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Abstract Modern high-energy physics (HEP) enter-1

prises, such as the Belle II experiment [1] at the KEK2

laboratory in Japan, create huge amounts of data. So-3

phisticated algorithms for simulation, reconstruction,4

visualization, and analysis are required to fully exploit5

the potential of these data.6

We describe the core components of the Belle II7

software that provide the foundation for the development8

of complex algorithms and their efficient application on9

large data sets.10

1 Belle II Analysis Software Framework11

1.1 Code Structure12

The core software is organized in three main parts: the13

Belle II Software Analysis Framework basf2 contain-14

ing the Belle II-specific code, the externals containing15

third-party code on which basf2 depends, and the tools16

containing scripts for the software installation and con-17

figuration.18

1.1.1 Basf219

The Belle II-specific code is organized into about 4020

packages, such as the base-level framework, one package21

for each detector component, the track reconstruction22
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code, and the post-reconstruction analysis tools. Each 23

package is managed by one or two librarians. 24

The code is written in C++, with the header and 25

source files residing in include and src subdirectories, 26

respectively. By default, one shared library is created 27

per package and installed in a top-level lib directory 28

that is included in the user’s library path. A package’s 29

contents in the following subdirectories are treated as 30

indicated: 31

– modules: The code is compiled in a shared library 32

and installed in a top-level module directory so that 33

it can be dynamically loaded by basf2. 34

– tools: C++ code is compiled in an executable and 35

installed in a top-level bin directory that is included 36

in the user’s path. Executable scripts, usually written 37

in Python, are symlinked to this directory. 38

– dataobjects: The classes define the organization 39

of the data that can be stored in output files. The 40

code is linked in a shared library with dataobjects 41

suffix. 42

– scripts: Python scripts are installed in a directory 43

that is included in the Python path. 44

– data: All files are symlinked to a top-level data 45

folder. 46

– tests: Unit and script tests (see Section 1.2). 47

– validation: Scripts and reference histograms for 48

validation plots (see Section 1.2). 49

– examples: Example scripts that illustrate features 50

of the package. 51

Users of basf2 usually work with centrally installed 52

versions of basf2. At many sites they are provided on 53

CVMFS [2]. Users may also install pre-compiled binaries 54

at a central location on their local systems with the 55

b2install-release tool. If no pre-compiled version is 56
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available for their operating system, the tool compiles57

