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Abstract

Belle has measured a large number of fragmentation-related results that
have been already successfully used in global fits of fragmentation functions.
These fragmentation functions are important input for studying the nucleon
structure in semi-inclusive Deeply inelastic lepton nucleon scattering and
hadron collisions. Apart from the additional flavor-sensitivity, also spin and
transverse momentum of partons in the nucleon can accessed this way. Ad-
ditionally, these fragmentation-related results should be extremely sensitive
to the fragmentation parameters in Monte Carlo event generators. This note
concentrates on the tuning efforts of PYTHIA 8.3 using these measurements.
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1 To-Do list and Changelog

1.1 README
1.2 To-Do list

 add sensitivity discussion for popcorn variables

1.3 Changelog v1.0 — v2.0

o Added candle plot with best values in comparison to default and Belle2 values
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2 Introduction

Fragmentation describes the formation of confined final-state hadrons from high-
energetic, asymptotically free partons. Just as parton distribution functions, they
cannot be calculated from first principles in QCD and therefore need to be extracted
experimentally. For the same reason, also Monte Carlo event generators have to use
models to describe this. One of the most commonly used models is the Lund string
fragmentation model. While the Lund model can describe the fragmentation reason-
ably well, overall, it relies on many parameters that need to be tuned using data.
In this note this tuning was performed systematically on the various fragmentation
measurements that contain sensitivities to the main Lund parameters, the suppres-
sion of strange quark pairs produced in the fragmentation, the suppression of 7
mesons, the suppression of di-quark pair production needed to create baryons in the
fragmentation, the transverse momentum generated in the fragmentation, and the
role vector mesons and higher spin particle production has over the pseudoscalar
production, etc.

In the following the procedure to tune the fragmentation parameters are dis-
cussed. Initially the different types of software and their setups are discussed. Then,
the sensitivities of the used measurements to the relevant variables are discussed
before the actual fit results and best tune parameters are presented and discussed.

2.1 The Lund Model

The Lund String fragmentation model [1], 2] is the main model that tries to describe
the fragmentation process. It generally describes ete™ fragmentation into hadrons as
the separation of singlet (anti)quarks moving away from each other within a linear
potential that quasi-classically describes the QCD confining potential. The linear
potential can be thought of being caused by a string of gluons connecting the two
color charges. This string then eventually breaks up into a quark-antiquark pair
(or also diquark-antidiquark pair). These resulting (anti-)quarks either coalesce into
hadrons or expand further, creating even more quark-antiquark pairs in the process.
In this stochastic process particles are then produced according to

) =N e (-1 ()

z

where a defines how fast the function vanishes at high-z and b is related to the mass
created at a certain z, and z is the energy fraction a hadron carries relative to the
initial parton energy. Furthermore, this generation does not have to necessarily fol-
low on the lightcone, but can also happen at transverse coordinates, thus allowing
for transverse momentum to be generated relative to the initially separating par-
tons. Empirically, not all quark-antiquark pairs can be created equally, as heavier
quarks are less likely to be created in the fragmentation process. For this purpose
a parameter was introduced that describes the suppression of strangeness relative
to light quark flavors. The model is initially also not a priori able to distinguish
between what spin-state a certain hadron that was created has. Therefore parame-
ters for vector meson generation over pseudo-scalar generation for light, strange and
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charm quarks are introduced, as well as similar parameters for spin, orbital angular
and total angular momenta up to 2 are introduced.

3 Tuning Setup, prerequisites, etc

For the general setup, Pythia 8.3.12 (later also 8.3.16 to be discussed below, see
was used where the mainl44 code of the examples section was utilized to enable
the facility to parse input files and provide yoda output files that are using the
RIVET analysis codes for the data sets specified below. RIVET4.0.1 was was used for
the analysis codes, Rivet plotting and the actual data yoda files. A few significant
exceptions to this are that the most recent Belle measurements for light and charmed
mesons [3] were not available yet, therefore yoda data files, Rivet analysis codes
and plotting instructions were created personally to include them in the tuning.
Similarly, a few issues were found in the official RIVET codes that were fixed locally.
Those include a switching of the ordering of integrated hyperon and charmed baryon
cross sections relative to those differential in the momentum fraction. Also for the
transverse momentum dependent measurements, the fractional energy z binning in
the codes was off by one bin for protons that would be physically impossible to
cover at Belle energies due to its mass. Also for some measurements the treatment
of weak decays was inaccurate as only charmed decays were removed in the RIVET
codes while other weak decays were kept, in contrast to the actual measurements.
Therefore the weak-decay removed measurements that include pions or protons were
not included in the fitting procedure. The tune optimization was performed using
the Professor2.5 package [4].

4 Data sets used in the fitting

For the fitting, the following measurements were used, ordered by publication time:

4.1 BELLE 2017 11606201

These measurements include various hyperon and charmed baryon final states as
a function of the fractional momentum x, and the total production cross sections
[5]. Because of these, these measurements are particularly sensitive to the Baryon
production related PYTHIA variables.

