
Noname manuscript No.
(will be inserted by the editor)

The Belle II Core Software

N. Braun · T. Hauth · T. Kuhr · C. Pulvermacher · M. Ritter

Received: date / Accepted: date

Abstract Modern particle physics experiments create

huge amounts of data. Sophisticated algorithms for sim-

ulation, reconstruction, and analysis are required to

fully exploit the potential of this data. We describe the

core components of the Belle II software that are the

foundation for the development of complex algorithms

and an efficient processing of data.

1 Belle II Analysis Software Framework

1.1 Code Structure

The Belle II software is organized in three main parts,

the tools, the externals, and the Belle II Software Anal-

ysis Framework basf2.

1.1.1 tools

The tools are a collection of shell and python scripts for

the installation and setup of the externals and basf2.

The tools themselves are set up by sourcing the script

b2setup. This script identifies the type of shell and then

sources the corresponding sh or csh type setup shell

script. The setup shell script adds the tools directory

to the PATH and PYTHONPATH environment vari-

ables, sets some Belle II specific environment variables,

defines functions for the setup or configuration of fur-

ther software components, and checks whether a newer

version of the tools is available. A pre-defined set of

directories is searched for files containing site specific

N. Braun · T. Hauth · C. Pulvermacher
Karlsruhe Institute of Technology, Karlsruhe, Germany

T. Kuhr · M. Ritter
Ludwig-Maximilians-Universität, München, Germany

configurations. The Belle II specific environment vari-

ables have the prefix BELLE2 and contain information

like repository locations and access methods, software

installation paths, and software configuration options.

Two shell scripts take care of the installation of a

given version of externals or basf2 releases. Usually they

just download and unpack tarballs of precompiled bi-

naries for the given operating system. If no binary is

available, the source code is checked out and compiled.

Each version of the externals and basf2 releases is in-

stalled in a separate directory named after the version.

In particular for the compilation of the externals we

rely on a few basic tools, like make or tar, and develop-

ment libraries to be installed on the system. The tools

contain a script that checks whether these dependencies

are fulfilled and can install the missing ones.

The command b2setup sets up the environment for

a basf2 release version that is given as argument. It

automatically sets up the externals version which has

to be used for this release. The version is identified by

the content of the .externals file in the release direc-

tory. An externals version can be set up independently

of a basf2 release with the b2setup-externals com-

mand. The version dependent setup of the externals is

managed by the script externals.py in the externals

directory. Externals and basf2 releases can be compiled

in optimized or debug mode. In addition basf2 sup-

ports the compilation with the clang or intel compil-

ers. Different subdirectories are used for the libraries

and executables compiled with the different options.

These options can be selected with the b2code-option

and b2code-option-externals commands. The com-

mands that change the environment of the current shell

are implemented as functions for sh type shells and as

aliases for csh type shells.

2 N. Braun et al.

The tools also support the setup of an environment

for the development of basf2 code. The b2code-create

command clones the basf2 git repository and checks

out the master branch. The environment is set up by

executing the b2setup command without arguments in

the local release directory. If a developer wants to work

only on one top-level directory of the code, called pack-

age, and take the rest from a centrally installed release,

the b2code-create command can be used with the ver-

sion of this release as an additional argument which is

stored in the file .release. The sparse checkout fea-

ture of git is used to get a working directory without

checked out code. Packages can then be checked out

individually with the b2code-package-add command.

The b2setup command sets up the environment for the

local working directory and the central release. Further

tools for the support of the development work are de-

scribed in Section 1.2.

To make it easier for users to set up an environ-

ment for the development of analysis code and to en-

courage them to store it in a git repository, the tools

provide the b2analysis-create command. It requires

a basf2 release version as argument and creates a work-

ing directory attached to a git repository on a central

Belle II server. The basf2 release version is stored in

a .analysis file and used by the b2setup command

for the setup of the environment. The b2analysis-get

command provides a convenient way to get a clone of

an existing analysis repository.

The tools are supposed to be able to set up differ-

ent versions of basf2 and externals and thus must be

independent of them. By now this is reasonably well

achieved. The last incompatible change was when we

moved some binary code, like gcc or python, from the

tools to the externals. In the beginning we included

them in the tools because the same versions were shared

among various basf2 and externals version. But their in-

stallation and update was a time consuming and error

prone process for many users. The current script-only

solution is more robust. When we migrated our code

repository from subversion to git the tools were updated

more frequently, but now they have become stable and

updates are done rarely. One of the challenges in the

development of the tool was to cope with the different

shell types and various user environment settings.

1.1.2 externals

The third-party code on which we rely (besides the op-

erating system) is bundled in the so-called externals.

They contain basic tools, like gcc, python3, or bzip2,

and HEP specific software, like ROOT [1], GEANT4 [2]

or EvtGen [3]. Some packages, like LLVM or Valgrind,

are optional and not included in the compilation of the

externals by default. The number of external products

has grown over time and has reached a count of about

60 plus 90 python packages by 2018.

The instructions and scripts to build the externals

are stored in a git repository. We use a Makefile with

specific commands for the download, compilation, and

installation of each of the external packages. A copy

of the downloaded installation files are kept on a Belle

II web server to still have them available if the origi-

nal source disappears. It also provides redundancy for

the download. The integrity of the downloaded files is

checked with sha256sum.

The libraries, executables, and include files of all

external packages are each collected in a common di-

rectory. For the external software that we might want

to include in debugging efforts we build a version with

debug information and an optimized version.

