and future techniques for combining detector variables are
outlined.

Next, a Bayesian approach to particle identification is discussed. It aims to produce
probabilities of a track belonging to a particle species depending on the received signals.
The process of obtaining conditional probabilities is described in detail. Furthermore,
some extensions to the Bayesian approach are presented and evaluated. Flaws and benefits
are compared using a generic decay.

Finally, a neural network is used to label particle tracks. Different methods to adapt the
weights and various pre-processing steps are evaluated for a simple network. Hereby,
tools from machine learning and statistics are discussed and their application is outlined.
Last but not least, the accuracy of the network on a generic decay is determined and a
comparison with the Bayesian approaches is performed.
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Chapter 1

Introduction

One of the most fundamental challenges in physics is to find the elemental constituents of
matter. In this regard, the Standard Model has proven to be extremely useful. It postulates
six quark species, three charged kinds of leptons, a neutral neutrino for every charged
lepton species and four species of gauge bosons in addition to the Higgs boson. Besides its
achievement in describing the very basic principals of interactions and its experimental
predictions being very precise, there are significant flaws; namely the lack of a description
of gravitation, matter & anti-matter asymmetry and the existence of dark matter and dark
energy.

The violation of CP-symmetry in B mesons had already been observed at the predecessor
experiment Belle. The upgrade of the experiment, named Belle II is designed to search for
new physics phenomena with a massive volume of data in the flavour sector. The volume
is important as rare decays with only small corrections to the Standard Model are difficult
to analyse properly and require high statistics. At the hardware frontier, the detector and
accelerator system were updated. In addition, the software side required adaption to cope
with the massive amount of data.

In order to recognize such small deviations in such large sets of data, a reliable particle
identification is an essential requirement. Its role is to assign particle species labels to
tracks which are identified by the detector system. By doing so, it allows further analysis
of events to better focus on the particles relevant to them.
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Chapter 2

Belle II

2.1 Experiment

The Belle II experiment is performed at the SuperKEKB accelerator located in Tsukuba,
Japan. It is mainly designed to study B mesons. In the experiment, asymmetric electron-
positron-beams are collided with a center of mass energy of

√
s = 10.58 GeV, exactly

on the ϒ(4S) resonance. The two beams, positrons at 4 GeV and electrons at 7 GeV, are
focussed to a narrow crossing section. The additional boost in one direction is used to
measure the B meson lifetimes.

In comparison to the predecessor experiment Belle, the integrated luminosity will be
50 ab−1 and hence 50 times higher. The instantaneous luminosity will be 8 ·1035cm−2s−1

which represents a 40-fold increase.

2.2 Detector system

2.2.1 Overview

The Belle II detector system [1, 2, 3] is a composition of multiple detectors, each measuring
a subset of a particle’s properties. Its design is depicted in Figure 2.1. The inner three
detectors – PiXel Detector (PXD), Silicon Vertex Detector (SVD) and Central Drift
Chamber (CDC) – record the position of traversing charged particles. Hence they are also
called tracking detectors. They are located in a homogeneous magnetic field of 1.5 T.
The innermost detector is the PXD. Together with the SVD which surrounds the PXD, it
is used to reconstruct decay vertices and identify tracks belonging to particles with low-
momenta. The CDC measures the momentum and charge of particles via their curvature
in the magnetic field. Next, the Time Of Propagation (TOP) counter (‘Barrel PID’)

3
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and the Aerogel Ring-Imaging CHerenkov (ARICH) counter (‘Endcap PID’) are used
to identify charged particles via their emission of Cherenkov radiation in the detector.
However, there is no such installation for the backwards-facing endcap of the detector due
to the asymmetric beams. The Electromagnetic CaLorimeter (ECL) identifies photons
and electrons. The outermost detector called K0

L/µ (KLM) is used to identify kaons and
muons.1

Figure 2.1: Side view of the upper half of the Belle II detector. Adapted from [1].

2.2.2 Silicon detectors

The PXD and SVD consist of tiny doped silicon chips which yield the location of electron-
holes created by particles passing through them. The PXD detector uses small pixels while
the SVD detector uses strips of detector material. Therefore, the PXD detector is able to
further differentiate multiple simultaneous tracks while the SVD allows for a faster readout
and is less prone to noise.

2.2.3 Central drift chamber

The CDC which surrounds the PXD and SVD, consists of a collection of field wires and
sense wires located in a volume filled with gas. The sense wires are used to measure the
current produced by electromagnetic showers. The latter is caused by particles passing
through the gas. The wires are close to being parallel to the beampipe but have a slight
twist. This allows the detector to not only have an excellent estimation of the transverse
distance to the beam pipe but also provides information about the longitudinal position.

1If not specifically stated otherwise, the charge conjugate of a particle is implied.
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2.2.4 Barrel and endcap PID

The Cherenkov effect is used to measure the velocity of particles in the TOP and ARICH
detector. Charged particles which travel faster than the speed of light in the medium –
Quartz in case of the TOP detector and aerogel for the ARICH detector – produce light.
The velocity can be calculated by measuring the time of propagation and the angle of the
emitted light.

2.2.5 Electromagnetic calorimeter

The main purpose of the ECL detector is to determine the energy of photons and electrons.
Both particle species excite the medium and create electromagnetic showers. The light of
the de-excitation can subsequently be measured.

2.2.6 K0
L/µ detector

Last but not least, the KLM detector identifies kaons and muons which have passed through
the previous layers of the system. When traversing this detector, the particles pass through
plates serving as electrodes separated by layers of gas in between them. Ionized particles
created by the incident particle are accelerated in this field and subsequently produce a
spark picked up by the detector.

2.3 Interaction with matter

2.3.1 Charged particle interaction

Particles with non-zero charge mainly interact with the medium electromagnetically.
In general, an interaction occurs either by scattering in the electric field of the atom,
polarization of the medium, ionization or excitation. Besides, hadrons may scatter at the
atom itself. Particles and their anti-particles additionally have the ability to annihilate.

The polarization of the medium causes Cherenkov radiation to be emitted. At velocities
below the speed of light in the medium (v < c/n), only boundaries of the particle’s
velocity may be determined. However, at v > c/n the Cherenkov effect can be observed.
The effect occurs due to the information about the charge of the traversing particle not
reaching the medium in front of it soon enough. Hence, the medium behind the particle is
already aligned with the electric field while the medium in front is not. The result is an
electromagnetic wave. The angle between the normal vector of the wave and the track of
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the particle is given by

cos(Θc) =
1

v/c ·n
=

1
β ·n

. (2.1)

This is the effect which the TOP and ARICH detectors exploit.

Particles with low energy traveling through a medium interact predominantly with atomic
electrons. The average energy loss of a particle is described by the Bethe-Bloch formula.
It is given by 〈dE/dx〉 ∝ 1/β2 for velocities of up to about 90% of the speed of light and
is minimal at βγ≈ 4. It describes the momentum dependency of the average energy loss.
However, the actual shape of dE/dx is modelled by the Landau distribution. Note that the
initial assumptions needed for this formula are not met for electrons. This is because both
participants of the interaction belong to the same species and have identical masses. A
dE/dx-measurement is performed at the silicon detectors and the CDC.