4.2 BELLE 2017 11607562

These measurements contain the invariant mass and fractional energy dependent
cross sections for same and opposite charged pairs of pions and kaons within the
same hemisphere [6]. As such, they provide information on the various mass peaks
in their range and therefore also indirectly on higher spin and orbital momentum
particles that feed into these spectra.

10
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4.3 BELLE 2019 11718551

These measurements contain the cross sections of pions, kaons and protons as a
function of energy fraction z and transverse momentum relative to the thrust axis,
in bins of the thrust value [7]. Therefore they are most sensitive to the transverse
momentum generation in the fragmentation, but indirectly also the main LUND
related fragmentation variables, etc.

4.4 BELLE 202011777678

In this publication the cross sections as a function of fractional energy z for pions,
kaons and protons are included, being likely sensitive to the main Lund fragmenta-
tion parameters, as well as the baryon related ones for the protons [§]. Additionally,
also pairs of pions or kaons in same or opposite hemispheres as well as any pairs are
measured as function of the fractional energies of each hadron. Apart from the nom-
inal fractional energy definition two alternate definitions are also included, however
for this exercise they were not included in the tuning effort since those would be
mostly redundant.

4.5 BELLE 2024 _12849895

This is the newest result, just published earlier in 2025, and contains a larger number
of cross sections differential in the momentum fraction z, for various lighter and
charmed mesons decaying into two or three pions or kaons, many for the first time
at B factories [3]. This data set is most sensitive to the pseudo-scalar to vector-
meson ratios, the n suppression, the light pseudo-scalar and vector mixing angles,
and indirectly also the higher spin resonances.

5 Sample generation, etc

Given that the number of datasets that are used are very large, it was not possible
to fit all tuning parameters at the same time. Instead, parameter sets of 6 to 8
were optimized simultaneously while iterating over all relevant parameters and pre-
forming the optimization many times to avoid running into local minima. In each
iteration the best values of the previous tune were set while the next set of variables
were allowed to float. In the initial iterations the parameter ranges were mostly
identical to the allowed ranges in PYTHIA while in the later iterations, the ranges
were narrowed down somewhat for variables that were very stable over the previous
steps. In PROFESSOR, the initial configurations are randomly created based on the
boundaries of the variables to optimize using the command prof2-sample. In earlier
iterations about 500 to 1000 samples were generated while in the later stages 2000
samples were generated. This ensured that the interpolation of the parameter tunes
and responses could be performed using 5th order polynomials, still. For each sample
initially 1.2 M and later 5 M eTe™ — ¢q events were generated for uds and charm
flavors together. As all these measurements had already been corrected for non-qq

11
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Table 1: Parameters used in the tuning, their PYTHIA8.3 default values, the
Bellell default values (as of release-09-00-01 in generators/modules/fragmentation /-
data/pythia_belle2_charm.dat), empty if PYTHIA 8.2 default value is used, the best
value after the tuning and a brief explanation of the parameter.

Variable P8.3 Belle2 Best description

StringZ:aLund 0.68 0.32 0.525 (1-z) power

StringZ:bLund 0.98 0.62 0.910 Transverse mass term

StringPT:sigma 0.335 0.372 Transverse momentum in fragmentation
StringFlav:probStoUD 0.217 0.286  0.240 Strangeness suppression wrt to ud quarks
StringFlav:etaSup 0.60 0.850 Extra eta suppression
StringFragmentation:stopMass 1.0 0.3 0.831 Stop mass (End point condition?)
StringFlav:mesonUDVector 0.50 0.554 Vector to PS ratio light quarks
StringFlav:mesonUDL1S0J1 0.0 0.311 Higher spin states L=1, S=0, J=1 light g
StringFlav:mesonUDL1S1J0 0.0 0.236 Higher spin states L=1, S=1, J=0 light g
StringFlav:mesonUDL1S1J1 0.0 0.267 Higher spin states L=1, S=1, J=1 light quarks
StringFlav:mesonUDL1S1J2 0.0 0.400 Higher spin states L=1, S=1, J=2 light quarks
StringFlav:mesonSvector 0.55 0.870 Vector to PS ratio strange quarks
StringFlav:mesonSDL1S0J1 0.0 0.118 Higher spin states L=1, S=0, J=1 s quarks
StringFlav:mesonSDL1S1J0 0.0 0.374 Higher spin states L=1, S=1, J=0 s quarks
StringFlav:mesonSDL1S1J1 0.0 0.365 Higher spin states L=1, S=1, J=1/2 s quarks
StringFlav:mesonSDL1S1J2 0.0 0.588 Higher spin states L=1, S=1, J=1/2 s quarks
StringZ:rFactC 1.32 1.0 0.410 Bowler modification for charm quarks
StringFlav:mesonCvector 0.88 2.8 2.226 Vector to PS ratio charm quarks