The compilation of the externals is a very time con-

suming task and thus annoying for users. Moreover,

users sometimes experienced problems because of spe-

cific configurations of their systems. While we tried to

minimize these issues, the largest improvement for the

users and those supporting them was achieved by pro-

viding pre-compiled binary versions. We use docker to

compile the externals on various systems, currently Sci-

entific Linux 6, Enterprise Linux 7, Ubuntu 14.04, and

the Ubuntu versions from 16.04 to 18.04. A command

provided by the tools conveniently downloads and un-

packs the selected version of the externals in the right

directory.

Because the absolute path of an externals installa-

tion is abritrary, we invested significant effort into mak-

ing the externals location independent. First studies to

move from the custom Makefile to spack [4] were done

with the aim to profit from community solutions, but

relocateability of the build products remains an issue.

1.1.3 basf2

The Belle II specific code is organized in directories,

called packages. As of 2018 there are about 40 packages,

including for example the core framework, a package

for each detector component, the track reconstruction

code, and the analysis tools. Each package has one or

two librarians who are responsible for the code in their

directory.

The code is written in C++ and header and source

files are kept in include and src subdirectories, re-

spectively. By default one shared library is created per

package and installed in a lib directory that is included

in the library path. A special treatment of the code is

The Belle II Core Software 3

achieved by placing it in one of the following subdirec-

tories

– modules: The code is compiled in a shared library

and installed in a module directory so that it can be

dynamically loaded by basf2.

– tools: C++ code is compiled in an executable and

installed in a bin directory that is included in the

path. Executable scripts are symlinked to this di-

rectory.

– dataobjects: This contains the classes that can be

stored in output files. The code is linked in a shared

library with dataobjects suffix.

– scripts: Python scripts are installed in a directroy

that is included in the python path.

– data: All files are symlinked to a common data

folder.

– tests: Unit and script tests (see Section 1.2).

– validation: Scripts and reference data for valida-

tion plots (see Section 1.2).

– examples: Example scripts that illustrate features

of the package.

Users of basf2 usually work with centrally installed

versions of basf2. They are provided on CVMFS [5],

but users can also install pre-compiled binaries on their

local systems with the b2install-release command.

If no pre-compiled version is available for their system,

the command will compile the requested version from

source.

1.2 Development Infrastructure and Procedures

The basf2 code is maintained in a git repository and we

use bitbucket [6] to manage pull requests. The ability to

review and discuss code changes in pull requests before

they are merged to the main development branch is

a significant improvement in the development process

compared to the previous workflow based on subversion.

It helps the authors to improve the quality of their code

and allows the reviewers to get a broader view of the

software. We also profit from the integration with the

jira [7] ticketing system to better track and plan the

development work.

Developers obtain a local copy of the code with the

b2code-create command provided by the tools. They

can choose to take most of the code from a central re-

lease and check out only selected packages. The build

system based on SCons takes care of the dependencies

between files in the central release and local working

directory.

Although cmake was also considered as build sys-

tem, Belle II decided to use SCons [8] for this purpose.

It has the advantage that the build process is a one-

step procedure and the build configuration is written in

python, a language anyhow used for the basf2 steering

files. With some tuning, we could reduce the time SCons

needs to determine the dependencies before starting the

build. The build system is set up in a way that develop-

ers and users usually do not have to care about it. They

only have to place their code in the right directories as

described in the previous section. One exception is the

definition of linked libraries which can be done with a

three lines SConscript file.

We have implemented an access control for commits

to the master branch using a hook script on the bit-

bucket server. Librarians, identified by their user names

in a .librarians file in the package dircetory, can di-

rectly commit code in their package. They can give this

right also to others by adding their user names to a

.authors file. Since we migrated from subversion to

git we allow all Belle II members to commit code to

any package in feature or bugfix branches. The merg-

ing of these branches to the master has to be approved

by the librarians of the affected packages.

To achieve some conformity of the code, we have

established coding conventions, but we have to largely

rely on developers and reviewers to follow them. We

enforce a certain style of the code which underlines

that it belongs to the collaboration and not the indi-

vidual developer. The AStyle tool [9] is used for C++

code and pep8 [10] and autopep8 [11] for python code.

As some developers feel strongly about the code for-

matting it is important to keep the hurdles to follow

the rules and thus frustration low. Therefore we pro-

vide the b2code-style-check tool to print style viola-

tions and the b2code-style-fix tool to automatically

fix them. The style conformity is checked by the stash

server hook. It also rejects files larger than 1MB to pre-

vent an uncontrolled growth of the repository size which

is more of an issue with git than with subversion. To

provide feedback to developers as early as possible and

avoid annoying rejections when commits are pushed to

the central repository we have implemented the checks

of access rights, style, and file size also in a hook for

commits to the local git repository.

To facilitate test driven development, unit tests can

be implemented in each package using gtest [12]. All of

them are executed with the b2test-units command.

Furthermore test steering files in all packages can be

run with the b2test-scripts command. It compares

the output to a reference file and complains if it differs

or the execution fails. The unit and steering file tests

are executed by the bamboo [13] build service whenever

changes are pushed to the central repository. Branches

can only be merged to the master if all tests succeed.

4 N. Braun et al.

The tests are also executed by a buildbot [14] contin-

uous integration system which compiles the code with

the gcc, clang, and intel compilers and informs the au-

thors of commits about new errors or warnings. In ad-

dition, the buildbot runs cppcheck, a geometry overlap

check, doxygen and sphinx documentation generation,

and a valgrind memory check each night. The results

are displayed on a web page and the librarians are in-

formed by email about issues in their package. A de-

tailed history of issues is stored in a mysql database

and displayed on a web page, too. The page also shows

the evolution of the execution time, output size, and

memory usage of a typical job.

