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We measure the branching fraction and CP-violating flavor-dependent rate asymmetry of B — 7%z

0.0

decays reconstructed using the Belle II detector in an electron-positron collision sample containing
387 x 10% Y'(4S) mesons. Using an optimized event selection, we find 125 4+ 20 signal decays in a
fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is
(1.25 £0.23) x 107% and the CP-violating asymmetry is 0.03 4 0.30.
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The decay of the neutral bottom meson into a pair of
neutral pions, B® — 7%z [1], plays an important role in the
study of the flavor-changing weak interactions of quarks.
The decay properties can be used to test and refine
phenomenological models of hadronic bottom-meson
amplitudes and to provide important inputs for the deter-
mination of ¢,, a relevant parameter in weak quark
dynamics. Measurements of these properties are expected
to significantly impact current constraints on potential
processes not described by the standard model (SM).

Theoretical predictions for the branching fraction
B(B® — 7°2%) are challenging because the calculation of
hadronic amplitudes involves low-energy, nonperturbative
gluon exchanges. Currently available approximate methods
often fail to reproduce data. Predictions based on QCD
factorization [2-5] and perturbative QCD [6,7] are approx-
imately 5 times smaller than the experimental results. In
addition, the ratio of color-suppressed to color-allowed
b — u amplitudes, as inferred from other charmless two-
body decay modes, does not agree with expectations [8],
possibly indicating anomalously large contributions [9,10].
An improved understanding of the B? — 7°z° decay
amplitudes could be relevant to the so-called B — Kz
puzzle [11-13].

The study of CP-violating asymmetries in the rates of
two-body decays involving the b — u transition, such as
B — 7°2°, is also relevant. These asymmetries currently
offer reliable and precise access to the least-well-known
angle of the unitarity triangle, ¢, = arg (=V 4,V /V,aV?,)
[14], where V;; are elements of the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix [15,16]. Improved
measurements of ¢, increase the power of tests of

Published by the American Physical Society under the terms of
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the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

CKM-matrix unitarity and impose more stringent bounds
on possible SM extensions. Both b — u (W emission, or
tree) and b — d (W exchange, or penguin) transitions
contribute to the decay amplitude. The determination of
¢, requires measurements of the branching fractions and
CP asymmetries of all isospin-related B — zz decay
modes, i.e., B - ztz~, B - 7°2°, and Bt - 7#77°, or
of analogous B — pp decays, to separate penguin and tree
contributions [17,18].

Currently, the uncertainty in ¢, is dominated by the
uncertainties in the B® — 7°2° branching fraction and
CP-violating flavor-dependent decay-rate asymmetry,

['(BY - 7°2°) = T'(B° — 2%2°%)

A (B 0,0y _ D ’
cp(B = 2°x) F(BO - 71'071'0) + F(BO — 71'071'0)

(1)

where I' is the decay width. The world-average values
B(B® - 792%) = (1.55 +0.17) x 107% and Acp(B° —
7°7%) = 0.25 £ 0.20 [19] combine measurements reported
by the BABAR [20] and Belle [21] Collaborations.

Improved determinations would bring the B — zx
bounds on ¢, closer in precision to those from B — pp,
thus improving knowledge of ¢,. They may also help
discriminate among the scenarios proposed to achieve a
consistent picture of the relevant dynamics [22-25].

In this Letter, we present a measurement [26] of the
branching fraction and CP asymmetry for the B’ — 7°7°
decay using a 365 fb~! sample of electron-positron colli-
sion data. The sample contains 387 x 10° Y'(4S) mesons,
that in turn decay almost exclusively to BB pairs, produced
near threshold from 2019 through 2022. A 42.3 fb~!
sample collected at 60 MeV lower energy and hence not
containing any BB pairs (off resonance) is also used for
background modeling. The samples are collected with the
Belle II detector [27], located at the SuperKEKB asym-
metric-energy collider [28].