StringFlav:mesonCDL1S0J1 0.0 0.06 1.729 Higher spin states L=1, S=0, J=1 charm
StringFlav:mesonCDL1S1J0 0.0 0.1775 0.635 Higher spin states L=1, S=1, J=0 charm
StringFlav:mesonCDL1S1J1 0.0 0.1868 2.644 Higher spin states L=1, S=1, J=1 charm
StringFlav:mesonCDL1S1J2 0.0 0.1836 1.972 Higher spin states L=1, S=1, J=2 charm

StringFlav:thetaPS -15 -15.71 Mixing angle for PS mesons
StringFlav:thetaV 36 27.08 Mixing angle for V mesons
StringFlav:probQQtoQ 0.081 0.133  0.064 Diquark over quark ratio
StringZ:aExtraDiquark 0.97 1.696 Lund extra a term for diquarks(baryons)
StringFlav:probSQtoQQ 0.9156 0.323 0.521 Strange over light diquark suppression
StringFlav:probQQ1toQQ0 0.0275 0.0468 0.252 Vector over scalar diquark suppression
StringFlav:popcornRate 0.055112 mesons between diquark pairs
StringFlav:popcornSpair 0.106073 strange Popcorn diquark
StringFlav:popcornSmeson 0.447140 strange meson in Popcorn

contributions, no other hard processes are included. Also ISR had been corrected in
the measurements so it was switched off in the MC generation as well.
The following sets of parameters were optimized together initially:

e Set A (main Lund): StringZ:alund, StringZ:bLund, StringPT:sigma, StringFlav:probStoUD,
StringFlav:etaSup, StringFragmentation:stopMass

« Set B (baryons and charm): StringFlav:probQQtoQ, StringFlav:probSQtoQQ,
StringFlav:probQQ1toQQO, StringZ:akExtraDiquark, StringZ:rFactC, StringFlav:mesonCvector
StringFlav:mesonCL1S0J1, StringFlav:mesonCL1S1J0

o Set C (vector mesons, mixing): StringFlav:mesonUDvector, StringFlav:mesonUDL1S0J1,
StringFlav:mesonUDL1S1J0, StringFlav:mesonSvector, StringFlav:mesonSL1S0J1,
StringFlav:mesonSL1S1J0,StringFlav:thetaPS StringFlav:thetaV

« Set D (higher spin states): StringFlav:mesonUDL1S1J1, StringFlav:mesonUDL1S1J2,
StringFlav:mesonSL1S1J1, StringFlav:mesonSL1S1J2, StringFlav:mesonCL1S1J1,
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Figure 1: Correlation matrix of all parameters as obtained from a test tuning set
that was run over 5000 parameters, a reduced set of data sets and only a third order
interpolation in order to be computationally feasible at all.
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StringFlav:mesonCL1S1J2

As can be seen in Fig. [T} all these 28 parameters are not uncorrelated, nor do the

parameters of each set factorize either but generally they are somewhat less corre-
lated between sets. Because of this an iterative approach was used where sets A to D
were optimized several times after optimizing each set first (i.e. A=B—C—D—A—B—etc.)
The individual correlation matrices after the last iteration of each tuning set are
shown in Fig. 2] As one can see, within a tuning set correlations are more pro-
nounced, most notably between the main two Lund parameters, but also, to a lesser
extend between others.

At later iterations of the optimization, the more stable variables were retired

(StringPT:sigma, StringFlav:probStoUD, StringFlav:mesonUDvector, StringFlav:probQQtoQ),
using their best values from then on, but including the additional higher spin states
and eventually the popcorn variables. The later settings therefore became:

o Set A’ (main Lund): StringZ:aLund, StringZ:bLund, StringFlav:etaSup, StringFrag-

mentation:stopMass, mesonUDL1S0J1, mesonUDL1S1J0

popcornRate, StringFlav:popcornSpair, StringFlav:popcornSmeson

o Set C’ (strange+mixing): StringFlav:mesonSvector, StringFlav:mesonSL1S0J1,
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Figure 3: Sensitivities of the pion cross sections as a function of the fractional energy
z. The diffenent curves correspond to the sensitivities to the various tune parameters.

StringFlav:mesonSL1S1J0, StringFlav:mesonSL151J1, StringFlav:mesonSL1S1J2,
StringFlav:thetaPS, StringFlav:thetaV

o Set D’ (charm): StringZ:rFactC, StringFlav:mesonCvector, StringFlav:mesonCL1S0J1,
StringFlav:mesonCL1S1J 0, StringFlav:mesonCL1S1J1, StringFlav:mesonCL1S1J2

6 Individual sensitivities

In the following the individual sensitivities to the various tune parameters are shown
for several of the key measurements.

