

Department of Physics, Malaviya National Institute of Technology Jaipur, INDIA

Physics Motivation

- The silicon vertex detector (SVD) is one of the important sub-detectors of the Belle II experiment at SuperKEKB.
- It consists of four-layers of double-sided silicon strip detectors (DSSDs).
- It plays a key role in the precise measurement of the decay vertex and reconstruction of the low-momentum tracks along with the pixel detector (PXD).
- The excellent performance of the Belle II SVD will provide the measurements of CP asymmetry in the B-meson system with higher precision.
- To achieve the physics goals, reconstruction of tracks with a high efficiency and a good resolution is needed.
- Design luminosity of SuperKEKB: 8×10³⁵ cm⁻²s⁻¹ that would enable Belle II to collect 50 ab^{-1} of data, 50 times more than its predecessor (Belle).

Belle II Detector

Design luminosity = $8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ e^+ (4 GeV) + e^- (7 GeV) $\rightarrow B\bar{B}$ at $\sqrt{s} = 10.58$ GeV [at Υ (4S)]

- ➡ Leads to harsh background environment in the Belle II.
- To validate the performance of the SVD, a systematic study is needed in the offline software reconstruction environment.

- VXD will start in Spring 2019 (Phase3)

First Phase 2 collision events recorded by Belle II.

16th Conference on Flavor Physics & CP Violation (FPCP 2018), Hyderabad, July 14 -18, 2018