The interaction with the electromagnetic field of the nucleus is the dominant cause for the
energy loss of high-energy particles. Energy is radiated away via so called Bremsstrahlung.
The leftover energy decreases exponentially with the distance traversed and is inversely
proportional to the square root of the mass. Therefore it is mainly important for particles
with a low mass, e.g., electrons. The radiation due to this effect is predominantly measured
by the ECL.

2.3.2 Particle identification

At Belle II the detector system differentiates among six long living particle species
K,π,e,µ, p and deuteron.

The dE/dx-measurement from the silicon detectors and the CDC are one of the most useful
measurements. Figure 2.2a showcases this for one of the tracking detectors for momenta
below 1 GeV/c. Distinct patterns may be observed for various particle species below this
momentum threshold. New tracks can now be assigned a likelihood of producing the
measured detector signal given they belonging to a certain particle species. This is done by
postulating a hypothesis for the loss of energy for each such species.

ARICH, TOP and CDC furthermore extend the identification and are able to differentiate
among K,π, p and deuteron but also contribute to e and µ identification. They provide
likelihoods for each signal given a particle hypothesis.

Further out the ECL detector provides a good separation of electrons from other charged
particles above 1 GeV/c. It is able to do so via measuring E/p of the shower. The detector
response is provided by estimating the degree of agreement for different particle hypothesis
with the signal. An exemplary E/p curve is shown in Figure 2.2b. It demonstrates the
observable difference for electrons compared to other particle species but also shows that
no clear separation of pions and muons is possible.
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The KLM detector provides a good separation between muons and non-muons and con-
tributes to the discrimination in the form of different likelihoods as well.

(a) dE/dx (b) E/p

Figure 2.2: Separation of different particle species for various simulated signals. Taken from [4].
Figure a shows the dE/dx means as a function of momentum in the SVD with the color encoding
the number of hits. In order to reduce outliers the lowest 5% and highest 25% of the measurements
of each track are not used in the estimation.
Figure b shows the E/p distribution for different particle species.





Chapter 3

Statistics for Particle Analysis

3.1 Classification functions

The main concepts to compare the goodness of identification methods which are used
throughout the thesis are based on statistical classification functions. However, their use is
not limited to physics, let alone particle physics, but can be found in all fields containing
some form of (binary) classification problem. A classification function is a tool which
separates elements which do not have the desired feature from those which have it. In the
following examples the classifier assumes the role of a discriminator between kaons and
non-kaons.

The most important classification functions are:

• True Positive Rate (TPR): proportion of accepted elements which are correct
relative to all positives

Hence, in the example it is the ratio of identified kaons which actually are kaons in
proportion to the number of kaons in the data.

• True Negative Rate or Specificity (TNR): proportion of rejected elements which are
incorrect relative to all negatives

It is the ratio of non-kaon particles being identified as non-kaons in proportion to the
number of all non-kaon particles.

• False Positive Rate (FPR): proportion of accepted elements which are incorrect
relative to all negatives

This rate represents the fraction of non-kaon particles identified as kaons over the
number of all non-kaons.

9



10 CHAPTER 3. STATISTICS FOR PARTICLE ANALYSIS

• False Negative Rate (FNR): proportion of rejected elements which are correct
relative to all positives

It is the fraction of kaons classified as being non-kaons over the number of all
non-kaons.

• Positive Predicted Value (PPV): proportion of accepted elements which are correct
relative to all accepted

The definition represents the fraction of kaons classified as such over the number of
all tracks classified as kaons but not necessarily actually being a kaon.

3.2 Receiver operating characteristic curve

The Receiver Operating Characteristic (ROC) curve is the TPR plotted over the FPR. The
values on the x- and y-axis go from zero to unity. Each point on the curve represents an
applied selection criterion on the data or a so called cut.

A straight diagonal line connecting the point (0,0) with (1,1) would be the result of
a classifier which is merely guessing the classes of two equally likely yields. A curve
below this diagonal is worse than guessing and anything above is some degree of good.
An optimal curve achieves a high TPR value at a very low FPR. Multiple methods can
therefore be compared by assessing the value and the slope of each method’s TPR in
dependence on the FPR. Figure 3.1 visually underlines the above described relations.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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Figure 3.1: ROC curves for a binary classification problem with each outcome being equally likely.
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Usually the points on the left are of most interest as they represent a selection with only
few false elements contaminating the sample.

3.3 Identification efficiencies

The identification efficiency is defined as the proportion of correctly classified particles of
a class relative to all of the available particles belonging to it. Hence, it directly represents
the TPR. Both terms will be used as synonyms throughout the thesis.

The εPID-matrix is the confusion matrix normalized by row for an exclusive particle
classification. The term ‘exclusive’ in this context denotes that each track is labeled with
exactly one particle hypothesis. Such a classification can be achieved by, e.g., assigning
the track the label of the highest identification variable. This idea is used throughout the
analysis.

The values of the matrix are given by the fraction of particles i classified as j over the true
abundance of particle i. Hence, its values are

εi j =
Ni classified as j

Ai true
. (3.1)

The matrix has the shape of a 6×6 matrix when listing the confusion probabilities for all
six particle species of interest:

εKK εKπ εKe εKµ εK p εKd
επK εππ επe επµ επp επd
εeK εeπ εee εeµ εep εed
εµK εµπ εKe εKµ εK p εµd
εpK εpπ εpe εpµ εpp εpd
εdK εdπ εKe εKµ εK p εdd

 . (3.2)

The definition generalizes to non-normalized matrices, e.g., resulting from non-exclusive
cuts. Although, reading the matrix is less intuitive. Comparing matrices in this case
becomes ambiguous as a particle might belong to multiple classes.

The diagonal of the matrix contains the identification efficiencies of each particle species.
In general, its values should be close to unity while non-diagonal entries should vanish
for a good classification approach. The efficiency of a particle classification is always
normalized by the abundance of the particle and as such each row may have a different
normalization. This is especially important when calculating the overall efficiency which
is the fraction of all correctly classified tracks relative to all available tracks. In this case,
each efficiency on the diagonal has to be weighted with the abundance of the particle.



12 CHAPTER 3. STATISTICS FOR PARTICLE ANALYSIS

3.4 Likelihood

3.4.1 Likelihood ratio

The ratio of likelihoods is commonly used for comparisons of the goodness of different
models. For each hypothesis a likelihood of event xxx occurring is calculated under the
assumption the hypothesis is indeed true. The ratio of the likelihoods of two hypothesis H0
and H1

L(xxx|H0)

L(xxx|H1)
(3.3)

denotes how many times more likely the event xxx is under hypothesis H0 compared to H1.