6.1 Single hadron cross sections

This single pion cross sections have naturally a very high sensitivity to the main Lund
fragmentation parameters, as well as to the fragmentation transverse momentum as
can be seen in Fig. [3| There is also some sensitivity to the light quark vector mesons
to pseudoscalar ratios and higher spin states. For kaons the sensitivities are similar
except that strangeness suppression and the corresponding strange quark VM and
higher spin variables are more sensitive as can be seen in Fig. 4l Protons in contrast

are mostly sensitive to the diquark ratio and to a lesser extend the main Lund
parameters.
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Figure 4: Sensitivities of the kaon cross sections as a function of the fractional energy
z. The different curves correspond to the sensitivities to the various tune parameters.

For the vector mesons cross sections, the vector mesons variables for the relevant
flavors are clearly the most sensitive parameters as can be seen in Fig. [f] for the p
mesons, Fig. [7] for the w Fig.[§] for the K* and Fig. [0 for the ¢ mesons. The strange
mesons do also have some sensitivity to the strangeness suppression again.

The 1 mesons naturally are most sensitive to the eta suppression parameter while
they also provide a small sensitivity to the pseudoscalar mixing angle, apart from
the regular Lund parameters, as shown in Fig. [10]

The charmed mesons obtain additional sensitivity to the extra charm term for
the fragmentation, as well as for the vector mesons to the charmed VM hand higher
spin state variables.

6.2 Di-hadron cross sections

For the di-hadron cross sections, again the vector mesons components appear in
the vicinity of their masses, while additionally some sensitivity to the higher spin
mesons is visible, particularly at higher masses as those can mostly be only indirectly
obtained in these di-hadron spectra.

6.3 Transverse momentum dependent cross sections

The transverse momentum dependent cross sections naturally have a very high sen-
sitivity to the transverse momentum generated in the fragmentation process as can
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w6 be seen in Figs. [16] to
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7 Tuning fits

7.1 Main hadrons

The best results can be seen in Fig. [19] to 2] for the main pion, kaon and proton
cross sections. One can see that for the mesons the data can be described reasonably
well overall, while the high precision of the pion data still results in fairly high x?2.
The proton data cannot be described so well which appears to be a common problem
for baryon production in the Lund model as will be apparent from the other baryon
related results below.

7.2 Decaying and charmed mesons

For the various light mesons that were studied in publication [3], the tuning efforts
are able to provide a good description of the data and generally low 2. Those fit
results are displayed in Figs. [22] to [25]

Charmed mesons are also mostly well described, with the vector mesons compar-
ing particularly well, as can be seen in Figs. 26 to 28 On the strange D mesons are
slightly less well described as apparently the additional shift in the peak positions
due to the heavier strange quarks cannot be well accommodated in the Lund model.
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Figure 20: Kaon cross sections as a function of the fractional energy z. The data is
displayed by black points while the best fit result in red.
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Figure 21: Proton cross sections as a function of the fractional energy z. The data
is displayed by black points while the best fit result in red.
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Figure 22: Left: neutral p cross sections as a function of the fractional momentum
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best fit result in red.
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Figure 23: Left: neutral K™ cross sections as a function of the fractional momentum
xp. Right: charged K™ cross sections. The data is displayed by black points while

the best fit result in red.
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Figure 25: Left: n cross sections as a function of the fractional momentum z,. Right:
K cross sections. The data is displayed by black points while the best fit result in
red.

In the figures the y? values are often given as nans, since Rivet cannot deal with
empty bins, but they were added by hand based on the professor tuning outcome
which does provide them correctly.

7.3 Di-hadrons in various configurations

In the following, examples of the dihadron invariant mass distributions are shown
for one low and one higher fractional energy bin in Figs. 29 to [34] One can see that
for many hadron combinations, the overall description is good, but some features
are not well reproduced. Most notably in the opposite-sign pion-kaon spectra the
bump at around 1.5 GeV is not as pronounced in the MC, or rather somewhat
elongated in comparison to the data, As the underlying decay of D mesons into
Krm is also present in PYTHIA, likely some of the details are not as well described
there compared to EvtGen (as the bump was very clearly visible in the Belle I MC
as well). Another aspect that is not well described are the same-sign pion pair’s low
mass region which generally underestimates the amount of pairs. For pion-kaon and
kaon pairs the description is generally quite resonable also at lower masses.

Also the back-to-back di-hadron distributions as a function of fractional energies,
the description of the data by the best tune is again very reasonable, as shown in
Figs. [35| to 40| for selected fractional energy bin and hadron type combinations.