The principal experimental challenge is the
reconstruction of a rare decay in a final state with no

L071102-2
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charged particles, B® — z°(— yy)z°(—= yy). The recon-
struction of photons is based solely on calorimeter infor-
mation and therefore it is much less precise than the
reconstruction of charged particles. In addition, it is
affected by energy leakage and beam-induced backgrounds
due to beam interactions with the beam pipe or residual gas.
The analysis is developed using simulated samples and
signal-free data control regions. The signal region in data is
examined only when all procedures are established. Data
are enriched in B® — 797° events by means of an optimized
selection based on two statistical-learning classifiers that
suppress backgrounds, which are dominated by light-quark
production. The flavor of the neutral B meson, needed for
the measurement of the CP-violating asymmetry, is deter-
mined using information associated with the other, non-
signal B meson produced in the Y(4S) decay, since the
770 final state is common to B® and B°. A multidimen-
sional fit of sample composition determines the signal yield
and CP-violating asymmetry. The fit results, combined
with acceptance and efficiency corrections obtained from
simulation and validated using control data, determine the
quantities of interest. We use D** — D%(— K=zt 2°)z*
decays to validate photon reconstruction. In addition, we
validate the analysis using B* — K+ z° decays, which yield
a final-state 7 with kinematic properties similar to the signal
7° mesons, and B® — D°(— Kz~ 7°)2° decays, which,
like the signal decay, yield two z° mesons. These B decay
modes are 10 times more abundant than our expected signal.

Belle II consists of several subdetectors arranged in a
cylindrical structure around the beam pipe [27]. The 7z axis
is the symmetry axis of a superconducting solenoid, which
generates a 1.5 T uniform field along the beam direction.
The positive z direction corresponds approximately to the
electron-beam direction and defines the origin of the polar
angle 0. The detector structure is divided into three polar
regions in increasing order of @, the forward end cap, barrel,
and backward end cap, which correspond to the polar-angle
ranges [12.4,31.4]°, [32.2,128.7]°, and [130.7,155.1]°,
respectively. The inner volume contains a two-layer silicon
pixel detector surrounded by a four-layer double-sided
silicon strip detector and a drift chamber. Of the outer pixel
layer, only a 15% azimuthal sector was installed for the data
used in this work. These subdetectors are primarily used to
reconstruct charged-particle trajectories, and therefore their
origin, momentum, and electric charge. These subdetectors
also provide charged-particle identification through meas-
urement of specific ionization. A time-of-propagation
counter and an aerogel ring-imaging Cherenkov detector
covering the barrel and forward end cap regions, respec-
tively, are used for primary charged-particle identification.
In this work, the electromagnetic calorimeter is particularly
important. It is a segmented array of 8736 thallium-doped
cesium iodide crystals arranged in a quasiprojective geom-
etry toward the interaction point. They occupy the remain-
ing volume inside the superconducting solenoid and cover

about 90% of the solid angle in the center-of-mass frame.
The calorimeter identifies electrons and photons in the
range of energies 0.02-10 GeV with fractional resolutions
of 7.7% at 100 MeV or 2.2% at 1 GeV [29]. Resistive-plate
chambers and scintillating bars are installed in the flux
return of the magnet and identify muons and K mesons.
This detector, along with the calorimeter, also contributes
charged-particle-identification information.

We use simulated samples to optimize event selection,
select fit models, calculate signal efficiencies, and study
sources of background. To study signal, we use 2 X
10% Y'(4S) — B°B° decays in which one B meson decays
into the 7°z° final state and the other B-meson decay is
unbiased. These samples are generated with the EVTGEN
[30] and pyTHIA [31] software packages. To study back-
grounds, we use simulated samples at least four times larger
than the data sample. These samples consist of ete™ —
Y (4S) — BB processes generated with EVTGEN and
PYTHIA along with e"e™ — 77~ and continuum e*e™ —
qq background, where ¢ denotes a u, d, s, or ¢ quark,
generated with the KKMC [32], PYTHIA, and TAUOLA [33]
software packages. Beam-induced backgrounds sampled
from data are included in the simulation [34]. The detector
response is simulated using the GEANT4 [35] software
package. Simulated and experimental data are processed
with the Belle II software [36,37].