the requested version from source.58

1.1.2 Externals59

The third-party code on which we rely (besides the op-60

erating system) is bundled in the externals installation.61

It includes basic tools like gcc, python3, and bzip2 to62

not require a system-wide installation of specific ver-63

sions at all sites, as well as HEP specific software like64

ROOT [3], Geant4 [4], and EvtGen [5]. Some packages,65

like LLVM or Valgrind, are optional and not included in66

the compilation of the externals by default. The number67

of external products has grown over time to about 6068

plus 90 Python packages.69

The instructions and scripts to build the externals70

are stored in a git repository. We use a makefile with71

specific commands for the download, compilation, and72

installation of each of the external packages. Copies of73

the upstream installation files are kept on a Belle II74

web server to still have them available if the original75

source disappears. The copies also provide redundancy76

for the download if the original source is temporarily77

unavailable. The integrity of the downloaded files is78

checked using their SHA 256 digest.79

The libraries, executables, and include files of all80

external packages are collected in the common directo-81

ries lib, bin, and include, respectively, so that each of82

them can referenced to with a single path. For the exter-83

nal software that we might want to include in debugging84

efforts, such as ROOT or Geant4, we build a version85

with debug information to supplement the optimized86

version.87

The compilation of the externals takes multiple hours88

and is not very convenient for users. Moreover, some89

users experience problems because of specific configura-90

tions of their systems. These problems and the related91

support effort are avoided by providing pre-compiled92

binary versions. We use docker to compile the exter-93

nals on several supported systems: Scientific Linux 6,94

Enterprise Linux 7, Ubuntu 14.04, and the Ubuntu ver-95

sions from 16.04 to 18.04. The b2install-externals96

tool conveniently downloads and unpacks the selected97

version of the pre-built externals.98

Because the absolute path of an externals installation99

is arbitrary, we invested significant effort to make the ex-100

ternals location-independent. First studies to move from101

the custom Makefile to Spack [6] were done with the aim102

to profit from community solutions for the installation103

of typical HEP software stacks, but relocateability of104

the build products remains an issue.105

1.1.3 Tools 106

The tools are a collection of shell and Python scripts 107

for the installation and setup of the externals and basf2. 108

The tools themselves are set up by sourcing the script 109

b2setup. This script identifies the type of shell and then 110

sources the corresponding sh- or csh-type setup shell 111

script. This script, in turn, adds the tools directory to 112

the PATH and PYTHONPATH environment variables, sets 113

some Belle II specific environment variables, defines 114

functions for the setup or configuration of further soft- 115

ware components, and checks whether a newer version 116

of the tools is available. A pre-defined set of directories 117

is searched for files containing site-specific configura- 118

tions. The Belle II-specific environment variables have 119

the prefix BELLE2 and contain information like reposi- 120

tory locations and access methods, software installation 121

paths, and software configuration options. 122

Installation of externals and basf2 releases is han- 123

dled by the two shell scripts b2install-externals and 124

b2install-release. Usually, they download and un- 125

pack the version-specific tarball of precompiled binaries 126

for the given operating system. If no binary is available, 127

the source code is checked out and compiled. Each ver- 128

sion of the externals and basf2 releases is installed in 129

a separate directory named after the version. For the 130

compilation of the externals, we rely on the presence 131

of a few basic tools, like make or tar, and development 132

libraries with header files. Our tools contain a script 133

that checks that these dependencies are fulfilled and, if 134

necessary, installs the missing ones. 135

The command b2setup sets up the environment for 136

a version-specified basf2 release. It automatically sets up 137

the externals version that is tied to this release, identi- 138

fied by the content of the .externals file in the release 139

directory. An externals version can be set up indepen- 140

dently of a basf2 release with the b2setup-externals 141

command. The version-dependent setup of the externals 142

is managed by the script externals.py in the externals 143

directory. Externals and basf2 releases can be compiled 144

in optimized or debug mode using GCC. In addition 145

basf2 supports the compilation with the Clang or In- 146

tel compilers. These options can be selected with the 147

b2code-option and b2code-option-externals com- 148

mands. A distict subdirectory is used for the option’s 149

libraries and executables. The commands that change 150

the environment of the current shell are implemented as 151

functions for sh-type shells and as aliases for csh-type 152

shells. 153

The tools also support the setup of an environment 154

for the development of basf2 code. The b2code-create 155

command clones the basf2 git repository and checks 156

out the master branch. The environment is set up by 157
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executing the b2setup command without arguments in158

the working directory. If a developer wants to modifly159

one package and take the rest from a centrally installed160

release, the b2code-create command can be used with161

the version of the selected release as an additional argu-162

ment which is stored in the file .release. The sparse163

checkout feature of git is used to get a working direc-164

tory without checked out code. Packages can then be165

checked out individually with the b2code-package-add166

command. The b2setup command sets up the environ-167

ment for the local working directory and the centrally168

installed release. Further tools for the support of the169

development work are described in Section 1.2.170

To make it easier for users to set up an environment171

for the development of post-reconstruction analysis code172

and to encourage them to store it in a git repository, the173

tools provide the b2analysis-create command. This174

requires a basf2 release version as argument and creates175

a working directory attached to a git repository on a176

central Belle II server. The basf2 release version is stored177

in a .analysis file and used by the b2setup command178

for the setup of the environment. The b2analysis-get179

command provides a convenient way to get a clone of an180

existing analysis repository and set up the build system.181

The tools are designed to be able to set up differ-182

ent versions of basf2 and externals and thus must be183

independent of them. For this reason, all binary code is184

placed in the externals. When GCC and Python were185

embedded in the tools originaly to avoid duplication186

in multiple externals versions, this proved difficult to187

manage in case of updates. One of the challenges that188

we overcame in the development of the tools was to189

cope with the different shell types and various user190

environment settings.191

1.2 Basf2 Development Infrastructure and Procedures192

The basf2 code is maintained in a git repository and193

we use Bitbucket Server [7] to manage pull requests.194

This provides us with the ability to review and discuss195

code changes in pull requests before they are merged196

to the main development branch in the git repository.197

Compared to the previous workflow based on subversion,198

it helps the authors to improve the quality of their199

code and allows the reviewers to get a broader view200

of the software. We exploit the integration with the201

Jira [8] ticketing system for tracking and planning the202

development work.203

Developers obtain a local copy of the code with the204

b2code-create tool (see Section 1.1.3). The build sys-205

tem is based on SCons [9] because compared to the HEP206

standard CMake the build process is a one-step proce-207

dure and the build configuration is written in Python, a208

language anyhow used for the basf2 configuration steer- 209

ing files (see Section 2.1.1). The time SCons needs to 210

determine the dependencies before starting the build is 211

reduced by tunes like not checking for changes of the 212

externals. Developers and users usually do not have to 213

provide explicit guidance to the build system, they only 214

have to place their code in the proper subdirectories. 215

However, if the code references a set of linked libraries, 216

the developer indicates this in the associated, typically 217

three-line SConscript file. 218

We implement an access control for git commits to 219

the master branch using a hook script on the Bitbucket 220

server. Librarians, identified by their user names in a 221

.librarians file in the package directory, can directly 222

commit code in their package. They can grant this per- 223

mission to others by adding them to a .authors file. All 224

Belle II members are permitted to commit code to any 225

package in feature or bugfix branches. The merging 226

of these branches to the master via pull requests must 227

be approved by the librarians of the affected packages. 228

We have established coding conventions to achieve 229

some conformity of the code. Because most of them 230

cannot be enforced technically we rely on developers and 231

reviewers to follow them. We do enforce a certain style 232

to emphasize that the code belongs to the collaboration 233

and not to the individual developer. The AStyle tool [10] 234

is used for C++ code and pep8 [11] and autopep8 [12] 235

for Python code. Some developers feel strongly about 236

the code formatting and so we make it easy to follow 237

the rules and reduce their frustration by providing the 238

b2code-style-check tool to print style violations and 239

the b2code-style-fix tool to automatically fix them. 240

The style conformity is checked by the Bitbucket server 241

hook upon push to the central repository. It also rejects 242

files larger than 1MB to prevent an uncontrolled growth 243

of the repository size. To provide feedback to developers 244

as early as possible and to avoid annoying rejections 245

when commits are pushed to the central repository, we 246

implement the checks of access rights, style, and file size 247

also in a hook for commits to the local git repository. 248

To facilitate test-driven development, unit tests can 249

be implemented in each package using Google Test [13]. 250

These are executed with the b2test-units command. 251

Test steering files in all packages can be run with the 252

b2test-scripts command. It compares the output to 253

a reference file and complains if they differ or if the exe- 254

cution fails. The unit and steering file tests are executed 255

by the Bamboo [14] build service, whenever changes are 256

pushed to the central repository. Branches can only be 257

merged to the master if all tests succeed. 258

The tests are also executed by a Buildbot [15] con- 259

tinuous integration system that compiles the code with 260

the GCC, Clang, and Intel compilers and informs the 261
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authors of commits about new errors or warnings. Once262