7.4 Transverse momentum dependent cross sections

The transverse momentum dependent cross sections are also fairly well described,
particularly the low transverse momentum region that most directly is sensitive to
the transverse momentum generated in the fragmentation process. In the higher
transverse momentum tails, some slight differences can be seen, albeit with rather
large uncertainties on the measurements.
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Figure 29: Left: 777~ pair cross sections as a function of the invariant mass m for
the fractional energy bin 0.3 — 0.35. Right: The same for the fractional energy bin
0.7 — 0.75. The data is displayed by black points while the best fit result in red.
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Figure 30: Left: 77" pair cross sections as a function of the invariant mass m for
the fractional energy bin 0.3 — 0.35. Right: The same for the fractional energy bin
0.7 — 0.75. The data is displayed by black points while the best fit result in red.
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Figure 31: Left: 77 K~ pair cross sections as a function of the invariant mass m for
the fractional energy bin 0.3 — 0.35. Right: The same for the fractional energy bin
0.6 — 0.65. The data is displayed by black points while the best fit result in red.
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Figure 32: Left: 77 KT pair cross sections as a function of the invariant mass m for
the fractional energy bin 0.3 — 0.35. Right: The same for the fractional energy bin
0.7 — 0.75. The data is displayed by black points while the best fit result in red.
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Figure 33: Left: K™K~ pair cross sections as a function of the invariant mass m for
the fractional energy bin 0.3 — 0.35. Right: The same for the fractional energy bin
0.7 — 0.75. The data is displayed by black points while the best fit result in red.
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Figure 34: Left: K K™ pair cross sections as a function of the invariant mass m for
the fractional energy bin 0.35 — 0.4. Right: The same for the fractional energy bin
0.7 — 0.75. The data is displayed by black points while the best fit result in red.
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Figure 35: Left: 777~ pair cross sections in opposite hemispheres as a function of
the invariant mass 2 for the fractional energy bin 0.25 < z; < 0.3. Right: The same
for the fractional energy bin 0.55 < z; < 0.6. The data is displayed by black points
while the best fit result in red.
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Figure 36: Left: 77" pair cross sections in opposite hemispheres as a function of
the invariant mass 2z for the fractional energy bin 0.25 < 2z; < 0.3. Right: The same
for the fractional energy bin 0.55 < z; < 0.6. The data is displayed by black points

while the best fit result in red.
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Figure 37: Left: 77 K~ pair cross sections in opposite hemispheres as a function of
the invariant mass 25 for the fractional energy bin 0.25 < z; < 0.3. Right: The same
for the fractional energy bin 0.55 < z; < 0.6. The data is displayed by black points

while the best fit result in red.
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Figure 39: Left: K+t K~ pair cross sections
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Figure 40: Left: K+t K™ pair cross sections in opposite hemispheres as a function of
the invariant mass 2z for the fractional energy bin 0.25 < 2z; < 0.3. Right: The same
for the fractional energy bin 0.55 < z; < 0.6. The data is displayed by black points
while the best fit result in red.
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Figure 41: Left: 7% cross sections as a function of the transverse momentum pp for
the fractional energy bin 0.2 < z; < 0.25 in the thrust bin 0.8 — 0.9. Right: The
same for the fractional energy bin 0.6 < z; < 0.65. The data is displayed by black
points while the best fit result in red.
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Figure 42: Left: K* cross sections as a function of the transverse momentum py for
the fractional energy bin 0.2 < z; < 0.25 in the thrust bin 0.8 — 0.9. Right: The
same for the fractional energy bin 0.6 < z; < 0.65. The data is displayed by black
points while the best fit result in red.
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Figure 43: Left: p cross sections as a function of the transverse momentum pz for
the fractional energy bin 0.2 < z; < 0.25 in the thrust bin 0.8 — 0.9. Right: The
same for the fractional energy bin 0.6 < z; < 0.65. The data is displayed by black
points while the best fit result in red.
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Figure 44: Left: A spectrum as a function of z;,. Right X spectrum as a function of
xp. The data is displayed by black points while the best fit result in red.
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7.5 Hyperons and charmed baryons

For hyperons the description is still not as good, even after including the popcorn
variables and used the bug-fixed version of PYTHIA. The overall shapes do have
improved, however, as can be seen in Figs. |44 and 45| for some hyperons and charmed
baryons, respectively. The peak position of the charmed baryons is somewhat similar
to the measurements, but the tune predicts a rather abrupt drop-off of the cross
sections at very high momentum fractions that is not confirmed in the data, or at

least not as sharp.
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8 Systematic uncertainties and tests

The best variables and their variations are summarized in Table [2| in comparison to
the default values of PYTHIA and currently in use in Belle2. In this table the best
values are given in the second column, the lower and upper values represent the
lowest and highest variations of the tune iterations to the best value (i.e. the last
iteration for that particular variable). The variations are just given as a measure
of how much these variables varied during the tuning evaluations and cannot be
considered as reliable uncertainties. In turn, the statistical uncertainties from the
tuning efforts are tiny and are therefore not tabulated. One can see that the variables
that have been retired after several iterations were quite stable. The corresponding
results are also highlighted in Fig. [46|in comparison to the other values.
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Figure 46: Best tune results (Red points), including their estimated uncertainties as
discussed in the text (yellow bars) in comparison to the currently used (Darkgreen)
and PYTHIA default (Blue boxes) values for each variable. Due to the significantly
larger ranges, the results from mixing angles are not shown.,

The individual sets of variables and their variations are also visualized in the fol-
lowing figures as a function of their iterations. The Main Lund string fragmentation
variables can be found in Fig. [47] One sees again that the strangeness suppression
and the transverse momentum generation are indeed not changing much over the
iterations.
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Figure 47: Main Lund variables, the allowed ranges are shown in shaded regions and
the best values as a function of the various tuning iterations
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Figure 48: Light quark related vector meson and higher spin variables as a function
of the various tuning iterations, the allowed ranges are shown in shaded regions and
the best values as the center line. Dashed lines represent variables that have been
fixed after they became stable.