A quality control at a higher level is provided by

the validation framework. It executes scripts in a folder

named validation of packages to generate simulated

data files and produce plots from them. The validation

then spawns a web server that shows the plots and com-

pares them with versions from previous validation runs

and a reference. A shifter, whose task is to monitor the

software quality, checks the nightly produced validation

plots for regressions.

As a regular motivation for the libarians to review

the changes in their package we do monthly builds. For

a monthly build we require all librarians to agree on

a common commit on the master branch. They signal

their agreement using the b2code-package-tag com-

mand to create a git tag for the package at the selected

commit. It asks for a summary of changes that are then

included in the announcement of the monthly build.

The procedure of checking the agreement, building the

code, and sending the announcement is fully automated

with the buildbot.

An extensive manual validation including the gen-

eration of larger samples is done before releasing major

official versions of basf2. Based on these major versions,

minor or patch releases that require less or no validation

effort can be made. In addition light basf2 releases con-

taining only the packages required to analyze mini DST

(mDST, see Section 1.5) data can be made by the anal-

ysis tools group convener. This allows for a faster re-

lease cycle of analysis tools than the full software stack.

Releases are triggered by pushing a tag to the central

repository. The build process on multiple systems and

the installation on CVMFS is then automated.

In general, a guiding principle for the development

infrastructure and procedures is to keep the thresholds

to use and contribute to the software as low as possible

and at the same time strengthen the mindset of a com-

mon, collaborative project and raise awareness of code

quality issues. This includes early feedback, e.g. about

style rule violations on commits to the local git repos-

itory, and the idea to not bother people with things

that can be done by a computer, like the correction of

style rule violations. In this way, users and developers

can focus on their actual work and use their time more

efficiently.

1.3 Modules, Parameters, and Paths

The basf2 framework executes a series of dynamically

loaded modules. The selection of modules, their con-

figuration, and their sequence are defined via a python

interface, see Section 2.1.1.

A module is written in C++ or python and derived

from a Module base class that defines the following in-

terface methods:

– initialize(): Called before the processing of events

to initialize the module.

– beginRun(): Called each time before a sequence of

events of a new run is processed.

– event(): Called for each processed event.

– endRun(): Called each time after a sequence of events

of the same run is processed.

– terminate(): Called after the processing of all events.

Several flags can be set in the constructor of a module,

for example to indicate that it is capable of running in

parallel processing mode. The constructor should also

set a module description and define module paramters

that can be displayed on the terminal with the com-

mand basf2 -m.

A module parameter is a property that can be set

via the python interface and then used in the module

execution. It can be of basic type or a list thereof. Each

parameter has a name, a description, and an optional

default value.

The sequence in which the modules are executed is

stored in a Path class. Multiple paths can be connected

using conditions on an integer result value set in a mod-

ule event() method. The processing of events is initi-

ated by calling the process() method with a path as

argument. The framework checks that there is exactly

one module that sets the event numbers. It also collects

information about the number of module calls and their

execution time. This information can be printed after

the event processing or saved in a root file.

Log messages are managed by the framework and

can be passed to different destinations, like the terminal

or a text file, via connector classes. Methods for five

levels of log messages are provided:

– FATAL: For situations were the program execution

cannot be continued.

– ERROR: For things that went wrong and must be

fixed. If an error happens during initialization the

event processing is not started.

The Belle II Core Software 5

– WARNING: For potential problems that should not be

ignored and only accepted if understood.

– INFO: For informational messages that are relevant

to the user.

– DEBUG: For everything else, in particular debug in-

formation that is useful for developers. An addi-

tional integer debug level is used for debug messages

so that the amount of debug messages can be con-

trolled.

The log and debug level can be set globally, per package,

or per module.

1.4 Data Store and I/O

1.4.1 Data Store

Modules exchange data via a globally accessible inter-

face to objects or arrays of objects, the so-called Data

Store. Objects or arrays of objects (stored in a TClone-

sArray) are identified by name which by default corre-

sponds to the class name. The convention is to append

an “s” to the class name for the name of arrays. Users

can however choose a different name to allow different

objects of the same type simultaneously. Objects in the

Data Store can have either permanent or event level

durability. In the latter case the framework takes care

of clearing them before a new event is processed.

Different arrays of objects in the Data Store can

have weighted many-to-many relationships between their

elements. For example, a higher level object will usu-

ally have relations to all lower level objects which were

used to create it. Each relation carries a floating point
weight. The relationship information is stored in a sep-

arate object so no direct pointers are placed in the

objects themselves. This allows to strip parts of the

event data without affecting data integrity: If one side

of a relationship is removed the whole relation will be

dropped. The relations are implemented by placing a

special RelationArray in the DataStore which knows

the names of the arrays it relates as well as the indices

and weights of the related entries. The default name for

this object is the name of the two arrays connected by

“To”.

The interface to objects in the Data Store is imple-

mented in the templated classes StoreObjPtr for sin-

gle objects and StoreArray for arrays of objects, both

derived from the common StoreAccessorBase class.

They are constructed with the name identifying the ob-

jects or without any argument in which case the default

name is used. The access to the objects is type safe

and transparent to the event-by-event changes of the

Data Store content. To make the access efficient, the

StoreAccesorBase translates the name to a pointer to

an DataStoreEntry object in the Data Store on first ac-

cess. The DataStoreEntry object is valid for the whole

duration of the job and contains a pointer to the cur-

rently valid object which is automatically updated by

the Data Store. An access to an object in the Data

Store thus requires only on first access an expensive

string search and then just a double dereferencing of a

pointer on subsequent accesses.