However, the event xxx need not necessarily take the form of a simple one dimensional
value. It may very well be a composition of, e.g., multiple detector responses. In case
the components xi are independent from one another, the overall likelihood of xxx may
be constructed by multiplying the separate likelihoods of each xi. Hence, L(xxx|H0) is
composed out of multiple likelihoods each assuming H0 to be true:

L(xxx|H0) = ∏
i

Li(xi|H0). (3.4)

In case of event xxx being a detector response, the likelihood L(xxx|H0) is the probability
of measuring a signal given a particle hypothesis is true. Its value is constructed by
multiplying the likelihoods of Li(xi|H0) for each detector i.

3.4.2 Neyman-Pearson

The Neyman-Pearson lemma is useful for evaluating the goodness of separating two models
which have no unknown parameters. It states that a test on the likelihood ratio has the
highest probability of correctly rejecting the original hypothesis at a given significance
level. In other words: A test on the likelihood ratio provides the highest purity at a given
efficiency.

The purity of a selection is defined as the proportion of correctly classified particles relative
to all the identified ones. Its definition is identical to the PPV and as such will be used
synonymously throughout the thesis.

Hence, by plotting the purity over the likelihood ratio, a monotonically increasing function
is to be expected. An idealized version of such a graph is depicted in Figure 3.2. Since
the underlying data may not be assumed to be a continues stream, the likelihood ratio is
binned as it better represents the actual expected shape.
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Figure 3.2: Visualization of a test on the likelihood ratio. A monotonically increasing function
should be expected on the basis of the Neyman-Pearson lemma. The small horizontal lines indicate
likelihood ratio bins, while the curve represents the overall trend. The pion purity and likelihood
ratio is merely used to emphasize the connection to particle physics.

3.5 Neural network

An artificial neural network or simply neural network is a class of algorithms inspired
by the central nervous system of biological beings. Instead of electrical signals passing
from neuron to neuron with complex biochemical processes involved, an artificial neural
network passes on numbers with functions representing neurons.

Despite only employing simplistic building blocks, a neural network is able to model any
continuos function arbitrarily well using one layer and an infinite number of neurons [5].
It is used in hopes of discovering hidden relations among variables and to utilize high
dimensional correlations not otherwise obvious.

A simple approach is to stack multiple layers of neurons (nodes) on top of each other and
to connect the outputs of the previous layer with inputs of the new layer (feed-forward
neural network). A network can be designed arbitrarily deep and provide a multitude of
additional feedback loops (recurrent neural network) and further binning restrictions on
node-inputs (convolutional neural network).

A simple feed-forward network is depicted in Figure 3.3. Each line between two nodes
represents a connection. In other words, the output of the node at the bottom is passed
to the node at the top. The function used for calculating the various values of zi is called
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Figure 3.3: Design of an artificial neural network with three layers, xxx as input, zi as activation
function, V and w as weights and f (xxx) as prediction. Adapted from [6].

ReLU [7] and takes the form of relu(h) = max(0,h). In terms of a biological system it can
be thought of as a boundary which has to be overcome prior to a signal being passed on.

Layers not representing the input or output are called hidden layers (blue nodes from Fig-
ure 3.3). The dimensions of the input (green nodes) are also referred to as features. A
function of a node is called activation function (zi). Learning or training in the context of
neural networks refers to the process of adapting parameters or so called weights (V and w)
of a node. The process of adapting them is performed in batches. The batch size describes
the number of individual data points contained within a batch.1 Each weight is altered
according to a gradient which optimizes the desired function. Often weights include a bias
which is a constant offset not influenced by any previous neuron. The desired function
which is to be optimized is referred to as loss function. It measures the predictive power
of the classification. The duty of the optimizer is to adapt the weights in a way which
minimizes the function, a task usually done via propagating the error back through the
network in a schema called back propagation.

It is important to avoid making the network too dependent on the specific characteristics of
the training data. Otherwise it will simply over-fit the given events without learning the
more general concept. Hence, the neurons of an over-fitted network are perfectly adjusted
to the input which it has already seen. However, the system fails upon receiving anything

1The last batch may be smaller if the total number of samples is not divisible by the batch size.
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it has not already seen in this exact form.

Slight amendments are to be made for a multi-class classification problem. Namely a
different activation function than the previously mentioned ReLU is used in the final layer.
In this thesis the softmax algorithm is employed as last activation. Its response is given by

P(c|x) = exp(x ·wc)
#classes

∑
c′=1

exp(x ·wc′)

, (3.5)

with c representing a class, wc the weights of a class and x the input. The function assigns
values between zero and unity to an element of belonging to class c. Note that the final
output of the network is an exclusive classification into the class with the highest softmax
value.

Additionally the loss function must be adapted to reflect the existence of more than two
classes. In this study the categorical cross entropy is chosen. In information theory, it puts
a measure on the additional information needed to describe the data if deviating from the
true underlying distribution.





Chapter 4

Analysis

4.1 Data sample

In order to validate a particle identification approach and to make sure it is behaving as
expected, it is mandatory to measure the performance on Monte Carlo simulated data.
Events are generated in accordance with the current understanding of the Standard Model.
The software framework EvtGen [8] is used for the purpose of simulating the production
and the decay of the ϒ(4S). After the simulation of the particles and their various properties,
the detector responses are emulated using GEANT4 [9]. Hits in the various components
are simulated and finally the veracity of a track identification is calculated. The process of
matching the identification with the truth is not possible for real data, as the true properties
of a particle are not known in the experiment. However, for testing purposes it is a valuable
tool as it allows to compare the performance of new approaches.

Throughout the thesis several decays are discussed, most notably the decay of the charged
B mesons. The initially created ϒ(4S) decays in (51.4±0.6)% of cases into the charged
B+ and B−. It represents a good sample of the overall particle species which are to be
expected. Observations seen in this generic charged decay are validated using data of the
mixed decay of the B meson into B0 and B̄0 which has a branching ratio of (48.6±0.6)%.
Both samples are generic decays and not specific to one single analysis only. A complete
list of possible decays as well as the above mentioned branching fractions can be found
in [10].

Additionally a decay of the B+B− with non-generic properties is simulated. Its parameters
are outlined in Table 4.1. It allows a fast processing of tests due to its simplicity and helps
in differentiating between decay specific observations and generic ones. The data from this
decay is not used for visualizations in this thesis as it does not translate to an appropriate
application.

As seen in Figure 4.1 the decays are dominated by kaons and pions. However, the overall

17



18 CHAPTER 4. ANALYSIS

Decay Branching ratio
ϒ(4S)→ B+B− 100%

B+→ µ+νµγ 100%
B−→ D0π− 100%

D0→ π+K− 20%
D0→ π0π+K− 20%
D0→ π+π+π−K− 20%
D0→ K−K+ 20%
D0→ π0π+ 20%

Table 4.1: Simulated non-generic decay of the ϒ(4S) with charge conjugated decays implied.

distribution is much more peaked for the charged generic decay. Furthermore the non-
generic sample decay features a lot more µ+ relatively speaking in comparison to the
charged generic decay. The abundances of the mixed generic decay are not explicitly
shown in the figure due to their distinct similarity to the charged decay.
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Figure 4.1: True particle abundances in various simulated decays with particle species by charge
on the x-axis. The particles are sorted by their abundances. NaN stands for an invalid conversion1

from the unique identification code of the particle species to an actual particle.