The online event selection of our sample requires events
to satisfy criteria based on total energy and neutral-particle
multiplicity to preferentially retain hadronic events and has
full efficiency for the signal decay mode.

In the offline analysis, we identify photon candidates as
calorimeter-energy deposits (clusters) larger than 30 MeV
that involve more than one crystal to reject calorimeter
noise. Since CsI(TI) scintillation light has a relatively long
decay time, random photons from hadronic events com-
bined with overlapping residual energy not related to the
relevant collision may be misreconstructed as z° candi-
dates. Hence, the time associated with cluster formation is
required to be within 200 ns of the collision time.
Multiplicative photon-energy corrections ranging between
0.990 and 1.010, with 0.15%-0.50% uncertainties, are
derived from control samples in data and used to correct for
calorimeter-energy miscalibration.

Selected photons are paired to form z° candidates, which
are further selected to suppress combinatorial background
from low-energy photons. We require the z° momentum in
the laboratory frame be greater than 1.5 GeV/c and that the
three-dimensional angle between the momenta of final-
state photons in the laboratory frame be less than 0.4 rad. In
the 7° rest frame, the absolute value of the cosine of the
angle between the photon direction and the boost direction
from the laboratory frame is required to be less than 0.98 as
misreconstructed 7° mesons tend to peak near 1.00. The
diphoton mass is required to be between 0.115 and
0.150 GeV/c?, a range of approximately —2.5 and +2.0
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units of resolution around the known z° mass [19]. The
range is asymmetric to compensate for energy leakage
from the calorimeter. The high momentum of signal 7°’s
offers a natural suppression of misreconstructed and non-
signal photons. To reduce contributions from these sources
further, we use a boosted decision tree [38] called
“Photon-BDT.” This decision tree is trained on simulated
signal photons against beam-background and misrecon-
structed photons using nine input observables. In approxi-
mate order of decreasing discriminating power, they are
the energy detected in the crystal having the highest
signal, three observables that describe the energy sharing
among crystals [26], the photon’s momentum transverse
to the beam direction, the distance between the cluster
and the trajectory of the nearest charged particle, the
number of crystals in the cluster, the cluster polar
direction, and one observable that describes the fraction
of cluster energy detected in the central crystal. We
choose the threshold on the Photon-BDT output that
maximizes the yield of signal photons over the square
root of the sum of misreconstructed- and beam-induced
photon yields as expected from simulation. In simulated
samples, this selection removes 83% of misreconstructed
and beam-induced photons and retains 96% of signal
photons. Studies of D** — D%(— K~ z"z%)z" and B* —
K*7° decays validate the Photon-BDT classifier’s per-
formance by showing that signal efficiency and Photon-
BDT output distributions are consistent between simu-
lations and data.

We improve the momentum resolution of the z° candi-
dates by performing a kinematic fit that constrains the
diphoton mass to the known 7 mass [19]. Signal candi-
dates are reconstructed by combining two z° candidates.

We use topological observables that exploit the jetlike
nature of gg events and the isotropic distribution of final-
state particles from BB events to reduce the large con-
tinuum background, along with observables specifically
sensitive to the presence of the nonsignal B meson in the
event. We train a boosted-decision-tree classifier C to
discriminate signal from continuum background by ana-
lyzing 29 observables comprising, in approximate order of
decreasing discriminating power, modified Fox-Wolfram
moments [39], sphericity-related quantities [40], thrust-
related quantities [41], and energy detected in sets of
concentric cones with various opening angles centered
around the thrust axis [42]. Observables showing correla-
tions larger than 10% with those used in the sample-
composition fit are excluded. The training uses simulated
signal samples and off-resonance data. An optimization
identifies the selection on C that minimizes the average
variance on the branching fraction and CP asymmetry as
expected from repeating the measurement on simplified
simulated samples. The resulting selection on C rejects
98% of continuum background while retaining 64% of
signal. For convenient modeling, we apply the properties of