The usage of relations is simplified by deriving the

objects in a Data Store array from RelationsObject. It

provides methods to directly ask an object for its rela-

tions to, from, or with (ignoring the direction) other ob-

jects. Non-persistent data members of RelationsObject

and helper classes are used to make the relations lookup

fast by avoiding regeneration of information that was

already obtained earlier.

We also provide an interface to filter, update or re-

build relations when some elements are removed from

the DataStore. It is also possible to copy whole or par-

tial arrays in the DataStore where optionally a new

relation to the original array can be created or the ex-

isting relations on the original array are copied.

1.4.2 I/O

We use ROOT for persistency. This implies that all

objects in the Data Store must have a valid ROOT

dictionary, The RootOutputModule stores the content

of the Data Store of permanent and event durability

in two separate TTrees with a branch for each Data

Store entry. A selection of branches, the file name, and

some tree configurations can be specified using module

parameters. The corresponding module for reading root

files is the RootInputModule.

The RootOutputModule takes care of writing an ob-

ject named FileMetaData to the permanent durability

tree of each output file. It contains a logical file name,

the number of events, information about the covered ex-

periment/run/event range in the output file, the steer-

ing file content, and further information about the file

creation. The file meta data also contains a vector of

logical file names of the input files, called parents.

This information is used for the index file feature.

A RootInputModule can be asked to not only load a

file, but also its ancestors up to a level given as pa-

rameter. A file catalog in XML format, created by the

RootOutputModule, is used to translate logical to phys-

ical file names for the ancestor files. The unique event

identifier is then used to load the correct event. With

the index file feature one can produce a file containing

only EventMetaData objects (see next section) of se-

lected events and then use this as input file to access

6 N. Braun et al.

the selected events in its parents. However, the usual

structure of trees in root files is not optimal for sparse

event reading. Further use cases are to add objects to

an existing file without copying its full content or to

access lower level information of individual events for

display or debug purposes.

The high-level trigger uses a custom output format

with a sequence of serialized root objects to limit the

loss of events in case of crashes. The files in this format

are not stored permanently, but converted to standard

root files before they are written to mass storage.

1.5 Event Data Model

The Data Store implementation makes no assumption

about the event data model. It can be flexibly chosen

to match the specific requirements. In basf2, the full

event data model is not explicitly defined, but a re-

sult of the creation of objects in the Data Store by

the executed modules. The only mandatory component

is the EventMetaData object. It uniquely identifies an

event by event, run, and data taking period number,

called experiment number. In addition, it contains a

unique production identifier to distinguish simulated

events with the same event, run, and experiment num-

ber. Further data members are the time when the event

was recorded or created, an error flag indicating prob-

lems in data taking, an optional weight for simulated

events, and the logical file name of the parent file that

is needed by the index file feature.

The format of the raw data is defined by the detector

readout. Unpacker modules for each detector compo-

nent can convert the raw data to digits, the output for-

mat of the simulation. During the event simulation, the

energy deposits are stored as detector specific SimHits.

The use of a common base class for SimHits allows for

a common framework to add energy depositions from

simulated background to that of simulated signal pro-

cesses, called background mixing.

The output of the reconstruction consists mainly of

detector specific objects. The RecoTrack class is used to

manage the pattern recognition and track fitting across

multiple detectors. It allows to add hits to a track can-

didate and is interfaced to GenFit [15,16] for the deter-

mination of track parameters.

The data format for analyses, called mini data sum-

mary table (mDST), is explicitly defined in the steering

file function add mdst output. It consists of the follow-

ing classes

– Track: The object representing a reconstructed track

of a charged particle contains references to track fit

results for multiple mass hypotheses and a quality

indicator that can be used to suppress fake tracks.

– V0: Candidates of K0
S and Λ decays and of converted

photons are provided by references to pairs of pos-

itively and negatively charged tracks and track fit

results.

– TrackFitResult: The results of track fits for a given

particle hypothesis are five helix parameters, their

convariance matrix, a fit p-value, and the pattern

of layers with hits in the vertex detector and drift

chamber.

– PIDLikelihood: Each track has a related object that

stores the likelihoods for being an electron, muon,

pion, kaon, proton or deuteron for each detector pro-

viding particle identification information.

– ECLCluster: For reconstructed clusters in the elec-

tromagnetic calorimeter the energy and position mea-

surements and their correlations are stored together

with shower shape variables. If an extrapolated track

is matched to a cluster this is represented by a re-

lation.

– KLMCluster: Reconstructed clusters in the KLM de-

tector that are not matched to tracks are considered

candidates for K0
L and provided a position measure-

ment and momentum estimate with uncertainties.

– KlId: Candidates for K0
L particles are represented

by relations to KLM and ECL clusters where the

relation weight stores the particle identification in-

formation.

– TRGSummary: The information about level 1 trigger

decisions before and after prescaling are stored in

bit patterns.

– SoftwareTriggerResult: The decision of the high-

level trigger is provided via a map of trigger names

to trigger results.

– MCParticle: For simulated events, the information

about simulated particles is provided in addition.

The momentum, production and decay vertex, rela-

tions to mother and daughter particles, and infor-

mation about hit detector components is stored for

each particle. Relations are created when simulated

particles are reconstructed as tracks or clusters.

The average size of an mDST event is a critical pa-

rameter for the disk storage requirements and for the

analysis turn-around time. Therefore, the mDST con-

tent is strictly limited to information that is required

by general physics analyses. No raw data information

is allowed. For detailed detector or reconstruction al-

gorithm performance studies as well as for calibration

tasks a dedicated format, called cDST for calibration

data summary table, is provided.