Falsely identified and poorly defined tracks are removed prior to evaluating the data.
First the transverse momentum is limited to the range of 0.05 GeV/c to 5.29 GeV/c.
This removes very slow and very fast particles because both types provide insufficiently
described tracks. Next, the transverse distance of the closest point of the track to the
point of interaction is limited to 2 cm, respectively 5 cm for the longitudinal distance.
Finally, tracks with no Monte Carlo truth information assigned to them are pruned. Such
tracks are considered falsely reconstructed as a majority of detector hits of the track do

1The error occurs due to the Particle Data Group code in the ROOT file being saved as float32. However,
some codes for particles exceed this limitation. Notably this effects the deuteron and its anti-particle.
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not belong to a simulated particle. Including such false tracks would require the particle
identification process to identify non-particles tracks. Anyway, the effect of tracks with no
truth information does not influence the final result in any significant way. The tracks are
merely excluded for the purpose of clarity.

Each generic decay data set features 100,000 initial BB̄ events and about ten times as many
identified tracks. The non-generic decay contains 10,000 initial events and about 40,000
tracks.

In the following analysis, the generic decay data sets are used. The number of events in one
such set is sufficiently high for the purpose of this study while still providing acceptable
performance.

4.2 Particle identification variables

4.2.1 Legacy PID

The current particle identification approach consists of variables calculated via ratios of
likelihoods. A particle identification is performed by applying a selection criterion on the
variables via a cut.

Prior to version 2 of the Belle II software, the default particle identification approach is
to take the likelihood of the desired particle and divide it by itself plus the likelihood of
the pion. To construct the ID of the pion, the kaon likelihood is used as second summand
in the denominator. Table 4.2 shows the definition of the IDs for each of the six particle
species of interest. In the future it will be replaced by the global PID approach described
in subsection 4.2.2.

pionID Lπ/(Lπ +LK)
kaonID LK/(LK +Lπ)
protonID Lp/(Lp +Lπ)
electronID Le/(Le +Lπ)
muonID Lµ/(Lµ +Lπ)
deuteronID Ld/(Ld +Lπ)

Table 4.2: Definition of the legacy PID variables currently used by default for particle identification.

The identification efficiencies for pions and kaons are high as the approach is able to prop-
erly differentiate between both classes. However, it has obvious limitations in identifying
rare particles as the fraction is dominated by the high abundance of pions.

The differences in the TPR for identifying the pion and the electron can be seen in
Figure 4.2. The pion is used as a representative of a particle species with a high abundance,
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while the electron is used as one of the low abundance particle species. A high efficiency
in selecting particles is achieved quickly. However, the purity of the sample clearly shows
the preference towards the pion identification.
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(a) Pion identification
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Figure 4.2: Particle identification rates for the pion and electron using the legacy PID approach,
each showing the True Positive Rate (ROC curve) and the Positive Predicted Value depending on
the False Positive Rate.

This unbalanced classification is further demonstrated by analyzing the identification
efficiencies. Figure 4.3 shows the row-wise normalized confusion matrix for the legacy
PID approach (see section 3.3). The matrix clearly highlights the bias of the classification
towards kaons and pions. Regardless of the actual particle’s identity, there is a high chance
of it being identified as kaon or pion. Particle species of low abundance such as the electron,
muon, proton and deuteron each have an identification efficiency below 40%.
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Figure 4.3: Matrix of ε values for the legacy particle ID approach. Its values represent the row-wise
normalized confusion matrix. Each particle species is assigned a probability of being identified as
another kind of particle.

4.2.2 Global PID

The global PID approach is the upcoming approach to be used as new default variable
with which to select particle samples. Instead of having the likelihood of the pion fixed in
the denominator of every particle’s ID, it is replaced by the sum over all the other particle
likelihoods. Hence, the global PID of the kaon is now represented by the likelihood of the
kaon divided by the sum of all the likelihoods of every other particle including the kaon
itself. The complete list of the definition for each particle can be seen in Table 4.3.

globalPionID Lπ/Lall
globalKaonID LK/Lall
globalProtonID Lp/Lall
globalElectronID Le/Lall
globalMuonID Lµ/Lall
globalDeuteronID Ld/Lall

Lall = ∑
A∈{π,K,p,e,µ,d}

LA

Table 4.3: Definition of the globalPID variables which is to be used by default for particle
identification in the future.

The approach does not favor kaons and pions but has a more balanced classification. Every
likelihood of a particle species has the same weight in the denominator.
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4.2.3 Goodness of the global PID variables

In order to ensure that the global PID variables are properly defined, a likelihood ratio
test based on the Neyman-Pearson lemma as outlined in subsection 3.4.2 is performed.
The lemma states that the highest purity for a given efficiency is to be expected for each
selection on the likelihood ratio as seen in Figure 3.2.

For the following analysis the data is sampled into ten bins of equal width. The error is
calculated via gaussian error propagation under the assumption that the counting of the
events follows a Poisson distribution. Thereby the assumption is made that the number
of desired particles in a bin and the number of undesired particles are independent. The
error is underestimated for a purity of zero and unity as gaussian error propagation does
not apply.

When applying the previously discussed approach to the data, the goodness of the likeli-
hoods can be validated as seen in Figure 4.4a. The purity of the kaon sample in the bins
increases with a stricter likelihood cut and the uncertainty is low due to the high statistics.
Figure 4.4b shows a completely different picture. The purity peaks at a likelihood ratio of
about 0.35, while the following values are far lower. However, this effect is unique to the
proton and can not be observed in any other of the six particle species of interest. This
means that the likelihoods for the kaon, pion, electron, muon and deuteron are properly
defined and actually behave like probabilities under this test.
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(b) Proton

Figure 4.4: Relative abundance (purity) of various particle samples in equal width likelihood ratio
bins.

In order to understand the observed effect in Figure 4.4b it is important to pin down its cause.
Since the likelihoods are values which are returned by each detector, a natural conclusion
might be that it is caused by one poorly defined detector response. Figure 4.5 shows the
relative abundance of the proton in likelihood ratio bins for various detector components.

The response of the SVD is in perfect agreement with the expectations. However, the CDC
shows the same kink, merely shifted a little to lower values. The TOP is in agreement
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(c) TOP
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(d) ARICH
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Figure 4.5: Relative abundance (purity) of the proton in likelihood ratio equal width bins for all
available detectors. The error in a bin is given by a vertical line.

again. The ARICH, ECL and KLM have insufficient statistics and/or the likelihoods do
not fill the whole range. The error is underestimated at multiple points close to a purity of
zero. Hence, the CDC seems like the only viable cause of the unexpected kink in the plot.
The observed shift to the left is due to the likelihood of a single detector being lower in
general than the likelihood of all detectors combined.