the probability integral transform [43] to the classifier
obtaining C,, which has a Gaussian-like shape that peaks at
2.0 for signal and at 0.0 for background [44]. In addition,
we restrict the sample using two kinematic variables
that exploit four-momentum conservation in near-threshold
BB pair production and are particularly convenient to

isolate signal candidates, My, = \/EZ%.,./c* —|psl*/c?
and AE = Ep — Eyum, Where Epg,, 1S the beam energy
and (Eg, pp) is the four-momentum of the B candidate,
both calculated in the Y'(4S) rest frame. The M, and AE
distributions for signal decays peak at the B mass and close
to zero, respectively. Candidate B mesons are required to
have My, > 5.2 GeV/c? and —0.3 < AE < 0.5 GeV.

Multiple signal candidates (typically just two) are
reconstructed in 0.3% of events, in which case we choose
one candidate at random. Following all selections, 27%
of signal events remain, of which 99% are correctly
reconstructed. Such a low misreconstruction rate is due to
the low fraction of signal events in which the accom-
panying B meson yields a high-momentum z° candidate.

To measure the CP asymmetry, the B-signal flavor is
assigned in each event by determining statistically the
flavor of the accompanying neutral B meson (tagging).
Tagging information is encoded in the ¢ = +1 or —1 (for
b or b) flavor of the nonsignal B and in r = 1-2w, where
w is the probability for wrongly tagging an event. The
probability is calibrated on control data by measuring
B°BY flavor oscillations with B® — D®)~z* decays. We
use a novel algorithm [45], which efficiently uses
information from nonsignal charged particles and from
their relationships. The algorithm improves the average
value of r?, the statistical tagging efficacy, by 18% with
respect to the algorithm used in the previous Belle II
measurement [46]. Unlike in previous analyses where
data were analyzed separately in independent contiguous
qr intervals (binned flavor tagging), here the unbinned
distribution of w,, obtained using the properties of the
probability integral transform of w, is used as a fit
observable. It has a Gaussian-like shape that simplifies
the fit model.

The resulting event sample consists of three components,
i.e., signal (s), continuum (c), and background from non-
signal B decays (BB). The 1% fraction of genuine signal
events that are misreconstructed is classified as signal.
Simulated samples show that 81% of BB background is
from Bt — pT2° decays. We determine the branching
fraction and CP asymmetry with a likelihood fit of the
unbinned distributions of My, AE, C,, and w,. The signal
distribution peaks in each fit observable. The continuum
background produces smooth distributions in My, and AE,
and peaks at zero (positive) values in C, (w,). The BB
background peaks at similar values of My, and C, as the
signal, but its AFE distribution is shifted to negative values
due to missing energy associated with the unreconstructed
decay products.
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The likelihood function is constructed as

L x H {fs(l +ql(1 +qiatag)(1 _Zld)(l _2k(qi)wi)ACP)

i=1
X ps(AE', M} ) ps(Ci,w})

L5 (14 71+ @) (1 = 2k(")0) Ags )
x ppp(AE") ppa(Mi.) pps(Ciwi)
+(1=f,=fm) (14411 -20)A,)