The Belle II Core Software 7

2 Central Services

2.1 Python Interface and Jupyter Notebooks

2.1.1 Python Interface

To apply the functionality described in Section 1 to

a data processing task – at the most basic level ar-

ranging appropriate modules into a path and starting

the event processing – basf2 provides a Python inter-

face. Most commonly, users perform tasks using Python

scripts (called “steering files” in this context), but inter-

active use is also supported. The following listing shows

a minimal example for the former, while Section 2.1.2

discusses applications for the latter.

#!/ usr / bin / env python3
−∗− coding : utf−8 −∗−

Import the python interface to the Belle II ←↩
framework

import basf2 as b2

Create a path
main = b2 . create_path ()

Create a module of type EventInfoSetter ,
set the parameter evtNumList to produce events←↩

with numbers
0 to 99 , and add the module to the main path
main . add_module (’ EventInfoSetter ’ , evtNumList←↩

=[100])

Start the processing of the modules in the ←↩
main path

b2 . process (main)

Key benefits in using Python as a configuration lan-

guage, compared for example with the custom language

used at Belle, are the general prevalence and the easy to
understand syntax so that new users can rather quickly

use the framework successfully. Furthermore python pro-

vides the power of a modern script language including

access to various libraries. This is exploited, for exam-

ple, to build a meta-framework in python for perform-

ing typical analysis tasks in a user-friendly way. The

docstring feature of python is used to generate docu-

mentation web pages with sphinx [17].

To make the framework features available in python

we use boost.python [18]. While steering files can be

executed by passing them directly to the python in-

terpreter, we provide the basf2 executable which adds

framework specific command line arguments. Among

those are options to print versioning information, list

available modules and their description, and specify in-

put or output file names.

Besides the implementation of modules in C++, the

framework allows to execute modules written in python.

This makes it even easier for users to write their own

module code as it can be part of the steering file. It can

also facilitate rapid prototyping. With a few exceptions

for tasks that are not performance critical the modules

provided by the framework are written in C++ to profit

from advantages of compiled code.

Access to the Data Store is provided in the python

code by classes resembling the StoreObjPtr and StoreArray

interfaces. In an equivalent way, interface classes pro-

vide access conditions data. The python integrations of

these classes are implemented with PyROOT [19].

A feature that facilitates development and debug-

ging is the possibility to interrupt the event processing

and present an interactive python prompt. In the in-

teractive session based on IPython [20] the user can

inspect or even modify the processed data.

2.1.2 Jupyter Notebooks

Today’s analyses for high-energy physics (HEP) experi-

ments are mostly based on the execution of small scripts

written in Python or ROOT macros which call complex

compiled algorithms in the background for processing

a large amount of data. Jupyter notebooks allow to de-

velop Python-based applications, which bundle code,

documentation and results, e.g. plots and provide an en-

riched working environment like a browser-based fron-

tend to an interactive Python session, which can be

hosted centrally on a high-performance computing clus-

ter. Additional features include syntax highlighting and

tab-completion as well as integration with data-science

tools like ROOT, matplotlib [21] or pandas [22].

The implemented jupyter integration into basf2 helps

to simplify the process of creating and processing mod-

ule paths within jupyter notebooks – which is a nat-

ural next step after the already extensive integration

of python into basf2. The package for the interplay be-

tween Jupyter and basf2 is encapsulated into a more

general hep-ipython-tools project [23], which can also

be used with the framework code of other experiments.

The processing of one or more paths is decoupled

into an abstract calculation object, which plays well

with the interactivity of the notebooks, because mul-

tiple instances of this calculation can be started and

monitored, while continuing the work in the notebook.

Abstracting the basf2 calculation together with addi-

tional interactive widgets and convenience functions for

an easier interplay between juypter and basf2 not only

improves the user experience but also accentuates the

narrative and interactive character of the notebooks.

The decoupling of the calculations is achieved us-

ing the multiprocessing library and depends heavily on

the ability to steer basf2 completely from the python

process. Queues and pipelines are used from within the

basf2 modules to give process and runtime-dependent

8 N. Braun et al.

information back to the notebook kernel. The interac-

tive widgets are created using HTML and javascript

and display information on the modules in a path, the

content of the data store or the process status and

statistics.

2.2 Parallel Processing

Since several years, the frequency of CPUs and with

it the performance of a single core, is not increasing

significantly any more. Instead the processing power of

a CPU has gained by an increased the number of cores.

To efficiently use modern CPU architectures it is thus

essential to be able to run applications on many cores.

A trivial approach would be to run multiple appli-

cations, each using one core. The problem is that many

other resources are shared. In particular the size of and

the access to the memory can be a bottleneck. The

amount of memory per core on typical sites used by

HEP experiments has remained in the range of 2 to 3

GB for many years.

A more efficient shared usage of memory can be

achieved by multi-threaded applications. The downside

is that this imposes much higher demands and limita-

tions on the code as it has to be thread safe. While

the development of thread safe code can be assisted by

libraries it requires a change in the style how code is

written. Only very few Belle II members already have

the skills to write thread safe code. To embark in a

multi-threaded framework would require to educate of

the order of hundred developers. Several of them only

contribute with a small fraction of their time and it

would be an enormous effort for them and the core team

to keep them involved.

To nevertheless exploit multi core machines we have

implemented a parallel processing feature where pro-

cesses are started by fork. As the processes are running

independently developers do not have to care about

thread safety. Still we can significantly reduce the mem-

ory consumption of typical jobs because of the copy-on-

write technology used by modern operating systems. A

large portion of the memory is used for the detector

geometry. Because it is created before the forking and

does not change during the job execution the multi-

ple processes share the same geometry representation

in memory. Figure 1 illustrates the speedup of execu-

tion time with increasing number of parallel processes

on a 16-core system. For both measured reconstruction

scenarios, one with smaller e+e− and one with larger

BB̄ collision events, the speedup is either equal or very

close to the theoretical maximum speed-up. The minor

loss in efficiency when going to more cores can be at-

tributed to shared resources, like level-3 caches, used

by all processing cores.