In addition, the pt dependency in the CDC detector is analysed as depicted in Figure 4.6.
The transverse momentum is chosen as it is easily measurable and has a significant
influence on the identification process. As sampling method for pt three equal height bins
are chosen. Using few bins with the same number of particles in each one, provides good
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statistics and allows for balanced comparisons. Analyzing the results, it becomes obvious
that especially low to medium transverse momentum protons contribute to the effect.
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Figure 4.6: Relative abundance of the proton in likelihood ratio bins for different transverse
momentum equal height bins in units of GeV/c for the CDC detector.

Analyzing the dependency of the likelihood on the angle between the beampipe and track
reveals nothing of interest. Although, the angle is important for the identification process
as well.

In conclusion, there seem to be a problem with the proton likelihood returned by the CDC
detector as it does not behave like a likelihood. As part of this work the findings were
communicated to the experts but have yet to be resolved. Overall, it does not affect the
results presented in the following sections as the proton does not play a significant role.

4.3 Bayesian approach

4.3.1 Simple Bayes

The idea for this approach is inspired by the work of the ALICE collaboration as outlined
in [11] and [12].

The goal of the simple Bayesian approach is to weight the probability of a particle by
the abundance of the species in the sample. This process increases the likelihood of a
particle being identified as belonging to a species with a higher abundance and decreases
the likelihood of being identified as belonging to one with a lower abundance.

Bayes theorem provides the mathematical foundation:

P(A|B) = P(B|A) ·P(A)
P(B)

, e.g., P(e|Signal) =
P(Signal|e) ·P(e)

P(Signal)
. (4.1)
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The variable P(e|Signal) is the probability of the track being from an electron given that
Signal is measured. The term of most interest in the equation is the a priori probability
P(A), respectively P(e). As a first simple approach, this variable is now dependant on
the absolute abundance of the particle, e.g., the electron. The probability of detecting the
signal is modeled using

P(Signal) = ∑
A∈{π,K,p,e,µ,d}

P(Signal|A) ·P(A) (4.2)

with P(Signal|A) being the previously discussed likelihood of the signal using the particle
hypothesis A.

The normalization of the a priori probabilities P(A) is not important as it appears in both
the nominator and the denominator of Equation 4.1. Only the proportions between P(A) of
the particle species matter as any common factor within the variables cancels itself out.
Therefore, it makes no difference if the value of the abundance of particle species A is used
directly in place of P(A) in the calculation.

The absolute particle abundance of a sample taken from the Monte Carlo simulation of the
charged decay of the B mesons can be seen in Figure 4.1a. Both particle and anti-particle
abundances for each species are summed up when calculating the values for P(A). In this
example the bias towards pions and kaons is obvious.

The approach depends on the detector yielding decay-agnostic results. Hence, the detector
shall be assumed to always output the likelihood of measuring the received signal given a
specific particle hypothesis regardless of prior probabilities. Additionally, the approach
assumes a bias in the abundance towards one or a few particle species in the data. Otherwise
the a priori probabilities would be flat and result in the same values as those given by the
global PID.

Thankfully, both of those assumptions are fulfilled: The detector can be assumed to behave
independently of the relative particle abundance and the measured data shows a clear
predominance of one or a few particle species. This is not surprising in itself as the
branching fractions are not equally distributed.

4.3.2 Univariate Bayes

The univariate Bayesian approach adds a further dependency in the form of a detector
variable to the a priori probabilities of the Bayesian approach. Hence, instead of having
the a priori probability depend only on the overall abundance of the particle, the univariate
approach additionally varies the values. Namely the abundance is made dependant on, e.g.,
the transverse momentum and the angle between the beampipe and the track Θ. Those two
variables play a significant role in the track fitting process and are dominant factors for the
particle identification process outlined in subsection 2.3.2. Instead of just Θ, the cosine of
it used in order to even out the distribution.
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Figure 4.7: Kaon abundance relative to the pion abundance in equal height bins of pt and cos(Θ)
with horizontal lines indicating the size of each bin.

The relative abundance of one particle species in comparison to the pions is shown in
Figure 4.7. Equal height bins are chosen to enforce good statistics across all bins. The
abundance relative to the pion is used in order to introduce a point of reference. The pion
as reference point is chosen arbitrarily. As previously discussed, the absolute normalization
of the a priori probabilities does not matter. The graphs underline the motivation for using
such an approach as the abundance varies among different bins. Especially the dependency
on pt reveals drastic changes in the relative abundances of the kaon. Overall, binning by
pt reveals a higher contrast and therefore is used as default binning method.

Due to its additional dependency, the univariate Bayesian approach is able to adapt to the
underlying data slightly better in comparison to the Bayesian approach.

4.3.3 Multivariate Bayes

The multivariate approach extends the univariate one by further increasing the number
of free parameters on which the a priori probabilities may depend on. As previously
discussed, both pt and cos(Θ) represent an excellent choice as default variables for said
dependency. Those variables provide a good separation between different particle species
for certain pockets.

Figure 4.8 shows the pt and cos(Θ) of particles. It is important to note the sickle shape
of the distribution. Higher values of the cosine are slightly preferred over lower ones
due to the asymmetry of the beams. Furthermore, the plots highlight the fact that angles
of about 90◦ (cos(Θ) = 0) correspond to the highest transverse momenta. Overall, the
yellow sickle dominates the picture (pions). Only at momenta beyond 2 GeV/c does their
abundance visually thins out. On top of the large pion sickle, a slight separation between
the cyan sickle in the middle (kaons) and the violet sickle on the right (electrons) can
be seen. The separation between kaons and electrons intuitively makes sense since the
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production of a heavier particle2 consumes more phase space which in turn reduces the
amount of momentum it can carry. Analog, the electron has a small mass and therefore
may carry a lot of momentum (not necessarily transverse momentum though). Obviously
this interpretation disregards the fact that particles are not created one by one, but rather in
a complex decay and the phase space being distributed across all daughters. Nevertheless,
it illustrates the observed effect.

Figure 4.8: Scatter plot with tracks represented as opaque points depending on pt and cos(Θ)
which is accompanied by two histograms showing the distribution in transverse momentum and
the cosine of the angle between the beampipe and the track. The color encodes the species of the
particle.

Enabling the a priori probability to depend on those measurements allows the multivariate
Bayesian approach to pick more fine grained priors. The a priori probabilities are estimated
in accordance with the Monte Carlo information for each combination of variables. In order
to achieve this the variable pt and cos(Θ) are each distributed independently across equal
height bins. Next, the abundances of particle species relative to the pion are calculated for
every combination of pt- and cos(Θ)-bins.

As an example, the abundance of kaons relative to the abundance of pions is shown
in Figure 4.9. The graph demonstrates the fact that particle abundances are unevenly
distributed across the pt-, cos(Θ)-plane.

2The mass of the kaon is about a thousand times higher than the mass of the electron.
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Figure 4.9: Relative kaon abundance in intersected bins of the transverse momentum and co-
sine of Θ. The bins are of equal height for each variable separately. The tick labels at the axes
denote the centers of the bins.