a day, the Buildbot runs Cppcheck, a geometry overlap263

check, Doxygen and Sphinx [16] documentation gener-264

ation, and a Valgrind memory check. The results are265

displayed on a web page, and the librarians are informed266

by email about issues in their package. A detailed his-267

tory of issues is stored in a MySQL database with a web268

interface that also shows the evolution of the execution269

time, output size, and memory usage of a typical job.270

Higher-level quality control is provided by the val-271

idation framework. It executes scripts in a package’s272

validation subdirectory to generate simulated data273

files and produce plots from them. The validation frame-274

work then spawns a web server to display the plots in275

comparison with a reference as well as results from pre-276

vious validation runs. A software quality shifter checks277

the validation plots produced each night for regressions278

and informs the relevant individual(s) if necessary.279

As a regular motivation for the libarians to review280

the changes in their package, we generate monthly builds.281

For a monthly build, we require all librarians to agree282

on a common commit on the master branch. They signal283

their agreement using the b2code-package-tag com-284

mand to create a git tag for the package at the selected285

commit. It asks for a summary of changes that are then286

included in the announcement of the monthly build. The287

procedure of checking the agreement, building the code,288

and sending the announcement is fully automated with289

the Buildbot.290

An extensive manual validation, including the pro-291

duction of much larger data samples, is done before re-292

leasing a major official version of basf2. Based on these293

major versions, minor or patch releases that require294

less or no validation effort are made. In addition, light295

basf2 releases containing only the packages required to296

analyze mini DST (mDST, see Section 1.5) data can be297

made by the analysis tools group convener. This allows298

for a faster release cycle of analysis tools. Each release is299

triggered by pushing a tag to the central repository. The300

build process on multiple systems and the installation301

on CVMFS is then automated.302

In maintaining or modifying the development infras-303

tructure and procedures, we aim to keep the thresholds304

to use and contribute to the software as low as possi-305

ble and, at the same time, strengthen the mindset of306

a common collaborative project and raise awareness of307

code quality issues. This includes principles like early308

feedback and not bothering developers with tasks that309

can be done by a computer. For example, the tools com-310

plain about style-rule violations already on commits to311

the local git repository and offer programmed correc-312

tions. In this way, users and developers can focus on313

the development of their code and use their time more 314

efficiently. 315

1.3 Modules, Parameters, and Paths 316

The data from the Belle II detector, or simulations 317

thereof, are organized into a set of variable-duration 318

runs, each containing a sequence of independent events. 319

An event records the measurements of the by-products of 320

an electron-positron collision or a cosmic ray passage. A 321

set of runs with similar hardware state and operational 322

characteristics is classified as an experiment. Belle II 323

uses unsigned integers to identify each experiment, run, 324

and event. 325

The basf2 framework executes a series of dynamically 326

loaded modules to process a collection of events. The 327

selection of modules, their configuration, and their order 328

of execution are defined via a Python interface (see 329

Section 2.1.1). 330

A module is written in C++ or Python and derived 331

from a Module base class that defines the following 332

interface methods: 333

– initialize(): called before the processing of events 334

to initialize the module. 335

– beginRun(): called each time before a sequence of 336

events of a new run is processed, e.g., to initialize 337

run-dependent data structures like monitoring his- 338

tograms. 339

– event(): called for each processed event. 340

– endRun(): called each time after a sequence of events 341

of the same run is processed, e.g., to collect run- 342

summary information. 343

– terminate(): called after the processing of all events. 344

Flags can be set in the constructor of a module to indi- 345

cate, for example, that it is capable of running in parallel 346

processing mode (see Section 2.2). The constructor sets 347

a module description and defines module parameters 348

that can be displayed on the terminal with the command 349

basf2 -m. 350

A module parameter is a property whose value (or 351

list of values) can be set by the user at run-time via the 352

Python interface to tailor the module’s execution. Each 353

parameter has a name, a description, and an optional 354

default value. 355

The sequence in which the modules are executed is 356

stored in an instance of the Path class. An integer result 357

value that is set in a module’s event() method can be 358

used for a conditional branching to another path. The 359

processing of events is initiated by calling the process() 360

method with one path as argument. The framework 361

checks that there is exactly one module that sets the 362

event numbers. It also collects information about the 363
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number of module calls and their execution time. This364