X pe(AELCHp (M) pe(w)). (2)

where i is the candidate, N is the known total number of
candidates in the sample, f; is the sample fraction for
component j, and p;(AE', Mj_, Ci, wi, ¢') is the probabil-
ity density function (PDF) for the ith candidate to belong to
the jth component. Here ¢’ is the predicted flavor of the
partner B meson of the ith candidate; w' is the probability
for incorrectly identifying the candidate flavor, which
dilutes the true asymmetry; k(q') is a multiplicative
correction for the flavor-specific difference between pre-
dicted and observed w'; and a,, is the B°~B° asymmetry in
tagging efficiency. The factorization of the PDFs in Eq. (2)
accounts for observed dependences between observables.
The values of k(g') and @y, are Gaussian-constrained from

a flavor-oscillation fit to B® - D*)~h* decays in simu-
lation and data, where 4™ stands for z or K+ [45]. These
and all other Gaussian constraints included in our model are
omitted from the above likelihood expression to simplify
notation. The CP asymmetry in data is further diluted by a
factor of (1 —2y,) due to BB oscillations. The known
time-integrated ~ B°B-oscillation  probability  y, =
0.1858 + 0.0011 [19] is Gaussian-constrained in the fit.
The effective asymmetry of the BB background is con-
strained to the value Agp = 0.056 + 0.095 as determined
inthe AE < —0.3 GeV and M, > 5.26 GeV/c? sideband.
The effective asymmetry of the continuum background A,
is freely determined by the fit.

Models for all sample components are chosen based on
large samples of simulated events. The signal M, distri-
bution is modeled using two Gaussian functions. The signal
AFE distribution is modeled, in intervals of My, using the
sum of a Gaussian function and a bifurcated Gaussian
function. All functions have independent means and
widths. The BB M, distribution is described with the
sum of a Gaussian function and a Johnson function [47].
The continuum M, distribution is modeled with the sum of
two ARGUS functions [48] as the beam energy, which
determines the upper end point of the distribution, varies
during data taking. The BB AE distribution is described
with the sum of three Gaussian functions and a bifurcated
Gaussian function, while continuum is described with a

straight line, with independent slopes in three intervals of
w;. The C, distribution of continuum is modeled using the
sum of a Gaussian function and a bifurcated Gaussian
function. The C, distributions of signal and BB are each
modeled using the same functional form in three intervals
of w,, with independent parameters. The signal, BB, and
continuum w;, distributions are each modeled using the sum
of three Gaussian functions with independent parameters.
Signal and BB model parameters are determined using fits
to simulated events. Additional degrees of freedom related
to the position and width of the peaking structures are
included in the signal-data fit as Gaussian constraints
determined from fits to B¥ — K* 2" decays. These account
for residual data-simulation discrepancies such as the 12 +
4 MeV difference in AE peak position. Continuum model
parameters are freely determined by the fit.

We validate the analysis by applying it to BT — K*z°
and B —» D°(— Kz~ 7°)z" decays. The photon and 7°
criteria applied in the B — KTz selection are the same as
for the B — 7972 analysis. The kaon candidate is a charged
particle that satisfies a loose requirement on the ratio
Ly/(L;+ Lk), where the likelihood £, g for a pion or
kaon hypothesis combines particle-identification informa-
tion from all subdetectors except the pixel detector. For the
BY — D°(— K* 2~ 2%)x° control channel, all photon and 7°
selections are the same as for signal except the 1.5 GeV/c
threshold on z° momentum, which is removed to accom-
modate the significantly lower momentum spectrum, and an
additional 1.84 < m(K*7z~z°) < 1.88 GeV/c? restriction
on the D mass. Figure 1 shows signal-enhanced data
distributions with fit projections overlaid for the BT —
K* 7Y channel. The signal-enhancing selection is defined
as5.275 < My, < 5.285 GeV/c?,—0.10 < AE < 0.05 GeV,
and C; > 0 and applied to all relevant variables except
the one displayed. We determine B(B* — K*z°) =
(143 £0.5) x 107°, Acp (BT = K+2°) =0.078 £0.076,
B(B? - D(— K+~ 7°)n°) = (41.4 £ 2.4) x 1075, and
Acp(B® —» D°2°%) = 0.01 £ 0.10, which all agree with
known values [19] within our statistical-only uncertainties.