The light quark vector meson and higher spin variables can be seen in Fig. [48]|
Especially the higher spin variables are not particularly well determined and thus
fluctuate from iteration to iteration, but the vector meson fraction is fairly stable
which is why it was fixed eventually.

The corresponding strange and charm variables are displayed in Figs. [49 and [50]
respectively. In these, one can see that the two vector mesons fractions are again
the most stable variables and that the charm vector meson fraction is significantly
larger than that of strange quarks which again is slightly larger than that for light
quarks. The higher spin values typically vary much as well.

The baryon related fragmentation variables are displayed in Fig. [51] Apart from
the main diquark fragmentation and the extra Lund factor for diquarks, the values
are fluctuating significantly between iterations. After the inclusion of the popcorn
values, the vector diquark fraction also appears to stabilize.

The vector and pseudoscalar mixing angles are displayed in Fig. |52 Especially
the pseudoscalar mixing value is fluctuating significantly while the vector angle is
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Figure 49: Strange quark related vector meson and higher spin variables as a function
of the various tuning iterations, the allowed ranges are shown in shaded regions and
the best values as the center line. Dashed lines represent variables that have been
fixed after they became stable.
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Figure 50: Charm quark related vector meson and higher spin variables as a function
of the various tuning iterations, the allowed ranges are shown in shaded regions and
the best values as the center line. Dashed lines represent variables that have been
fixed after they became stable.
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Figure 52: Mixing related variables as a function of the various tuning iterations,
the allowed ranges are shown in shaded regions and the best values as the center
line. Dashed lines represent variables that have been fixed after they became stable.

slightly more stable.

Last, the evolution of the goodness of fit as a function of the tune iterations is
displayed in Fig. . One can generally see that the reduced x? did decrease for the
most part with the occasional fluctuations. After including the higher spin states
and fixing some variables not too much improvement can be seen. Another reduction
can be seen when including the popcorn variables at around tune iteration 65, but
again after an initial drop the values flatten out. The last improvement can be seen
from using the correct treatment of the extra a parameter that was fixed by the
PYTHIA maintainers from iteration 77. Since then, the x? does not improve anymore
over two further iterations for each set of variables. This suggests that within the
space of variables, no significant further improvements can be achieved and likely
these are the best settings one can get.
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Figure 53: Evolution of the goodness of fit normalized by the number of degrees of
freedom as a function of the various tuning iterations.

8.1 Comparison to older settings

It is also instructive to learn how the different settings after tuning compare to
the settings used as default or previously at Belle2. Those are displayed for vari-
ous measurements in the figures to [61} Due to some empty bins in the latest
measurements which Rivet cannot handle well, the individual y*/NDF for these
measurements are given as "nan”. It is visible that while individual spectra for very
abundant particles such as light mesons are often reasonably well-described by the
older settings, especially di-hadron mass or momentum spectra and heavier particles
can be much better described after tuning.

Summing up all other x? /N DF results gives average values of 15.3 for the Pythia
default settings, 14.4 for the previously used Belle2 settings and 6.3 for the latest
best settings. Note that these numbers are different from the actual fit numbers
since here the average over all individual spectra is taken, rather than summing all
points as is done in the fit. Those and the corresponding figures make it abundantly
clear, that the tuning effort successfully improved the description of the included
measurements.
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Scaled energy spectrum for 7= (all decays)
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Figure 54: Pion cross sections as a function of the fractional energy z. The data is
displayed by black points while the PYTHIA default is displayed in red, the current
Belle2 setting in blue, and the best tune in green.
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Scaled energy spectrum for K= (all decays)
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Figure 55: Kaon cross sections as a function of the fractional energy z. The data is
displayed by black points while the PYTHIA default is displayed in red, the current
Belle2 setting in blue, and the best tune in green.
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Scaled energy spectrum for p, 7 (all decays)
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Figure 56: Proton cross sections as a function of the fractional energy z. The data is
displayed by black points while the PYTHIA default is displayed in red, the current
Belle2 setting in blue, and the best tune in green.
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Figure 57: Top: m¥7~ spectra as a function of z, for two bins of z;. Bottom: 77
spectra for the same z bins. The data is displayed by black points while the PYTHIA
default is displayed in red, the current Belle2 setting in blue, and the best tune in

green.
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Figure 58: Top: 7 K~ spectra as a function of z, for two bins of z;. Bottom: 7t K=
spectra for the same z bins. The data is displayed by black points while the PYTHIA
default is displayed in red, the current Belle2 setting in blue, and the best tune in
green.