Each module can indicate to the framework whether

it can run in parallel processing mode or not. Not par-

allel processing capable are in particular the input and

output modules that read or write root files. As the in-

put and output modules are usually at the beginning

or end of a path, the framework analyzes the path and

splits it into three sections. The first and last section

are executed in a single process each. Only the middle

section is executed in multiple processes. The beginning

of the middle section is defined by the first module that

can run in parallel processing mode. The next module

that is not parallel processing capable defines the be-

ginning of the third section.

To transfer the event data between the processes

dedicated transmitter and receiver modules are added

at the end or beginning of the sections. A transmitter

module serializes the event data and writes it to a ring

buffer in shared memory. A receiver module reads the

event data and deserializes it so that it becomes avail-

able in the Data Store of the process.

This parallel processing scheme works well if the

computational effort of the modules in the middle sec-

tion dominates over the input, output, and (de)serialization

load. For high throughput jobs with little computa-

tional demands the serialization and deserialization can

impose a sizable penalty so that the multiple cores of a

CPU are not optimally exploited. For typical Belle II re-

construction jobs and data sizes, we have measured that

the input and output processes don’t become a bottle-

neck at 20 concurrent processes which is well within the

envelope of parallelism we currently foresee to employ
during the online reconstruction or grid simulation and

reconstruction.

2.3 Random Numbers

Belle II will need to generate very large samples of

Monte Carlo to be able to achieve the targeted pre-

cision. We have to ensure that this production is not

hindered by issues with the pseudorandom number gen-

erator (PRNG). A PRNG is a deterministic algorithm

to generate numbers whose properties approximate the

properties of random numbers while being completely

deterministic. It has an internal state which determines

both the next random number and the next internal

state uniquely. If the internal state is known at some

point, all subsequent random numbers can be repro-

duced.

For Belle II we chose xorshift1024* [24], a newer

generation PRNG based on the Xorshift algortihm pro-

The Belle II Core Software 9

0 10 20 30
Processes p

0

5

10

15

20

25

30

S
pe

ed
up

Expec tation with
Hyper-threading
Reconstruction (BB)
Reconstruction (ee)
Sleeping

Fig. 1: Speed-up of parallel processing measured on a 16-core system for smaller e+e− and larger BB̄ collision

events. As reference, the expected perfect scaling is plotted as the dotted line, assuming a 20% gain in the

hyper-threading domain. Furthermore, the measured speedup when using sleep instructions instead of running the

reconstruction algorithms is plotted in green.

posed by Marsaglia [25]. It generates 64bit random num-

bers with a very simple implementation, it features high

speed, and passes all well-known statistical tests with

an internal state of only 128 bytes (1024 bits). This

PRNG is used consistently throughout the framework

for all purposes from event generation to simulation

down to analyis.

To make sure events are independent from each other

we set the state of the random generator at the begin-

ning of each event using an common, event-independent

seed string together with information uniquely identify-

ing the event. To minimize the chance for collisions be-

tween different events we calculate a 1024 bit SHAKE256 [26]

hash from this information which we use as the gener-

ator state. This also allows us to use a common seed

information of arbitrary length so any string can be

used as random seed.

The small generator state also allows us to pass

the random generator for each event along with the

event data in parallel processing mode to achieve re-

producibility independently of the number of worker

processes.

2.4 Conditions Data

In addition to event data and constant values we have

a number of settings or calibrations which can change

over time but not on a per event level. These are called

“conditions” and are stored in a central Conditions

Database (CDB) [27]

Conditions are divided into separate “payloads”. Each

payload is one atom of conditions data and has one or

more “intervals of validity” (IoV), the run interval in

which the payload is valid. One complete set of payloads

and their IoVs is then called a “global tag”. There can

be different global tags, for example for different ver-

sions of the calibrations. When a new global tag is cre-

ated it is open and assignments of IoVs to payloads can

be added or removed. Once a global tag is published it

becomes immutable.

The CDB is implemented as a representational state

transfer (REST) service. Communication is performed

by standard HTTP using XML and JSON data. The

CDB is by design agnostic to the contents of the pay-

loads and only identifies them by name and revision

number. The integrity of all payloads is verified using

a checksum of the full content. Clients can query the

CDB to obtain all payloads valid for a given run in a

given global tag.

The choice of a standardized REST API makes the

client implementation independent of the actual database

implementation details and allows for a simple and flex-

ible implementation of clients in different programming

languages.

In addition to communication with the CDB we

have implemented a local database backend which will

read global tag information from a text file and use

the payloads from a local folder. This allows to use the

framework also without connection to the internet or

if the CDB is not reachable, provided the necessary

payloads have been obtained previously. Such a local

database is created automatically in the working di-

rectory for all payloads that are downloaded from the

server during a basf2 execution.

Multiple metadata and payload sources can be com-

bined. By default global tags are obtained from the

10 N. Braun et al.

central server and payloads from a dump to a local

database on CVMFS. If a payload is not (yet) in the

local database it is downloaded from the server. If the

central database is not available the global tag is taken

from the database on CVMFS.

2.4.1 Access of Conditions Objects

The software framework assumes that payload contents

are serialized ROOT [1] objects but also direct access

to the files is possible. User access to conditions objects

is provided using two interface classes, one for single

objects called DBObjPtr and one class for arrays of ob-

jects called DBArray. These classes reference payload

objects, so-called DBEntry objects in a global store, the

DBStore. Multiple instances of the interface class all

point to the same object. It is identified by a name

which is by default given by the class name. Access

to the conditions objects is available in C++ and in

Python where the class interface has been designed to

be as close as possible to the already existing interface

for event level data. Users familiar with the event level

storage should have no problems accessing conditions

data.