information can be printed after the event processing365

or saved in a ROOT file.366

Log messages are managed by the framework and367

can be passed to different destinations, like the terminal368

or a text file, via connector classes. Methods for five369

levels of log messages are provided:370

– FATAL: for situations where the program execution371

cannot be continued.372

– ERROR: for things that went wrong and must be fixed.373

If an error happens during initialization, the event374

processing is not started.375

– WARNING: for potential problems that should not be376

ignored and only accepted if understood.377

– INFO: for informational messages that are relevant378

to the user.379

– DEBUG: for everything else, intended solely to provide380

useful detailed information for developers. An integer381

debug level is used to control the amount of debug382

messages.383

The log and debug levels can be set globally, per package,384

or per module.385

1.4 Data Store and I/O386

1.4.1 Data Store387

Modules exchange data via the Data Store that provides388

a globally accessible interface to objects or arrays of389

objects. Objects (or arrays of objects) are identified by390

name that, by default, corresponds to the class name.391

By convention arrays are named by appending an “s”392

to the class name. Users may choose a different name to393

allow different objects of the same type simultaneously.394

The lifetime of objects in the Data Store can have either395

permanent or event-level durability. In the latter case,396

the framework clears them before the next data event397

is processed. Client code can add objects to the Data398

Store, but not remove them.399

Within one event, two distict arrays of objects in the400

Data Store can have weighted many-to-many relations401

between their elements. For example, a higher-level ob-402

ject might have relations to all lower-level objects that403

were used to create it. Each relation carries a real valued404

weight that can be used to attach quantitative informa-405

tion such as the fraction a lower-level object contributed.406

The relationship information is stored in a separate ob-407

ject; no direct pointers appear in the related objects.408

This allows us to strip parts of the event data, without409

affecting data integrity: if one side of a relationship is re-410

moved, the whole relation is dropped. The relations are411

implemented by placing a RelationArray in the Data412

Store that records the names of the arrays it relates, as 413

well as the indices and weights of the related entries. 414

As the Data Store permits only appending entries to 415

an array, the indices are preserved. The name of the 416

relations object is formed by placing “To” between the 417

names of the related arrays. 418

The interface to objects in the Data Store is im- 419

plemented in the templated classes StoreObjPtr for 420

single objects and StoreArray for arrays of objects, 421

both derived from the common StoreAccessorBase 422

class. They are constructed with the name identifying 423

the objects, or without any argument, in which case the 424

default name is used. Access to the objects is type-safe 425

and transparent to the event-by-event changes of the 426

Data Store content. To make the access efficient, the 427

StoreAccessorBase translates the name to a pointer 428

to an DataStoreEntry object in the Data Store on first 429

access. The DataStoreEntry object is valid for the life- 430

time of the job and contains a pointer to the currently 431

valid object, which is automatically updated by the 432

Data Store. Access to an object in the Data Store thus 433

requires an expensive string search only on the first ac- 434

cess, and then a quick double dereferencing of a pointer 435

on subsequent accesses. 436

The usage of relations is simplified by deriving the 437

objects in a Data Store array from RelationsObject. 438

It provides methods to directly ask an object for its re- 439

lations to, from, or with (ignoring the direction) other ob- 440

jects. Non-persistent data members of RelationsObject 441

and helper classes are used to make the relations lookup 442

fast by avoiding regeneration of information that was 443

already obtained earlier. 444

We also provide an interface to filter, update or 445

rebuild relations when some elements are removed from 446

the Data Store. It is also possible to copy whole or 447

partial arrays in the Data Store, where new relations 448

between the original and copied arrays are created, and, 449

optionally, the existing relations of the original array 450

are copied. 451

1.4.2 I/O 452

We use ROOT for persistency. This implies that all 453

objects in the Data Store must have a valid ROOT 454

dictionary. The RootOutputModule writes the content 455

of the Data Store with permanent and event durability 456

to a file with two separate TTrees, with a branch for 457

each Data Store entry. The selection of branches, the 458

file name, and some tree configurations can be specified 459

using module parameters. The corresponding module 460

for reading ROOT files is the RootInputModule. 461

The RootOutputModule writes an additional object 462

named FileMetaData to the permanent-durability tree 463
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of each output file. It contains a logical file name, the464