4.3.4 Comparison

Figure 4.10 shows a comparison of the legacy PID approach to the simple Bayesian one
for identifying pions. The simple Bayesian approach is able to achieve a higher efficiency
at a low FPR. In addition, the new approach provides a very high purity at a very low FPR
in a range where the legacy PID approach is not even able to identify pions. For a high
FPR both approaches converge into similar shapes with rate ratios close to unity. The
described effect can be seen for all six particle species studied and is not limited to the
pion. However, the comparison of the pion identification is a conservative choice as the
legacy PID approach favors high abundance particles and put it at an advantage.

The improvements in the identification efficiencies are less obvious for an exclusive cut on
the identifying variables. However, in general the simple Bayesian approach is less prone
to confusing particles with one another as seen in Figure 4.11.

The differences are less pronounced in comparison to the global PID variables. Both
approaches misidentify only a low percentage of each particle species. The global PID
approach classifies muons with a higher efficiency while the simple Bayesian approach
is better at identifying pions. The efficiencies for the identification of the kaon, electron
and proton remain more or less unchanged. Both have a lower efficiency for the kaon and
pion identification than the legacy PID approach. Especially the pion identification takes a
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Figure 4.10: Comparison of PPV, TPR and FPR for the simple Bayesian with the legacy PID
approach for identifying pions. The upper graph shows both rates of each approach separately
using different colors, while the lower visualizes the ratio between the PPVs respectively the TPRs.
In order to get a smooth curve for the rate ratios, more values than actually present are interpolated
for both approaches. This interpolation is vetted for points with a high FPR as with sufficiently fine
grained cuts the interpolated values could be achieved. However, the gap between the two leftmost
values can often not be filled with additional cuts. Hence, no interpolation is performed between
the first and second point.

steep decline. Note that the pion is the particle of highest abundance.

Overall, simple Bayes achieves a higher efficiency than the legacy and global PID ap-
proaches. Hence, in general it classifies more tracks correctly as seen in Figure 4.12. The
good agreement between predicted and true particle abundances for the simple Bayesian
approach is of special interest. It emphasizes that the idea behind simple Bayes is taking
effect.

Introducing more degrees of freedom in the form of the univariate Bayesian approach
reveals merely small differences in comparison to the simple Bayesian approach. Fig-
ure 4.13 shows a comparison of the global PID approach with the univariate Bayesian
one. The observed changes are predominantly inherited from the simple Bayesian one.
The slight loss in efficiencies of low abundance particles is more than compensated by the
gain in the pion identification efficiency. Between the simple Bayesian approach and the
univariate one, only changes of one percentage point are seen in the particle identification
efficiencies. The univariate Bayesian approach boosts the kaon and proton identification
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Figure 4.11: Comparison of the row-wised normalized confusion matrix for the legacy PID
approach with the simple Bayesian one.

K e p d
Particle Specie

0

100000

200000

300000

400000

500000

600000

700000

800000

Ab
un

da
nc

e

truth
via legacy PID (absolute, true)
via simple Bayes (absolute, true)

(a) PID, simple Bayes

K e p d
Particle Specie

0

100000

200000

300000

400000

500000

600000

700000

Ab
un

da
nc

e

truth
via global PID (absolute, true)
via simple Bayes (absolute, true)

(b) global PID, simple Bayes

Figure 4.12: Counting from the top the first line of each approach (color coded) represents the
abundance according to the approach, while the lower line represents the number of correctly
classified particles. The particle classification is exclusive.

by this amount at the cost of a reduced efficiency for the muon. A comparison between
the univariate Bayesian approach and the legacy PID is redundant due to the similarity
between the simple Bayesian and univariate Bayesian approach.

Lastly, the multivariate Bayesian approach is tested. The TPR and PPV for every particle
species are very similar to the ones from the univariate approach – neglecting effects below
a maximal relative change of 2%. Negative effects are always below a threshold of 0.4%
while the PPV for the muon identification is slightly boosted by 2% at one point. The
similarity of the multivariate and univariate approach is also reflected in the efficiencies
of the row-wised normalized confusion matrix being virtually identical. Comparing the
approach to the legacy PID, global PID or simple Bayes would duplicate the comparison
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Figure 4.13: Comparison of the row-wised normalized confusion matrix for the global PID
approach with the univariate Bayesian one.

which are outlined for the univariate Bayesian approach.

The global efficiencies over all particle species are displayed in Table 4.4. The efficiencies
underline the quasi non-existing performance improvement of the multivariate Bayesian
approach relative to the univariate Bayesian one. Furthermore, it highlights the previously
discussed overall improvements in the various other approaches.

Particle identification approach Overall identification efficiency
legacy PID (84.4±0.4)%
global PID (79.2±0.2)%
simple Bayes (88.2±0.2)%
univariate Bayes (88.5±0.3)%
multivariate Bayes (88.5±0.3)%

Table 4.4: Mean overall efficiencies of the discussed particle identification approaches with their
statistical error. Errors are estimated using four charged and four mixed generic decay data sets.
The result of the univariate Bayesian approach is calculated using pt-bins and the multivariate
Bayesian approach utilizes pt- and cos(Θ)-bins.

4.3.5 Summary and outlook

In comparison to the legacy PID approach the positive effects introduced by the Bayesian
approaches are mainly due to the inclusion of further particle likelihoods. Both the
global PID approach as well as the Bayesian one decrease the rate at which particles of
high abundance are identified. However, both kinds of approaches in turn increase the
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identification efficiencies of particles with a low abundance significantly. Hereby, the
Bayesian approaches are able to improve upon the global PID as they correctly classify
more pions in the charged generic decay at the cost of a reduced identification rate for
some particles of lower abundance.

The differences among the simple Bayesian, the univariate Bayesian and the multivariate
Bayesian approach are slim. Neither the overall identification efficiencies differ signifi-
cantly, nor does the identification rate of certain particles get boosted. Slight overall gains
are measurable only for the univariate Bayesian approach.

As an outlook, further studies concerning the cell structure of the a priori probabilities
are worth considering. The current approach of selecting equal height bins is shown to
be useful. Nevertheless, it has its limitations. Especially if it is used in conjunction with
multiple other variables. Two intervals on separate variables, each containing a certain
percentage of the data, are not guaranteed to contain the same amount of data if intersected.
A possible extension could be to implement a proper two dimensional clustering using, e.g.,
Voronoi cells instead of interval boundaries. Density based clustering algorithms such as
DBSCAN [13] and OPTICS [14] might also be worth considering. Those approaches could
further extend the a priori probabilities of the two dimensional cells of the multivariate
Bayesian approach to density connected clusters.

Additionally, overlapping boundaries either from the current approach or introduced by
new clustering algorithms could be used to weight multiple a priori probabilities. Instead
of relying on one exclusive boundary, the mean of several a priori probabilities could be
used instead.

4.4 Neural network approach

4.4.1 Design

A neural network consisting of sequential layers is chosen for the following discussion. As
software library, Keras [15] is used with TensorFlow [16] as back-end.