We maximize the likelihood on the sample of
7140 B® — 7°2° candidates. The branching fraction, CP
asymmetry, BB yield, and continuum yield are freely
determined by the fit. Figure 2 shows signal-enhanced
data distributions with fit projections overlaid. The signal-
enhancing selection is the same as for the control modes
and rejects approximately 91%-98% of continuum. A
signal is observed in all distributions, overlapping con-
tinuum and BB background. The branching fraction is
calculated using

Nf;
0 0.0y —
B(B e ) 28fOONY'(4S)B(7T0 N 7/]/)2 s (3)
where Nf, = 125 4 20 is the observed signal yield, € =
(27.28 £ 0.03)% is the signal reconstruction and selection
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FIG. 1.

Signal-enhanced (see text) distributions of (left to right) AE, M,., C,, and w, for B* — K*2° control-sample candidates

reconstructed in data, with fit projections overlaid. Lower panels show differences between observed and best-fit values divided by the

fit uncertainties (pulls).

efficiency from simulation, Nys) = (387 £6) x 10° i
the number of Y'(4S) mesons in the sample, f%° = 0.486 i
0.008 is the fraction of Y'(45) mesons that decay into BB’
pairs [49], and B(z° — yy) = (98.82 4+ 0.03)% [19] is the
relevant z° branching fraction. The Poisson fluctuation on
N is included in the branching-fraction statistical uncer-
tainty to account for fluctuations of the total sample size.
We obtain B(BO - 2%72%) = (1.254+0.20) x 10~ and
Acp(B® = 7°2°) = 0.03 £0.30 where uncertainties are
statistical.

We consider sources of systematic uncertainties asso-
ciated with assumptions made in the analysis, with possible
biases due to discrepancies between relevant distributions
in data and simulation, or with intrinsic uncertainties of
external inputs (Table I). Whenever a systematic source

we determine its impact by using ensembles of simplified
simulated experiments. To account for possible data-sim-
ulation discrepancies, we use control samples reconstructed
in data and in simulation to estimate correction factors and
assess their associated uncertainties, which are propagated
in the results as systematic uncertainties. We also propagate
uncertainties on the external inputs to the quantities of
interest.

A systematic uncertainty of 8.1% associated with the z°
pair reconstruction efficiency is determined from data
using the decays D*~ — D°(— KTz~ 2%z~ and D*~ —
D°(— K*z7)z~. The correction factor that matches
the efficiency of the continuum-classifier selection in
simulation with data is determined using BT — D%(—
K"z~ )n" decays. The uncertainty on the correction factor

is associated with a modeling choice in the analysis, is assigned as a systematic uncertainty. The systematic
45 45 45 45
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FIG. 2. Signal-enhanced distributions of (left to right) AE, M, C,, and w, for B® — z°z° signal candidates with (top) positive and
(bottom) negative ¢ tags reconstructed in data, with fit projections overlaid. Lower panels show pulls.
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TABLE I. Fractional systematic uncertainties on the branching
fraction and absolute systematic uncertainties on the CP asym-
metry. Total systematic uncertainties, resulting from their sums in
quadrature, are also given and compared with statistical uncer-
tainties.

Source B (%) Acp
70 efficiency 8.1
Continuum-suppression efficiency 1.9
BB-background model 1.7 0.01
Signal model 1.2 0.02
Continuum-background model 0.9 0.03
Y (4S) branching fraction f% 1.6
Sample size Ny(s) 1.5
BYB-oscillation probability <0.01
Wrong-tag probability calibration 0.01
Total systematic uncertainty 8.9 0.04
Statistical uncertainty 15.9 0.30