number of events, information about the covered exper-465

iment/run/event range, the steering file content, and466

information about the file creation. The file meta data467

also contains a list of the logical file names of the input468

files, called parents, if any.469

This information is used for the index file feature.470

A RootInputModule can be asked to load in addition471

to the input file also its ancestors up to a generational472

level given as a parameter. A file catalog in XML for-473

mat, created by the RootOutputModule, is consulted to474

translate logical to physical file names for the ancestor475

files. The unique event identifier is then used to locate476

and load the desired event. With the index file feature,477

one can produce a file containing only EventMetaData478

objects (see next section) of selected events, and then479

use this as the input file in a subsequent job to access480

the selected events in its parents. File-reading perfor-481

mance is not optimal, however, since the usual structure482

of TTrees in ROOT files is not designed for sparse event483

reading. The index file feature can be used also to add484

objects to an existing file without copying its full content485

or to access lower level information of individual events486

for display or debug purposes.487

The Belle II data-acquisition system uses a custom488

output format with a sequence of serialized ROOT ob-489

jects to limit the loss of events in case of malfunctions.490

The files in this format are ephemeral; they are converted491

to standard ROOT files for permanent storage.492

1.5 Event Data Model493

The Data Store implementation makes no assumption494

about the event data model. It can be chosen flexibly495

to match the specific requirements. In basf2, the full496

event data model is defined dynamically by the creation497

of objects in the Data Store by the executed modules.498

The only mandatory component is the EventMetaData499

object. It uniquely identifies an event by its event, run,500

and experiment numbers and a production identifier501

to distinguish simulated events with the same event,502

run, and experiment numbers. The other data members503

store the time when the event was recorded or created,504

an error flag indicating problems in data taking, an505

optional weight for simulated events, and the logical file506

name of the parent file for the index file feature.507

The format of the raw data is defined by the detector508

readout. Unpacker modules for each detector compo-509

nent convert the raw data to digit objects. In case of510

simulation, the digit objects are created by digitizer511

modules from energy depositions that are generated by512

Geant4 and stored as detector-specific SimHits. The513

use of a common base class for SimHits allows for a514

common framework to add energy depositions from sim- 515

ulated machine-induced background to that of simulated 516

physics signal processes. This is called background mix- 517

ing. 518

The output of the reconstruction consists mainly 519

of detector-specific objects. In contrast, the RecoTrack 520

class is used to manage the pattern recognition and track 521

fitting across multiple detectors. It allows us to add hits 522

to a track candidate and is interfaced to GenFit [17,18] 523

for the determination of track parameters. 524

The subset of reconstruction dataobjects to be 525

used in physics analyses, called mini data summary 526

table (mDST), is explicitly defined in the steering file 527

function add mdst output. It consists of the following 528

classes: 529

– Track: the object representing a reconstructed tra- 530

jectory of a charged particle, containing references 531

to track fit results for multiple mass hypotheses and 532

a quality indicator that can be used to suppress fake 533

tracks. 534

– V0: candidate of a K0
S or Λ decay or of a converted 535

photon, with references to the pair of positively and 536

negatively charged daughter tracks and track fit 537

results. The vertex fit result is not stored as it can 538

be recuperated at analysis level. 539

– TrackFitResult: the result of a track fit for a given 540

particle hypothesis, consisting of five helix parame- 541

ters, their covariance matrix, a fit p-value, and the 542

pattern of layers with hits in the vertex detector and 543

drift chamber. 544

– PIDLikelihood: the object that stores, for a charged 545

particle identified by the related track, the likelihoods 546

for being an electron, muon, pion, kaon, proton or 547

deuteron from each detector providing particle iden- 548

tification information. 549

– ECLCluster: reconstructed cluster in the electromag- 550

netic calorimeter, containing the energy and posi- 551

tion measurements and their correlations, along with 552

shower-shape variables; a relation is recorded if the 553

cluster is matched to an extrapolated track. 554

– KLMCluster: reconstructed cluster in the K0
L and 555

muon (KLM) detector, providing a position measure- 556

ment and momentum estimate with uncertainties; a 557

relation is recorded if the cluster is matched to an 558

extrapolated track. 559

– KlId: candidate for a K0
L meson, providing particle 560

identification information in weights of relations to 561

KLM and/or ECL clusters. 562

– TRGSummary: information about level 1 trigger deci- 563

sions before and after prescaling, stored in bit pat- 564

terns. 565
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– SoftwareTriggerResult: the decision of the high-566

level trigger, implemented as a map of trigger names567

to trigger results.568

– MCParticle: the information about a simulated par-569

ticle (in case of simulated data), containing the570

momentum, production and decay vertex, relations571

to mother and daughter particles, and information572

about struck detector components; relations are cre-573

ated if simulated particles are reconstructed as tracks574

or clusters.575

The average size of an mDST event is a critical576

performance parameter for the storage specification and577

for the I/O-bound analysis turnaround time. Therefore,578

the mDST content is strictly limited to information that579

is required by general physics analyses. In particular,580

no raw data information is stored. For detailed detector581

or reconstruction algorithm performance studies as well582

as for calibration tasks a dedicated format, called cDST583

for calibration data summary table, is provided.584

2 Central Services585

2.1 Python Interface and Jupyter Notebooks586

2.1.1 Python Interface587

To apply the functionality described in Section 1 to a588

data processing task – at the most basic level, arranging589

appropriate modules into a path and starting the event590

processing – basf2 provides a Python interface. Typi-591

cally, users perform tasks using Python scripts (called592

“steering files” in this context), but interactive use is also593

supported. Figure 1 shows a minimal example for the594

former, while Section 2.1.2 discusses applications for the595

latter.596

#!/ usr / bin / env python3
# −∗− coding : utf−8 −∗−

# Generate 100 events with event numbers 0 to 99←↩
that contain only the event meta data .

import basf2
main = basf2 . create_path ( )
main . add_module ( ’ EventInfoSetter ’ , evtNumList←↩

=[100 ] )
basf2 . process ( main )

Fig. 1: An example of a basf2 steering file.

