

1 Pythia 8.3 tuning based on Belle fragmentation related
2 measurements

3 Ralf Seidl^{1,2,3}

4 ¹ *Tokyo University, QNSI, Tokyo, Japan*

5 ² *RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan*

6 ³ *RIKEN-BNL Research Center, Upton New York 11973-5000, USA*

7 January 13, 2026
8 v. 2.0

9 **Abstract**

10 Belle has measured a large number of fragmentation-related results that
11 have been already successfully used in global fits of fragmentation functions.
12 These fragmentation functions are important input for studying the nucleon
13 structure in semi-inclusive Deeply inelastic lepton nucleon scattering and
14 hadron collisions. Apart from the additional flavor-sensitivity, also spin and
15 transverse momentum of partons in the nucleon can be accessed this way. Ad-
16 ditionally, these fragmentation-related results should be extremely sensitive
17 to the fragmentation parameters in Monte Carlo event generators. This note
18 concentrates on the tuning efforts of PYTHIA 8.3 using these measurements.

19 **Contents**

20 1 To-Do list and Changelog	8
21 1.1 README	8
22 1.2 To-Do list	8
23 1.3 Changelog v1.0 → v2.0	8
24 2 Introduction	9
25 2.1 The Lund Model	9
26 3 Tuning Setup, prerequisites, etc	10
27 4 Data sets used in the fitting	10
28 4.1 BELLE_2017_I1606201	10
29 4.2 BELLE_2017_I1607562	10
30 4.3 BELLE_2019_I1718551	11
31 4.4 BELLE_2020_I1777678	11
32 4.5 BELLE_2024_I2849895	11

³³	5 Sample generation, etc	11
³⁴	6 Individual sensitivities	15
³⁵	6.1 Single hadron cross sections	15
³⁶	6.2 Di-hadron cross sections	16
³⁷	6.3 Transverse momentum dependent cross sections	16
³⁸	7 Tuning fits	29
³⁹	7.1 Main hadrons	29
⁴⁰	7.2 Decaying and charmed mesons	29
⁴¹	7.3 Di-hadrons in various configurations	33
⁴²	7.4 Transverse momentum dependent cross sections	33
⁴³	7.5 Hyperons and charmed baryons	43
⁴⁴	8 Systematic uncertainties and tests	44
⁴⁵	8.1 Comparison to older settings	48
⁴⁶	9 Results	57
⁴⁷	A Pythia StringZ:aExtraDiquark bugfix related changes	59

⁴⁸ List of Figures

⁴⁹	1 Correlation matrix of all parameters as obtained from a test tuning set that was run over 5000 parameters, a reduced set of data sets and only a third order interpolation in order to be computationally feasible at all.	13
⁵³	2 Correlation matrices of each tuning set separately, obtained from the last iterations of the nominal tuning procedure and interpolation based on 2000 parameter sets each, the full data sets and a 5th order polynomial interpolation.	14
⁵⁷	3 Sensitivities of the pion cross sections as a function of the fractional energy z . The different curves correspond to the sensitivities to the various tune parameters.	15
⁶⁰	4 Sensitivities of the kaon cross sections as a function of the fractional energy z . The different curves correspond to the sensitivities to the various tune parameters.	16
⁶³	5 Sensitivities of the proton cross sections as a function of the fractional energy z . The different curves correspond to the sensitivities to the various tune parameters.	17
⁶⁶	6 Sensitivities of the ρ^0 cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.	18
⁶⁹	7 Sensitivities of the ω cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.	18

72	8	Sensitivities of the K^{*0} cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.	19
73	9	Sensitivities of the ϕ cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.	20
74	10	Sensitivities of the η cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.	20
75	11	Sensitivities of the D^+ cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.	21
76	12	Sensitivities of the D^{*0} cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.	22
77	13	Sensitivities of the $\pi^+\pi^-$ cross sections as a function of the invariant mass, in the z bin . The different curves correspond to the sensitivities to the various tune parameters.	23
78	14	Sensitivities of the π^+K^- cross sections as a function of the invariant mass, in the z bin . The different curves correspond to the sensitivities to the various tune parameters.	24
79	15	Sensitivities of the K^+K^- cross sections as a function of the invariant mass, in the z bin. The different curves correspond to the sensitivities to the various tune parameters.	25
80	16	Sensitivities of the π cross sections as a function of the transverse momentum in the z bin and a thrust value of $0.8 - 0.9$. The different curves correspond to the sensitivities to the various tune parameters.	26
81	17	Sensitivities of the π cross sections as a function of the transverse momentum in the z bin and a thrust value of $0.8 - 0.9$. The different curves correspond to the sensitivities to the various tune parameters.	27
82	18	Sensitivities of the π cross sections as a function of the transverse momentum in the z bin and a thrust value of $0.8 - 0.9$. The different curves correspond to the sensitivities to the various tune parameters.	28
83	19	Pion cross sections as a function of the fractional energy z . The data is displayed by black points while the best fit result in red.	29
84	20	Kaon cross sections as a function of the fractional energy z . The data is displayed by black points while the best fit result in red.	30
85	21	Proton cross sections as a function of the fractional energy z . The data is displayed by black points while the best fit result in red.	31
86	22	Left: neutral ρ cross sections as a function of the fractional momentum x_p . Right: charged ρ cross sections. The data is displayed by black points while the best fit result in red.	31
87	23	Left: neutral K^* cross sections as a function of the fractional momentum x_p . Right: charged K^* cross sections. The data is displayed by black points while the best fit result in red.	32