23



dr/dz)dz, for K=K7 (all decays) (040 < z) < 045) d2r/dzydz; for K= K7 {all decays) (070 < z; < 0.75)

— LT T R R _— T T T SRR
T 10 | T 1
T{« I Ti“ + Data
) < 4+ default, y2/Ng; = 1472
o 100 o 1 4+ belle?, x?/ Ny = 8.68
T E e 2
- & fNg; =098
o o
107 { 104}
. 4 Data
104, -+ default, xszdf =702 | 10°)
© 4 belle2, g3/ Ny = 547 | g
4 tune89, y2/Ny = 028 . :
10% Ly T (1]
14 ' 14 ‘ N
13 == 13
212 212 ’7 | =
QH]._._.\ i e e S D . | D}é 4 I 1
Goe T T T T T T 1t 1ttt T\-f- 3 ol T ==
= 08 = 08 —=
0.7 0.7
0.6 0.6
osbr i aini i B B psbe il bl Lbbienlaiili
02 03 04 05 0.6 0.7 08 09 1.0 0.2 03 04 05 06 a7 08 09 1.0
o3 2
d2r/dzydzy for K= K* (all decays) (070 < z; < 0.75)
E g 10-°! ------------------------------------ B
o' i
k] ] .
g g 10t
T T k
Nt:‘ Nb‘
o o
10% | — |
+ Data = <+ Data ] ]
U 4 default,y?/Ng = 1584 ] 12, + default,x?/ Ny =786 4| HH
1% L belle2, x%/ Ny — 2082 - © 4 belle2, x%/ Ny = 1565 SugE
© o tune89, y2/Ng — 209 RE © 4 tune89, x2/Ny — 096 ;
1! 107 e
14 14 I I LJ
| ]
- | 21
85 I =y " l
Goslt T Tt T SusE—H T T 11
= 08 = 08
0.7 L. 07
0.6 0.6
okl Lol el e -y osbee s Lo b ol el el o L
0.2 03 04 05 0.6 0.7 0.8 09 10 0.2 03 0.4 05 0.6 07 08 0.9
3 I

Figure 59: Top: K™K~ spectra as a function of 2, for two bins of z;. Bottom: K*K*
spectra for the same z bins. The data is displayed by black points while the PYTHIA
default is displayed in red, the current Belle2 setting in blue, and the best tune in
green.
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Figure 60: Left: A spectrum as a function of z;,. Right X spectrum as a function of
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red, the current Belle2 setting in blue, and the best tune in green.
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Table 2: Best tune variables and the variation of the best values during the various
tune iterations as well as the PYTHIA default values and the current Belle2 values
(release 8/9). Note, that Belle2 has also set the following values etaPrimeSub=0.12,
MultIncrease=4.5, and MultIncreaseWeak=2.0 that were not studied here due to
lack of sensitivity.

Variable Best results default Belle2
StringZ:ALund 0.592 -0.067 4-0.253 0.680 0.32
StringZ:BLund 1.080 -0.170 +0.036 0.980 0.62
StringFragmentation:StopM 0.734 -0.050 4+0.535 0.800 0.3
StringFlav:etaSup 0.649 -0.301 +0.221 0.600 0.27
StringFlav:StoUD 0.240 -0.006 4-0.004 0.217  0.286
StringFlav:SigmaKt 0.372 -0.019 4-0.000 0.335  0.335
StringFlav:mesonUDvector 0.565 -0.109 +0.138 0.500  0.500
StringFlav:mesonUDL1S0J1  0.556 -0.306 +0.108 0 0
StringFlav:mesonUDL1S1J0  0.411 -0.234 +0.000 0 0
StringFlav:mesonUDL1S1J1  0.226 -0.000 +0.086 0 0
StringFlav:mesonUDL1S1J2 0.341 -0.061 +0.399 0 0
StringFlav:mesonSvector 0.836 -0.163 +0.498 0.550  0.550
StringFlav:mesonSL1S0J1 0.229 -0.110 +0.459 0 0
StringFlav:mesonSL1S1J0 0.469 -0.094 +0.243 0 0
StringFlav:mesonSL1S1J1 0.872 -0.489 +4-0.000 0 0
StringFlav:mesonSL1S1J2 0.370 -0.207 4-0.001 0 0
StringFlav:mesonCvector 1.740 -0.882 +0.486 0.880 2.8
StringFlav:mesonCL1S0J1 0.865 -0.634 +0.864 0 0.06
StringFlav:mesonCL1S1J0 0.300 -0.252 4-0.408 0 0.1775
StringFlav:mesonCL1S1J1 0.772 -0.129 40.145 0 0.1868
StringFlav:mesonCL1S1J2 0.170 -0.084 4-0.198 0 0.1836
StringZ:rFactC 1.069 -0.658 +0.383 1.32 1.0
StringFlav:probQQtoQ 0.064 -0.002 4-0.008 0.081  0.133
StringFlav:probSQtoQQ 0.497 -0.398 +0.184 0.915  0.323
StringFlav:probQQ1toQQ0 0.065 -0.000 +4-0.864 0.0275 0.0468
StringZ:aExtraDiquark 1.487 -0.785 40.420 0.970  0.970
StringFlav:popcornRate 0.734 -0.000 +0.104 0.500  0.500
StringFlav:popcornSpair 0.350 -0.016 +0.000 0.500  0.500
StringFlav:popcornSmeson 0.180 -0.000 +0.139 0.900  0.900
StringFlav:thetaPS 57.719 -78.753 +10.675  -15. -15.
StringFlav:thetaV 24.353 -0.952 +24.444 26. 26.
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9 Results