It is found that eight layers perform reasonably well without over-fitting the data. As
for the layers themselves, two different concepts are used. On the one hand a so called
dense layer connects all inputs with each node within the layers, as seen in Figure 3.3. It
usually has a high number of free parameters depending on the function used in a node.
On the other hand a so called dropout layer is employed which – as its name suggests –
drops a certain percentage of inputs by chance. It enforces the weight adaption on only
the remaining nodes. It is commonly used to counteract the effect of having a lot of free
parameters [17] as it randomly disregards values and therefore possibly drops nodes which
would otherwise start to over-fit.
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Three different approaches for the choice of input parameters are evaluated. First the
unaltered global PID variables for each detector are used as a baseline. As second approach
a rich mixture of variables is used, containing information on the momentum, the angle
between the beampipe and the track, the distance of the vertex to the interaction point,
the energy, the curvature of the track, the charge, the legacy PID as well as the global
PID variables for each detector. The third approach uses the same initial inputs as the
second one. However, prior to passing the values to the network, a Principal Component
Analysis [18] (PCA) on the standardized data is performed. The standardization step
centers the data by removing the mean and scales the value so that the standard deviation
becomes unity. This is an important pre-processing step as it counteracts the effect of
having different units and scales for each variable.

The output, i.e., the actual classification, is done in the final step of the network via
the previously discussed softmax algorithm. The gradient of the cross-entropy is used
for weight adaption. In order to get a unique classification, the class with the highest
softmax value is selected. The six long-living particle species are used as targets for the
classification. In addition, a zeroth class is added. It is used for classifying particles which
do not belong to the six other classes. Although this class merely contains a fractional
amount of particles, it is important nevertheless as each track on which the network is
supposed to learn is required to have a target associated with it.

Table 4.5 shows the parametrization of the network. Overall, it has between 1,186 and
2,258 free parameters which are to be adapted, depending on the dimension of the input.
The number is the lowest for the global PID variables as input and the highest if given all
variables.

Layer number Type Activation Bias #Nodes
1 Dense ReLU True 14
2 Dropout (20%)
3 Dense ReLU True 21
4 Dropout (20%)
5 Dense ReLU True 14
6 Dropout (20%)
7 Dense ReLU True 10
8 Dense Softmax True 7

Table 4.5: Design parameters of the neural network.

4.4.2 Performance

The accuracy is used as performance measure. It is the fraction of correctly classified tracks
relative to all available ones. In the discussed case it is synonymous to the overall efficiency.
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Testing and validation is done using a fixed split between training and validation data
(holdout method). It is important to separate those two samples in order to spot networks
which over-fit the data instead of actually ‘learning’. The training data is a random sample
containing 80% the number of tracks as the original data. This does not necessarily need
to actually be 80% of the data as some tracks can be picked multiple times. The remaining
tracks are used for validating the actual learning process. Both training set and validation
set are used to compute the accuracy, however, only the training sample is used to adapt
weights. If the network does not over-fit, the validation accuracy fluctuates around the
training accuracy.

Furthermore, two approaches for sampling the data are analysed. One approach picks
all tracks at random with equal weights and hence in theory has a bias towards particle
species with a higher abundance (biased sampling). The other approach weights tracks in
a way which makes every particle species equally likely to be picked (upsampling). The
idea behind this approach is to force the network to focus less on the particles of high
abundance.

Each training is performed with a batch size of 256. Smaller batch sizes turn out to
perform poorly as the weights are adapted too frequently and the accuracy fluctuates
without increasing overall. The batch size is found via iteratively picking higher values
until finding a rate at which it changes only gradually.

Furthermore, several optimizers – algorithms describing the process of weight adaption –
are tested. In the end Adadelta [19] and Adamax [20] prove to have the best performance
with the least fluctuations in the validation accuracy. Hence, the following discussion will
focus only on those two weight adaption approaches.

Figure 4.14 shows the two optimizers in comparison. Both yield similar results, especially
considering the scaling of the accuracy. It is important to note that both are able to ‘learn’
the classification problem quickly. Within the first epoch they are able to achieve accuracies
of nearly 90%. However, they level off fast. After approximately five to ten iterations
no noticeable change in the training accuracy can be observed. The validation accuracy
follows the general trend of the training accuracy but as expected it shows a lot more
fluctuations. The performance of the training accuracy of the Adadelta algorithm is slightly
better. The validation accuracy on the other hand is almost the same for the two approaches
after about ten epochs.

Figure 4.15 compares the two sampling approaches using the global PID variables as
input. The graph employs the Adamax optimizer, however Adadelta behaves similarly. The
network which receives the tracks of the particles in proportion to their abundance is able to
outperform the network which is trained on data using upsampling. The final difference in
validation accuracy is about three percentage points. Using only the global PID improves
the results slightly for the biased approach in comparison to selecting everything as feature.

In Figure 4.16 the PCA feature selection approach is shown next to the ‘all’ approach for
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Figure 4.14: Accuracy of the neural network using the Adadelta and Adamax optimizer with
everything selected as features. The values are displayed for a biased sampling approach.
Note that the sample on which the network is training does not represent the same sample which is
used for the comparison of the various Bayesian approaches as tracks can be picked multiple times.
Hence, the accuracies given here are not comparable to the ones presented for the other particle
identification approaches.

upsampling. The term ‘all’ in this context denotes that every available variable is selected
as feature. As seen in the graphs, the accuracy increases with the number of components
and easily surpasses the selection of all components. However, further increasing the
number of inputs beyond the depicted value does not reveal significant changes. The
‘all’ approach in combination with upsampling performs poorly. Its training accuracy is
consistently lower than that of any other approach. In general, the accuracy of the networks
which use upsampling are lower in comparison to the biased selection.

Using the PCA components as feature for the biased sampling approach yields very similar
results to just using all variables as feature. In the end the training and validation accuracy
is higher by about one percentage point.

Independent of the sampling method and the feature selection, it can be observed that the
slope at which the accuracy initially increases is high. All approaches are able to structure
the data in a way to improve the classification while training. The number of samples
which the training process requires before the training accuracy levels off is similar for all
approaches. Overall, selecting about 90 principal components yields the highest accuracies
independently of the sampling approach. The best performers for both sampling methods
are close in training accuracy but the validation accuracy is superior for the biased sampling
approach.
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Figure 4.15: Accuracy of the neural network using the Adamax optimizer with the global PID
as features. The values are displayed for a biased sampling approach (left) and the upsampling
approach (right).
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Figure 4.16: Accuracy of the neural network using the Adamax optimizer with selecting all features
(left), the 50 most principal components (center) and the 90 most principal components (right). The
values are displayed for a set using upsampling.

4.4.3 Comparison

The following figures are based on data from a different charged generic decay than the
one which is used for training. By doing so, basically the same distribution of particles is
achieved without reusing training data. The previously trained model is applied to this new
decay using the same parameters.