117	24	Left: ω cross sections as a function of the fractional momentum x_p . Right: ϕ cross sections. The data is displayed by black points while the best fit result in red. The missing χ^2 is 3.96.	32
119	25	Left: η cross sections as a function of the fractional momentum x_p . Right: K_S cross sections. The data is displayed by black points while the best fit result in red.	33
120	26	Left: D^+ cross sections as a function of the fractional momentum x_p . Right: D^0 cross sections. The data is displayed by black points while the best fit result in red.	34
121	27	Left: D^{*+} cross sections as a function of the fractional momentum x_p . Right: D^{*0} cross sections. The data is displayed by black points while the best fit result in red.	34
122	28	Left: D_s^+ cross sections as a function of the fractional momentum x_p . Right: D_s^{*+} cross sections. The data is displayed by black points while the best fit result in red.	35
123	29	Left: $\pi^+\pi^-$ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.	35
124	30	Left: $\pi^+\pi^+$ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.	36
125	31	Left: π^+K^- pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.6 - 0.65$. The data is displayed by black points while the best fit result in red.	36
126	32	Left: π^+K^+ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.	37
127	33	Left: K^+K^- pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.	37
128	34	Left: K^+K^+ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.35 - 0.4$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.	38
129	35	Left: $\pi^+\pi^-$ pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.	38

160	36	Left: $\pi^+\pi^+$ pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.	39
161			
162			
163			
164	37	Left: π^+K^- pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.	39
165			
166			
167			
168	38	Left: π^+K^+ pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.	40
169			
170			
171			
172	39	Left: K^+K^- pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.	40
173			
174			
175			
176	40	Left: K^+K^+ pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.	41
177			
178			
179			
180	41	Left: π^\pm cross sections as a function of the transverse momentum p_T for the fractional energy bin $0.2 < z_1 < 0.25$ in the thrust bin $0.8 - 0.9$. Right: The same for the fractional energy bin $0.6 < z_1 < 0.65$. The data is displayed by black points while the best fit result in red.	41
181			
182			
183			
184	42	Left: K^\pm cross sections as a function of the transverse momentum p_T for the fractional energy bin $0.2 < z_1 < 0.25$ in the thrust bin $0.8 - 0.9$. Right: The same for the fractional energy bin $0.6 < z_1 < 0.65$. The data is displayed by black points while the best fit result in red.	42
185			
186			
187			
188	43	Left: p cross sections as a function of the transverse momentum p_T for the fractional energy bin $0.2 < z_1 < 0.25$ in the thrust bin $0.8 - 0.9$. Right: The same for the fractional energy bin $0.6 < z_1 < 0.65$. The data is displayed by black points while the best fit result in red.	42
189			
190			
191			
192	44	Left: Λ spectrum as a function of x_p . Right Σ^0 spectrum as a function of x_p . The data is displayed by black points while the best fit result in red.	43
193			
194			
195	45	Left: Λ_c^+ spectrum as a function of x_p . Right $\Sigma_c^0(2455)$ spectrum as a function of x_p . The data is displayed by black points while the best fit result in red.	43
196			
197			
198	46	Best tune results (Red points), including their estimated uncertainties as discussed in the text (yellow bars) in comparison to the currently used (Darkgreen) and PYTHIA default (Blue boxes) values for each variable. Due to the significantly larger ranges, the results from mixing angles are not shown.,	44
199			
200			
201			
202			
203	47	Main Lund variables, the allowed ranges are shown in shaded regions and the best values as a function of the various tuning iterations	45
204			

205	48	Light quark related vector meson and higher spin variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.	45
206	49	Strange quark related vector meson and higher spin variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.	46
207	50	Charm quark related vector meson and higher spin variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.	46
208	51	Baryon related variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.	47
209	52	Mixing related variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.	47
210	53	Evolution of the goodness of fit normalized by the number of degrees of freedom as a function of the various tuning iterations.	48
211	54	Pion cross sections as a function of the fractional energy z . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	49
212	55	Kaon cross sections as a function of the fractional energy z . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	50
213	56	Proton cross sections as a function of the fractional energy z . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	51
214	57	Top: $\pi^+\pi^-$ spectra as a function of z_2 for two bins of z_1 . Bottom: $\pi^\pm\pi^\pm$ spectra for the same z bins. The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	52
215	58	Top: π^+K^- spectra as a function of z_2 for two bins of z_1 . Bottom: $\pi^\pm K^\pm$ spectra for the same z bins. The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	53
216	59	Top: K^+K^- spectra as a function of z_2 for two bins of z_1 . Bottom: $K^\pm K^\pm$ spectra for the same z bins. The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	54