The best results of the tuning exercise are already tabulated in table [I| together with
the default values used in PYTHIAS8.3 and Bellell. The overall confidence in the best
results is high as indicated by the data-tune comparisons in the previous chapters.
There are however different levels of how confident the best variables are depending
on the overall sensitivities. Based on those, the main Lund parameters are probably
very well determined by the tuning as the sensitivities are very high. The vector me-
son related variables are also fairly well determined thanks to the latest Belle paper
[3] which explicitly looked at the fragmentation of vector mesons. The higher spin
related variables are somewhat less determined due to the fact that no explicit mea-
surements of these particles are available. There is some indirect sensitivity via the
invariant mass distributions where the higher mass ranges get populated from such
particle decays. Last, the baryon related variables seem to be also well-determined,
but it is obvious by the differences from the tune to the data that the description of
baryon fragmentation in the Lund model seems to be still lacking. It will be still bet-
ter to use the optimized values, but there need to be also significant improvements
on the model description itself to really obtain a very reliable description of bary-
onic final states. As a next step for the Bellell continuum simulation development,
it will be important to see whether the optimized settings also directly translate into
significant improvements within the overall Bellell simulation framework that uses
EvtGen for decays rather than the standalone PYTHIA used in these studies.
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« A Pythia StringZ:aExtraDiquark bugfix related
o changes

> As indicated in communication by the PYTHIA team, a bug was found in their port-
13 ing of the String fragmentation routines from fortran-based sc pythia6 to PYTHIAS
s1a which persisted until version 8.3.14. This bug was related to the handling of the
e1s variable StringZ:aExtraDiquark. This behavior was fixed in later versions, but since
16 most tuning efforts using older versions obtained best parameters that included this
s17 bug, a switch was introduced to still use the old, incorrect treatment or the corrected
s one by: StringZ:useOldAExtra = on/off. To test the actual behavior on the Belle2
s10 tuning efforts, the best tune iteration at that time (tune71) was compared for the
s20 old, previously used PYTHIA version 8.3.13, and the latest version 8.3.16 either hav-
s21 ing the old or new treatment explicitly switched on or off. As expected, these changes
s22 had no visible effect on any of the meson related measurements used in the tune op-
623 timization. When using the old treatment, also no sizable changes were observed for
s the various baryon measurements, but the behavior between old and new treatment
s2s was significantly different. As intended for this variable, the high-z or x, shapes be-
s26 came softer with the new treatment which resulted in a generally better description
sz of the proton cross sections. Also the behavior of hyperon and charmed baryon cross
s2s sections visibly improved while the overall magnitudes are still not well described.
s20 The corresponding comparisons are shown in Figs. and for protons, several
s30 hyperons and charmed baryons. In these comparisons, it is also visible that the de-
sn fault behavior (i.e. without explicitly setting the StringZ:useOldAExtra = on/off
s variable) corresponds to the old setting. Because of these changes, and the improve-
33 ments that go with them, the remainder of the tuning effort was performed using
e3¢« the PYTHIA version 8.3.16 and using the new treatment via StringZ:useOldAExtra
35 = Off.

636 Initially, it was not clear, that the old treatment is still used per default, which re-
s sulted in the first tuning efforts after this switch to still use it. Only from tune76 for-
s3s ward the new, correct treatment was explicitly implemented via StringZ:useOldAExtra
630 = Off.
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Scaledenergy spectrum for p, f (all decays)
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Figure 62: Comparison of the distributions for protons (top left), A (top right), 3°

(bottom left) and ¥*t as a function of
points correspond to the measurements

energy or momentum fraction. The black
while the yellow points correspond to the

best values after tune 71 using PYTHIA8.3.13, the green points correspond to the
same tune but using PYTHIAS.3.16, the blue points use the same but explicitly
setting StringZ:useOldAExtra to “on”, and the red points correspond to the same,

but switching it to "off”.
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Figure 63: Comparison of the distributions for 2~ (top left), A, (top right), ¥2(2455)
(bottom left) and %2(2520) as a function of momentum fraction. The black points
correspond to the measurements while the yellow points correspond to the best
values after tune 71 using PYTHIAS.3.13, the green points correspond to the same
tune but using PYTHIAS8.3.16, the blue points use the same but explicitly setting
StringZ:useOldAExtra to ”on”, and the red points correspond to the same, but

switching it to "oft”.
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