Python is a very popular language and provides an597

easy-to-understand syntax that new users can rather598

quickly deploy to use the framework efficiently. It allows599

us to harness the power of a modern scripting language 600

for which copious (third-party) packages are available. 601

We exploit this, for example, to build a higher-level 602

framework for performing typical analysis tasks in a 603

user-friendly way. The docstring feature of Python is 604

used to generate documentation web pages with Sphinx. 605

We use Boost.Python [19] to expose the basf2 frame- 606

work features in Python. While steering files can be 607

executed by passing them directly to the Python in- 608

terpreter, we also provide the basf2 executable as an 609

alternative to add framework-specific command line ar- 610

guments. Among these are options to print versioning 611

information, list available modules and their description, 612

and specify input or output file names. 613

Besides the implementation of modules in C++, the 614

framework allows the user to execute modules written 615

in Python. This makes it even easier for users to write 616

their own module code because it can be embedded in 617

the steering file. It can also facilitate rapid prototyping. 618

Even so, the modules provided by the framework are 619

written in C++ (with a few exceptions for tasks that are 620

not performance critical) to profit from the advantages 621

of compiled code. 622

Using PyROOT [20], Python access to the Data 623

Store is provided by classes resembling the StoreObjPtr 624

and StoreArray interfaces. In an equivalent way, inter- 625

face classes provide access to conditions data, such as 626

calibration constants (see Section 2.4). 627

A feature that facilitates development and debugging 628

is the possibility to interrupt the event processing and 629

present an interactive Python prompt. In the interactive 630

session based on IPython [21], the user can inspect or 631

even modify the processed data. 632

2.1.2 Jupyter Notebooks 633

Typical HEP user-level analyses for processing large 634

data samples are mostly based on the execution of small 635

scripts written in Python or ROOT macros that call 636

complex compiled algorithms in the background. Jupyter 637

notebooks [22] allow a user to develop Python-based ap- 638

plications that bundle code, documentation and results 639

(such as plots). They provide an enriched browser-based 640

working environment that is a front-end to an interac- 641

tive Python session that might be hosted centrally on 642

a remote high-performance computing cluster. Jupyter 643

notebooks include convenient features like syntax high- 644

lighting and tab-completion as well as integration with 645

data-analysis tools like ROOT, matplotlib [23] or pan- 646

das [24]. 647

The integration of Jupyter into basf2 simplifies the 648

process of creating and processing module paths within 649

Jupyter notebooks and represents a natural next step be- 650
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yond the integration of Python into basf2. The package651

for the interplay between Jupyter and basf2 is encap-652

sulated into an agnostic hep-ipython-tools project [25]653

that can be used with the framework code of other654

experiments.655

The processing of one or more paths is decoupled656

into an abstract calculation object, which plays well657

with the interactivity of the notebooks, because mul-658

tiple instances of this calculation can be started and659

monitored, while continuing the work in the notebook.660

Abstracting the basf2 calculation together with addi-661

tional interactive widgets and convenience functions for662

an easier interplay between juypter and basf2 not only663

improves the user experience, but also accentuates the664

narrative and interactive character of the notebooks.665

The decoupling of the calculations is achieved us-666

ing the multiprocessing library and depends heavily on667

the ability to steer basf2 completely from the Python668

process. Queues and pipelines are used from within the669

basf2 modules to give process and runtime-dependent670

information back to the notebook kernel. The interactive671

widgets are created using HTML and JavaScript and dis-672

play information on the modules in a path, the content673

of the data store or the process status and statistics.674

2.2 Parallel Processing675

For the past several years, the processing power of CPUs676

has grown by increasing the number of cores instead of677

the single-core performance. To efficiently use modern678

CPU architectures, it is essential to be able to run679

applications on many cores.680

The trivial approach of running multiple applica-681

tions, each using one core, neglects the sharing of many682

other resources. In particular, the size of and the access683

to the shared memory can be bottlenecks. The amount684

of memory per core on typical sites used by HEP exper-685

iments has remained in the range of 2 to 3 GB for many686

years.687

A more efficient shared use of memory can be achieved688

by multi-threaded applications. The downside is, that689

this imposes much higher demands and limitations on690

the code to make it thread safe. While the development691

of thread-safe code can be assisted by libraries, it re-692

quires a change in the style how code is written. Few,693

if any, Belle II members have the skills to write thread-694

safe code. Developing a multi-threaded framework would695

require educating on the order of a hundred developers.696

In our solution, we have implemented a parallel pro-697

cessing feature, where processes are started by forking.698

As the processes have independent memory address699

spaces, developers do not have to care about thread-safe700

data access. Still, we can significantly reduce the memory 701

consumption of typical jobs because of the copy-on-write 702

technology used by modern operating systems. A large 703

portion of the memory is used for the detector geome- 704

try. Because it is created before the forking and does 705

not change during the job execution, multiple processes 706

share the same geometry representation in memory. Fig- 707

ure 2 illustrates the scaling of a basf2 job’s execution 708

time with increasing number of parallel processes on a 709

16-core machine. For both event reconstruction scenar- 710

ios, one with smaller (e+e−) and the other with larger 711

(BB̄) event sizes, the scaling is either equal or very close 712

to the theoretical linear expectation until the number 713

of parallel processes exceeds the number of cores. The 714

minor loss in efficiency when the number of processes 715

reaches the number of cores can be attributed to shared 716

resources, like level-3 caches, used by all processing cores. 717

The memory saving is illustrated in Figure 3. 718

Each module indicates via a flag (see Section 1.3) to 719

the framework, whether it can run in parallel processing 720

mode, or not. Notably, the input and output modules 721

that read or write ROOT files cannot. As the input 722

and output modules are usually at the beginning and 723

end of a path, respectively, the framework analyzes the 724

path and splits it into three sections. The first and 725

last section are each executed in a single process. Only 726

the middle section is executed in multiple processes. 727

The beginning of the middle section is defined by the 728

first module that can run in parallel processing mode. 729

The next module that is not parallel-processing capable 730

defines the beginning of the third section. 731

To transfer the event data among these processes, 732

dedicated transmitter and receiver modules are added 733

at the end or beginning of the sections. A transmitter 734

module serializes the event data using the streamers gen- 735

erated by ROOT and writes it to a ring buffer in shared 736

memory. A receiver module reads the event data and 737

deserializes it, so that it becomes available in the Data 738

Store of the process. The interprocess communication 739

is based on System V shared memory. A replacement 740

of the custom solution by ZeroMQ [26] is available for 741

evaluation. 742

This parallel processing scheme works well if the com- 743

putational effort of the modules in the middle section 744

dominates over the input, output, and (de)serialization 745

load. For high-throughput jobs with little computational 746

demands, the serialization and deserialization impose a 747

sizable penalty, so that the multiple cores of a CPU are 748

not optimally exploited. For typical Belle II reconstruc- 749

tion jobs and event data sizes, we have verified with 750

up to 20 concurrent processes, which is well within the 751

envelope of parallelism we currently foresee to deploy 752

during the online reconstruction or grid simulation and 753
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parallel processes measured on a 16-core machine for
smaller (e+e−) and larger (BB̄) events. As reference,

the expected perfect scaling is plotted as the dotted line,

assuming a 20% gain in the hyper-threading domain.