The interface classes always point to the correct pay-

load objects for the current run, updates are transpar-

ent to the user. If the user needs to be aware when

the object changes, they can either manually check for

changes or register a callback function to be notified on

change. Figure 2 visualizes the relations between all the

entities.

The CDB only handles payloads at run granularity

but the framework can transparently handle conditions

changing inside of a run: If the payload is a ROOT ob-

ject inheriting from the base class IntraRunDependency

the framework will transparently update the conditions

data on event granularity. Different specializations of

IntraRunDependency can be implemented, for example

changing the conditions depending on event number or

time stamp.

2.4.2 Creation of Conditions Data

To facilitate easy creation of new conditions data, for

example during calibration, we provide two additional

classes DBImportObj and DBImportArray which also

have a similar interface as DBObjPtr and DBArray but

are meant to create new payloads. Users can just in-

stantiate one of the creation classes, add objects to

them and commit them to the configured database with

a user supplied IoV. This includes support for intra

run dependency. The possibility for a local file based

database allows for easy preparation and validation of

payloads as is needed during the calibration of the de-

tector.

2.4.3 Management of CDB Content

To simplify the inspection and management of the CDB

contents we provide a standalone command line client

written purely in Python 3 using the excellent requests

package [28]. It allows to list, create and modify global

tags as well as inspect their contents. It can also be

used to download a global tag for usage with the lo-

cal database backend as well as uploading a previously

prepared and tested local database configuration to a

global tag.

2.5 Geometry and Magnetic Field

In Belle II we use the same detailed geometry descrip-

tion for simulation and reconstruction purposes which

is implemented using the Geant4 [2] geometry primi-

tives. A central service is responsible for setting up the

complete geometry and each sub detector can register

a “creator” which is responsible to set up the detector

specific volumes as a separate component of the geom-

etry.

All parameters for the geometry description of all

sub detectors are provided by payloads in the conditions

database. In the original implementation, which is still

available, all parameters were obtained from one XML

tree where the separate descriptions of all components

is joined using XInclude [29] directives to allow the li-

brarians full control over their parameters. When build-

ing the geometry from XML a service called “Gearbox”

reads the whole tree using libxml2 [30]. It provides easy

access to the XML document tree for the developers in-

cluding unit conversion of values which have a “unit”

attribute. New materials and their properties can also

be defined directly in the XML files.

When building the geometry, the Materials provider

will first search for all material definitions using XPath [31]

expressions and create the corresponding Geant4 ma-

terial objects. The Geometry service will instaniate all

creators for a list of specified components and call them

to build the geometry. Each creator gets passed a pointer

to the G4LogicalVolume where all the volumes need to

be placed and, in case the gearbox is used, a reference to

the XML tree where the parameters for this component

are to be found.

For the concretization of the XML description into

conditions objects a special operation mode was imple-

mented which calls all Creators with only the reference

to the their XML parameters and asks them to create

a payload from the given parameters. This allows to

The Belle II Core Software 11

DBStoreEntry

filename
checksum
revision

DBObjPtr/DBArray

hasChanged()
isValid()

notifies on change/destruction

registers/removes itself

requests reference

LocalDatabase

filename

ConditionsDatabase

globalTag

payloadDirectory

CDB
REST Service

CDB
File Server

DBStore

Database

0..N

0..N

points to
0..1

owns

0..N

1..N

1..N

request updates
each run

notify on updates

TFile

owns

0..1

TObject

owns

0..1

request payload
information download missing

payloads

Obtains reference to
filename, TFile*, TObject*

register callbacks
on change

configures

Fig. 2: Relations between all entities for the Conditions Database Client. The user usually only interacts with the

DBObjPtr and DBArray objects and maybe configures the database sources (shown in blue). Everything else is

handled transparently, including the communication with the CDB (shown in green).

edit the XML files to adapt the geometry description

as necessary and test the changes locally. Once test-

ing is complete a fixed set of database payloads can be

created to be uploaded to the database.

2.5.1 Testing the Geometry Description

Developing a working material description is quite cum-

bersome as usually complex construction drawings need

to be converted into code placing separate volumes with

their correct transformation. To assist the sub detector

developers with this task we developed a set of tools in

addition to the visualization tools already provided by

Geant4.

First we run an automated overlap check which uses

methods provided by Geant4 to check if any volume in

the given tree of volumes has intersections with any of

it’s siblings or its parent. This is done by randomly cre-

ating points on the surface of the volume under ques-

tion and check if this point is either outside the par-

ent or inside any of the sibling volumes. This check is

performed on a nightly basis and repeated with higher

statistic prior to major releases or if large changes to

the geometry are to be expected.

Second we provide a module to scan the material

budget encountered when passing through the detector.

This module will track non-interacting, neutral parti-

cles through the detector and record the amount of ma-

terial encountered along the way. It can be configured

to scan the material in spherical coordinates, in a two

dimensional grid or as a function of the depth along rays

in a certain direction. The output is a ROOT file con-
taining histograms of the encountered material. These

histograms can be created either by material or by de-

tector component. Especially material distribution by

component is a very useful tool to track changes to the

material description, allowing us to show the difference

in material for each update to the code or parameters

for the material description.

2.5.2 Magnetic Field Description

The magnetic field description for Belle II can also be

loaded from XML file description as part of the geom-

etry description. However the magnetic field does not

actually create any volumes so once a database payload

is created the magnetic field can be used independently

of the geometry setup. This allows analysis jobs to just

obtain the field values without a need to setup the full

geometry.