uncertainty associated with modeling choices, and with the
uncertainties on the associated PDF parameters, is the
maximum difference observed between averages of results
obtained from fitting our model to simulated data generated
with alternative functions and the average obtained with the
nominal parameter and model choices or with parameters
varied according to their covariances. The continuum
component has no contribution from alternate parameter
choices, as its parameters are directly determined in the fit.
The systematic uncertainty on f% accounts for the exper-
imental uncertainty on the measurement and the uncertainty
due to the assumption of isospin symmetry. The uncertainty
in the number of Ny(,5) events is due to the uncertainty in
the integrated-luminosity determination, the small amount
of off-resonance data, and efficiency mismodeling in
simulation. The uncertainty on the time-integrated B°B’-
oscillation probability y, is assessed by repeating the fit
after fixing the parameter to its best-fit value and sub-
tracting in quadrature the uncertainties on the parameters of
interest. The systematic uncertainty associated with the
choice of calibration function used to obtain the factors
k(g) is determined by fitting simulated data generated with
an alternative function, which includes additional correc-
tions proportional to w?. The total systematic uncertainty is
the sum in quadrature of the individual contributions.
The final results are

B(B® - 7°2%) = (1.25+£0.20 £ 0.11) x 107°%  (4)
and
Acp(B® - 2°2°) = 0.03 £+ 0.30 £ 0.04, (5)

where the first contributions to the uncertainties are
statistical and the second systematic. The (statistical) linear

correlation between these two quantities is +1.5%. This
work supersedes a previous Belle II result based on about
one-half of the data sample [44] and incorporates a number
of enhancements. We improve background suppression by
increasing the discriminating power of classifiers; we
simplify the sample-composition fit by including as an
observable the predicted signal flavor obtained by new
algorithms with higher efficacy; we include in the fit
additional control data to constrain backgrounds directly
from data, thus reducing systematic uncertainties. These
improvements reduce the fractional systematic uncertainty
on the branching fraction by 40% and both the absolute
statistical and systematic uncertainty on the CP asymmetry
by 3%, for a given sample size. Combining these improve-
ments with the increased sample size produces results
competitive with the current best values, which are based
on larger samples. We average our results with previous
measurements of B® — 792° branching fraction and CP
asymmetry apart from the previous Belle II results [44] and
include them, along with recent B — 7"z~ and Bt —
2 72° inputs [19,50], in an isospin analysis that follows
Ref. [17] to assess impact on B — zz-based ¢, constraints.
Our results reduce by 10° the 68% CL exclusion interval
surrounding the CKM-favored solution, corresponding to a
30% fractional increase in ¢, precision (see the Appendix).
This makes the precision of ¢, determinations based on
B — zrz decays competitive with the precision of B — pp
determinations, resulting in a global improvement on the ¢,
knowledge.

In summary, we report an improved Belle II measure-
ment of the branching fraction and direct CP asymmetry
of B® — 792° decays reconstructed in the full electron-
positron collision sample at the Y(4S) collected through
2022. The results are B(B? — n°z°) = (1.25 4+ 0.23) x
1076 and Aqp(B° — 7°2°) = 0.03 & 0.30. These measure-
ments achieve a precision superior to, or comparable with,
the precision of previous measurements, based on larger
samples, and advance our knowledge of two-body charm-
less B decays and of the angle ¢,.
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Appendix: Impact on ¢, determination. We assess the
impact of the results in terms of changes in the
constraints on the CKM angle ¢, determined solely
from B — zz isospin relations. We combine the
averaged branching fractions of B® —» 7t z~, Bt — 7t a°,
and B? — 770 decays, together with the lifetimes of the
B* and B° mesons, and the observables S, ,-, Cpi,»
and C,0, following Ref. [17]. Figure 3 compares the
p-value as a function of ¢, resulting from the
combination of all B — zzx results available until
2023 [51] with the 2024 combination in which the
existing Belle II B? — 7%2° measurements [44] are

replaced with the results of this work.
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FIG. 3. P-value as a function of the CKM angle ¢, from an
isospin-based combination of all B — zz results (red dashed)
without and (blue solid) with the inclusion of the results of this work.
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