The measured speedup when using sleep instructions is

plotted in green.
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Fig. 3: Proportional memory usage of parallel processing

jobs for BB̄ events. The graph for e+e− events is very

similar. For comparison, the memory usage of a single-
core job times the number of processes is plotted as the

dotted line.

reconstruction, that the input and output processes do 754

not become a bottleneck. 755

2.3 Random Numbers 756

Belle II will generate very large samples of simulated 757

data for a broad array of physics processes to provide 758

signal and background expectations with a precision 759

that is much better than available in real data. We have 760

to ensure that this production is not hindered by issues 761

with the pseudorandom number generator (PRNG). A 762

PRNG is a deterministic algorithm to generate numbers 763

whose properties approximate the properties of random 764

numbers while being completely deterministic. It has 765

an internal state that determines both the next random 766

number and the next internal state uniquely. If the 767

internal state is known at some point, all subsequent 768

random numbers can be reproduced. 769

For Belle II we chose xorshift1024* [27], a newer 770

generation PRNG based on the Xorshift algorithm pro- 771

posed by Marsaglia [28]. It generates 64-bit random 772

numbers with a very simple implementation, operates 773

at high speed, and passes all well-known statistical tests 774

with an internal state of only 128 bytes (1024 bits). This 775

PRNG is used consistently throughout the framework 776

for all purposes from event generation to simulation 777

down to analysis. 778

To ensure that events are independent, we seed the 779

state of the random generator at the beginning of each 780

event using an common, event-independent seed string 781

together with information uniquely identifying the event. 782

To minimize the chance for seed collisions between dif- 783

ferent events, we calculate a 1024 bit SHAKE256 [29] 784

hash from this information that we use as the generator 785

seed state. This also allows us to use a common seed 786

string of arbitrary length. 787

The small generator state also allows us to pass the 788

random generator for each event along with the event 789

data in parallel-processing mode to achieve reproducibil- 790

ity independently of the number of worker processes. 791

2.4 Conditions Data 792

In addition to event data and constant values, we have 793

a number of settings or calibrations that can evolve 794

over time but not on a per-event rate. These are called 795

“conditions” and their values are stored in a central 796

Conditions Database (CDB) [30]. 797

Conditions are divided into payloads. Each payload 798

is one atom of conditions data and has one or more 799

“intervals of validity” (IoV) – the run interval in which 800

the payload is valid. One complete set of payloads and 801
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their IoVs are identified by a global tag. There can be802