The magnetic field creator supports a list of field

components defined for different parts of the detector.

12 N. Braun et al.

If more than one component is valid for the same re-

gion either the sum of all field values is taken or only

one component is returned if it is declared as exclu-

sive. We have implementations for constant magnetic

field, 2D radial symmetric field map and full 3D field

maps and some special implementations to recreate the

accelerator conditions close to the beams. For normal

simulation and analysis jobs we have a segmented 3D

fieldmap with a fine grid in the inner detector region

and a total of three coarse outer grids for the two end-

caps and the outer barrel region.

3 Conclusions

Ten years of development work with emphasis on soft-

ware quality have paid off. The Belle II collaboration

has a reliable software framework that is easy to use

and that makes it easy to develop algorithms for it. It

fulfills the requirements for data taking, simulation, re-

construction, and analysis. The success is illustrated by

the fact that first physics results could be presented to

the public only two week after collision data taking had

started in Spring 2018.

While the core Belle II software is mature it will

have to be adjusted to the evolution of technology and

requirements. It is therefore crucial that expertise is

preserved like for any other component of the experi-

ment.

Acknowledgements

We thank the KEK and DESY computing groups for

valuable support. We acknowledge support from BMBF

and EXC153.

References

1. R. Brun, F. Rademakers, Nucl. Instrum. Meth. A389(1),
81 (1997). DOI 10.1016/S0168-9002(97)00048-X

2. S. Agostinelli, et al., Nucl. Instrum. Meth. A506, 250
(2003). DOI 10.1016/S0168-9002(03)01368-8

3. D. Lange, Nucl. Instrum. Meth. A462, 152 (2001). DOI
10.1016/S0168-9002(01)00089-4

4. Spack. URL https://spack.io/

5. Cernvm file system. URL https://cernvm.cern.ch/

portal/filesystem

6. Bitbucket. URL https://bitbucket.org

7. Jira. URL https://www.atlassian.com/software/jira

8. SCons – a software construction tool. URL http://www.

scons.org/

9. Astyle. URL http://astyle.sourceforge.net/

10. pep8 - python style guide checker. URL http://pep8.

readthedocs.io

11. autopep8. URL https://github.com/hhatto/autopep8

12. Google C++ testing framework. URL https://code.

google.com/p/googletest/

13. Bamboo. URL https://www.atlassian.com/software/

bamboo

14. Buildbot. URL https://buildbot.net/

15. C. Höppner, S. Neubert, B. Ketzer, S. Paul, Nucl. In-
strum. Meth. A620, 518 (2010). DOI 10.1016/j.nima.
2010.03.136

16. Rauch, Johannes and Schlüter, Tobias, J. Phys. Conf.
Ser. 608(1), 012042 (2015). DOI 10.1088/1742-6596/608/
1/012042

17. Sphinx python documentation generator. URL http://

www.sphinx-doc.org

18. Boost.python. URL https://www.boost.org/doc/libs/1_

64_0/libs/python/doc/html/index.html

19. Pyroot. URL https://root.cern.ch/pyroot

20. F. Perez, B.E. Granger, Comput. Sci. Eng. 9(3), 21
(2007). DOI 10.1109/MCSE.2007.53

21. J.D. Hunter, Comput. Sci. Eng. 9(3), 90 (2007). DOI
10.1109/MCSE.2007.55

22. Python data analysis library. URL https://pandas.

pydata.org/

23. Hep ipython tools. URL http://hep-ipython-tools.

github.io/

24. S. Vigna, ArXiv e-prints (2014)
25. G. Marsaglia, Journal of Statistical Software 8(14), 1

(2003). URL http://www.jstatsoft.org/v08/i14

26. Q.H. Dang, Federal Inf. Process. Stds. (2015). DOI 10.
6028/NIST.FIPS.202

27. L. Wood, T. Elsethagen, M. Schram, E. Stephan, Journal
of Physics: Conference Series 898(4), 042060 (2017). URL
http://stacks.iop.org/1742-6596/898/i=4/a=042060

28. Requests: Http for humans. URL http://docs.

python-requests.org/

29. Xml inclusions. URL https://www.w3.org/TR/xinclude/

30. The xml c parser and toolkit of gnome. URL http://

xmlsoft.org/

31. Xml path language. URL https://www.w3.org/TR/xpath/

https://spack.io/
https://cernvm.cern.ch/portal/filesystem
https://cernvm.cern.ch/portal/filesystem
https://bitbucket.org
https://www.atlassian.com/software/jira
http://www.scons.org/
http://www.scons.org/
http://astyle.sourceforge.net/
http://pep8.readthedocs.io
http://pep8.readthedocs.io
https://github.com/hhatto/autopep8
https://code.google.com/p/googletest/
https://code.google.com/p/googletest/
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://buildbot.net/
http://www.sphinx-doc.org
http://www.sphinx-doc.org
https://www.boost.org/doc/libs/1_64_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_64_0/libs/python/doc/html/index.html
https://root.cern.ch/pyroot
https://pandas.pydata.org/
https://pandas.pydata.org/
http://hep-ipython-tools.github.io/
http://hep-ipython-tools.github.io/
http://www.jstatsoft.org/v08/i14
http://stacks.iop.org/1742-6596/898/i=4/a=042060
http://docs.python-requests.org/
http://docs.python-requests.org/
https://www.w3.org/TR/xinclude/
http://xmlsoft.org/
http://xmlsoft.org/
https://www.w3.org/TR/xpath/

	Belle II Analysis Software Framework
	Central Services
	Conclusions