Figure 4.17 shows the comparison of the identification efficiencies for the best performing
network using biased sampling. Of note is the predominance of particles of high abundance.
The network focusses on kaons and pions. Additionally, protons are identified properly as
well. Electrons, muons and deuterons on the other hand are disregarded completely. By
comparing the neural network to the multivariate Bayesian approach, a harsh comparison
is made as the multivariate Bayesian approach is able to achieve a good classification for
particles of high abundance without disregarding particles of lower abundance. Except for
the proton, the neural network is not able to classify particle of low abundance at all. In
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Figure 4.17: Comparison of the row-wised normalized confusion matrix for the multivariate
Bayesian approach by pt and cos(Θ) and a neural network using the 90 most principal components
as features and employing biased sampling.

this regard, the network is worse in comparison to any other approach.

The identification efficiency of the proton behaves antithetically to the efficiencies of other
particles of low abundance. Of special note is that the deuteron is classified as a proton
as well. Hence, the heavier particles are predominantly categorized as protons. Further
analysis shows that the purity of the selected sample is low. The performed selection
categorizes nearly all true protons as such but it also categorizes a lot of other particles
as being a proton as well. However, in comparison to the Bayesian approach the purity is
higher nevertheless.
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Figure 4.18: Purity over efficiency comparison for the kaon and pion identification using the
multivariate Bayesian approach by pt and cos(Θ), and a neural network using the 90 principal
components as feature and employing biased sampling.
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The classification in Figure 4.18 shows the purity over the efficiency for the kaon and pion
identification. The network is able to outperform the multivariate Bayesian approach as the
point representing the network lies above the line for the Bayesian approach. However, the
improvements are limited to those particle species plus the proton as discussed previously.
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Figure 4.19: Comparison of the row-wised normalized confusion matrix for multivariate Bayesian
approach by pt and cos(Θ), and a neural network using the 90 most principal components as
features and employing fair sampling.

Using upsampling, slightly decreases the pion identification efficiency and increases the
efficiency in identifying kaons as seen in Figure 4.19. Hence, the approach is successful in
adapting the network to treat particle species more evenly but is unsuccessful in enabling
it to identify electrons, muons or deuterons.

A possible cause for the complete disregard of the electron, muon and proton might be that
the network is over-fitting the particles of low abundance. However, this would not explain
the high identification efficiency for the proton. One possible explanation as to why it
still identifies it and classifies the deuterons as proton as well, might be due to them being
comparably heavy. The mass of a particle significantly influences the detector responses
and might be easy to ‘learn’. Furthermore, the batch size might be an additional cause for
the indifference towards pions and kaons as particles of low abundance are not represented
properly in each weight adaption step.

Overall, the classification efficiency of the network using biased sampling is 85.6% com-
pared to 80.1% for the network using upsampling. Those efficiencies can be compared with
further approaches from Table 4.4. Both neural network approaches perform significantly
worse than any of the Bayesian approaches. In comparison to the global PID approach
the neural network approaches perform slightly better at the cost of loosing the ability to
identify anything but kaons, pions and protons. The network which uses biased sampling
additionally outperforms the legacy PID approach in terms of overall efficiency.
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4.4.4 Summary and outlook

The overall efficiencies of the neural network are promising as they reach 80% by just using
a simple design in combination with a high batch size and an appropriate optimizer. How-
ever, a bias in the form of different abundances for different particle species complicates
the learning process significantly. Upsampling does not provide the necessary boost in
performance for particles of low abundance, although it helps against the dominance of the
pion. Certain particles like the proton are classified with a high efficiency despite being of
low abundance. In general, both approaches heavily favor particles with a high abundance.
This is not surprising in itself as the training accuracy and therefore the function which is
to be optimized can be easily improved by disregarding particles of low abundance.

As an outlook, further research in this field seems promising as even a simple neural
network is able to achieve an overall acceptable efficiency. Instead of using a generic
decay, it might make more sense to generate events which produce particles with equal
abundance while otherwise sharing the characteristics of a generic decay. This would
completely circumvent the need for upsampling the data. In addition to an overall good
classification of generic events, such a network could be further trained briefly on decay
specific parameters. In an optimal scenario both approaches could be combined: a decay
specific network being employed whenever possible and a generic classifier being used
as fallback. Furthermore, the unique classification could be extended to a probability
assignment for each particle species. Hereby, the full output of the softmax activation
could be utilized.





Chapter 5

Conclusion

Three main approaches for the particle identification at Belle II are studied.

First, the current and future particle identification variables are described. Hereby, the
goodness of the global PID variables is discussed. Altogether, the likelihood ratios are
properly defined, however, a flaw in the definition of the global PID of the proton is
revealed. The unexpected kink can be traced back to the CDC detector and is especially
dominant for particles with a low to medium transverse momentum.

On the basis of the particle likelihoods, further extensions of the particle identification
utilizing Bayes theorem are discussed. The likelihood of different particles are weighted
by species and are assigned a priori probabilities. At first, these a priori probabilities only
depend on the abundance of a species and show similar results to the global PID approach.
The new approach increases the overall identification efficiencies by increasing the weights
of particles with a high abundance. The introduction of further dependencies of the a priori
probabilities increases the performance only marginally.

Finally, an alternative approach in identifying particles using a neural network is analysed.
Using a simple network provides acceptable performance with overall accuracies in the
range of the previously discussed global PID. Nevertheless, it is heavily biased by particles
of high abundance and upsampling the data shows only limited improvements.

In conclusion, the particle identification can be improved by using a Bayesian approach.
However, particle identification rates for specific species highly depend on the identification
algorithm and may be chosen depending on the decay of interest. Currently, the neural
network does not provide a sufficiently good classification to be used right away, but is an
especially promising candidate for further research.
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Appendix A

Computer Code

The repository for the programs and the thesis is hosted at GitHub:Edenhofer/PID-boost.
It includes the slides for weekly updates, all required graphics for building the PDFs, and
some documentation.

The core of the program is divided into three main parts: the program for generating fig-
ures event_metrics.py, the program event_nn.py used for training the neural network
and the all encompassing library lib.py. Further scripts are relatively small compared
to those three ones. The smaller programs were used, e.g., to simulate a decay, generate
decay data sets or to visualize parameters of a neural network. All important features are
documented via an entry in the program’s help page. Functions in the code itself which
are deemed not self-explanatory are described via a Python docstring.

Probably of most interest is the program event_metrics.py. It was used for all plots
which compare two (or possibly more) approaches. Its parameters are further divided into
groups called actions, sub-options and utility-options. An action induces some
form of calculation or visualization which can be further parameterized via sub-options.
The utility-options group allows for controlling the input and output behavior of the
script.

For example, the parameter --multivariate-bayes would be an action. It can be
further configured by, e.g., specifying the number of cuts to perform on the output of the
classification functions via --ncuts. The number of bins for the variables on which the a
priori probability may depend on, can be set via --nbins. By using -i and -o, the input
and the output location can be configured.

Several of the previously described parameters are valid for other programs in the repository
as well. Sensible default parameters alongside multiple examples can be found in the
readme of the repository.
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