multiple global tags to provide, for example, different803

calibration versions for the same run ranges. When a804

new global tag is created, it is open for modifications805

so that assignments of IoVs to payloads can be added806

or removed. Once a global tag is published, it becomes807

immutable.808

The CDB is implemented as a representational state809

transfer (REST) service. Communication is performed810

by standard HTTP using XML or JSON data. By design,811

the CDB is agnostic to the contents of the payloads and812

only identifies them by name and revision number. The813

integrity of all payloads is verified using a checksum of814

the full content. Clients can query the CDB to obtain815

all payloads valid for a given run in a given global tag.816

The choice of a standardized REST API makes817

the client implementation independent of the actual818

database implementation details and allows for a sim-819

ple and flexible implementation of clients in different820

programming languages.821

In addition to communication with the CDB, we822

have implemented a local database backend that reads823

global tag information from a text file and uses the824

payloads from a local folder. This allows us to use the825

framework without connection to the internet, or if the826

CDB is not reachable, provided the local copies of the827

necessary payloads exist. This local database is created828

automatically in the working directory for all payloads829

that are downloaded from the server during a basf2830

execution.831

Multiple metadata and payload sources can be com-832

bined. By default, global tags are obtained from the833

central server and payloads from a local database on834

CVMFS which is automatically updated in regular in-835

tervals. If a payload is not found in any local folder, it836

is downloaded directly from the server. If the central837

database is not available, the global tag is taken from838

the local database on CVMFS.839

2.4.1 Access of Conditions Objects840

By default, the framework assumes that payload con-841

tents are serialized ROOT objects and manages the842

access to them, but direct access to payload files of any843

type is possible, too. User access to conditions objects is844

provided by two interface classes, one for single objects845

called DBObjPtr and one for arrays of objects called846

DBArray. These classes reference DBEntry payload ob-847

jects in the DBStore global store. Multiple instances of848

the interface class point to the same object. It is iden-849

tified by a name that is, by default, given by the class850

name. Access to the conditions objects is available in851

C++ and in Python. The class interfaces are designed852

to be as close as possible to the interface for event-level 853

data (see Section 1.4.1), so that users can use the same 854

concepts for both. 855

The interface classes always point to the correct pay- 856

load objects for the current run; updates are transparent 857

to the user. If the user needs to be aware when the object 858

changes, they can either manually check for changes, 859

or register a callback function for notification. Figure 4 860

visualizes the relations among the entities. 861

The CDB handles payloads at run granularity, but 862

the framework can transparently handle conditions that 863

change within a run: if the payload is a ROOT ob- 864

ject inheriting from the base class IntraRunDependency, 865

the framework will transparently update the conditions 866

data on event granularity. Different specializations of 867

IntraRunDependency can be implemented: for example, 868

changing the conditions depending on event number or 869

time stamp. 870

2.4.2 Creation of Conditions Data 871

To facilitate easy creation of new conditions data, for ex- 872

ample during calibration, we provide two additional pay- 873

load creation classes, DBImportObj and DBImportArray. 874

They have a interface very similar to DBObjPtr and 875

DBArray. Users instantiate one of the creation classes, 876

add objects to them and commit them to the configured 877

database with a user-supplied IoV. This includes sup- 878

port for intra-run dependency. The capability to use a 879

local file-based database allows for easy preparation and 880

validation of new payloads before they are uploaded to 881

the CDB. 882

2.4.3 Management of CDB Content 883

To simplify the inspection and management of the CDB 884

contents, we provide the b2conditionsdb tool that uses 885

the requests package [31] for communication with the 886

CDB API. It allows users to list, create and modify 887

global tags, as well as to inspect their contents. It can 888

be used to download a global tag for use with the local 889

database backend and to upload a previously prepared 890

and tested local database configuration to a global tag. 891

2.5 Geometry and Magnetic Field 892

In Belle II, we use the same detailed geometry descrip- 893

tion for simulation and reconstruction. It is implemented 894

using the Geant4 geometry primitives. A central service 895

is responsible for setting up the complete geometry: each 896

sub-detector registers a creator that is responsible for 897

defining and configuring its detector-specific volumes as 898

one top-level component of the geometry. 899
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All parameters for the geometry description are pro-900

vided by payloads in the conditions database. For the901

creation of these payloads, a special operation mode is902

available that reads the geometry parameters from an903

XML file using libxml2 [32]. The sub-detector specific904

descriptions are joined from XML files in the detector905

packages using XInclude [33] directives. The loading906

from XML includes automatic unit conversion of val-907

ues that have a “unit” attribute and accomodates the908

definition of new materials and their properties.909

Instead of using the conditions database, the geome-910

try can be created directly from XML. This allows one911

to edit the XML files to adapt the geometry description912

as necessary and test the changes locally before creating913

the payloads and uploading them to the database.914

2.5.1 Testing the Geometry Description915

Developing a functional material and geometry descrip-916

tion is quite cumbersome, because, usually, complex917

construction drawings need to be converted from CAD918

or paper into code that places the separate volumes with919

their correct transformation. To assist the sub-detector920

developers with this task, we developed a set of tools to921

supplement the visualization tools provided by Geant4.922

Firstly, we run an automated overlap check that uses 923

methods provided by Geant4 to check for each volume, if 924

it has intersections with any of its siblings or its parent. 925

This is done by randomly creating points on the surface 926

of the volume under question and checking if this point 927

is either outside the parent, or inside any of the siblings. 928

This check is performed on a nightly basis and repeated 929

with more samples points prior to major releases, or if 930

large changes to the geometry have been made. 931

Secondly, we provide a module to scan the material 932

budget encountered when passing through the detector. 933

This module tracks non-interacting, neutral particles 934

through the detector, and records the amount of ma- 935

terial encountered along the way. It can be configured 936

to scan the material in spherical coordinates, in a two- 937

dimensional grid, or as a function of the depth along 938

rays in a certain direction. The output is a ROOT file 939

containing histograms of the traversed material. These 940

histograms can be created for each material or each 941

detector component. In particular, the material distribu- 942

tion by component is a very useful tool to track changes 943

to the material description, allowing us to visualize the 944

differences after each update to the volume-definiton 945

code or material-description parameters. 946
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2.5.2 Magnetic Field Description947

The magnetic field description for Belle II is loaded from948

the conditions database. The payload is created from an949

XML file using the same procedure as for the geometry950

description introduced above. Because the magnetic field951

does not create any Geant4 volumes, analysis jobs can952

obtain the field values without the need to instantiate a953

Geant4 geometry.954

The magnetic field creator can handle a list of field955

definitons for different regions of the detector. If more956

than one definition is valid for a given region, either the957

sum of all field values is taken or only one definition’s958

value is returned if it is declared as exclusive. We have959

implementations for constant magnetic field, 2D radial960

symmetric field map and full 3D field maps and some961

special implementations to recreate the accelerator con-962

ditions close to the beams. For normal simulation and963

analysis jobs, we have a segmented 3D fieldmap with964

a fine grid in the inner-detector region and a total of965

three coarse outer grids for the two endcaps and the966

outer-barrel region.967

3 Conclusions968

Ten years of development work with emphasis on soft-969

ware quality have culminated in a reliable software frame-970

work for the Belle II collaboration that is easy to use and971

extend with new or improved algorithms. It fulfills the972

requirements for data taking, simulation, reconstruction,973

and analysis. The success is illustrated by the fact that974

first physics results were presented to the public two975

weeks after collision data taking had started in Spring976

2018.977

While the core Belle II software is mature and ro-978

bust, it must continue to accomodate the evolution of979

technology and requirements. It is therefore crucial that980

expertise is preserved and carried forward to new devel-981

opers, as for all other components of Belle II.982
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