248	60	Left: Λ spectrum as a function of x_p . Right Σ^0 spectrum as a function of x_p . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	55
252	61	Left: Λ_c^+ spectrum as a function of x_p . Right $\Sigma_c^0(2455)$ spectrum as a function of x_p . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.	55
256	62	Comparison of the distributions for protons (top left), Λ (top right), Σ^0 (bottom left) and Σ^{*+} as a function of energy or momentum fraction. The black points correspond to the measurements while the yellow points correspond to the best values after tune 71 using PYTHIA8.3.13, the green points correspond to the same tune but using PYTHIA8.3.16, the blue points use the same but explicitly setting StringZ:useOldAExtra to "on", and the red points correspond to the same, but switching it to "off".	60
264	63	Comparison of the distributions for Ξ^- (top left), Λ_c (top right), $\Sigma_c^0(2455)$ (bottom left) and $\Sigma_c^0(2520)$ as a function of momentum fraction. The black points correspond to the measurements while the yellow points correspond to the best values after tune 71 using PYTHIA8.3.13, the green points correspond to the same tune but using PYTHIA8.3.16, the blue points use the same but explicitly setting StringZ:useOldAExtra to "on", and the red points correspond to the same, but switching it to "off".	61

²⁷² **1 To-Do list and Changelog**

²⁷³ **1.1 README**

²⁷⁴ **1.2 To-Do list**

²⁷⁵ • add sensitivity discussion for popcorn variables

²⁷⁶ **1.3 Changelog v1.0 → v2.0**

²⁷⁷ • Added candle plot with best values in comparison to default and Belle2 values

278 2 Introduction

279 Fragmentation describes the formation of confined final-state hadrons from high-
280 energetic, asymptotically free partons. Just as parton distribution functions, they
281 cannot be calculated from first principles in QCD and therefore need to be extracted
282 experimentally. For the same reason, also Monte Carlo event generators have to use
283 models to describe this. One of the most commonly used models is the Lund string
284 fragmentation model. While the Lund model can describe the fragmentation reason-
285 ably well, overall, it relies on many parameters that need to be tuned using data.
286 In this note this tuning was performed systematically on the various fragmentation
287 measurements that contain sensitivities to the main Lund parameters, the suppres-
288 sion of strange quark pairs produced in the fragmentation, the suppression of η
289 mesons, the suppression of di-quark pair production needed to create baryons in the
290 fragmentation, the transverse momentum generated in the fragmentation, and the
291 role vector mesons and higher spin particle production has over the pseudoscalar
292 production, etc.

293 In the following the procedure to tune the fragmentation parameters are dis-
294 cussed. Initially the different types of software and their setups are discussed. Then,
295 the sensitivities of the used measurements to the relevant variables are discussed
296 before the actual fit results and best tune parameters are presented and discussed.

297 2.1 The Lund Model

298 The Lund String fragmentation model [1, 2] is the main model that tries to describe
299 the fragmentation process. It generally describes e^+e^- fragmentation into hadrons as
300 the separation of singlet (anti)quarks moving away from each other within a linear
301 potential that quasi-classically describes the QCD confining potential. The linear
302 potential can be thought of being caused by a string of gluons connecting the two
303 color charges. This string then eventually breaks up into a quark-antiquark pair
304 (or also diquark-antidiquark pair). These resulting (anti-)quarks either coalesce into
305 hadrons or expand further, creating even more quark-antiquark pairs in the process.
306 In this stochastic process particles are then produced according to

$$f(z) = N \frac{1}{z} (1-z)^a \exp\left(-\frac{bm^2}{z}\right) \quad (1)$$

307 where a defines how fast the function vanishes at high- z and b is related to the mass
308 created at a certain z , and z is the energy fraction a hadron carries relative to the
309 initial parton energy. Furthermore, this generation does not have to necessarily fol-
310 low on the lightcone, but can also happen at transverse coordinates, thus allowing
311 for transverse momentum to be generated relative to the initially separating par-
312 tons. Empirically, not all quark-antiquark pairs can be created equally, as heavier
313 quarks are less likely to be created in the fragmentation process. For this purpose
314 a parameter was introduced that describes the suppression of strangeness relative
315 to light quark flavors. The model is initially also not a priori able to distinguish
316 between what spin-state a certain hadron that was created has. Therefore parame-
317 ters for vector meson generation over pseudo-scalar generation for light, strange and

³¹⁸ charm quarks are introduced, as well as similar parameters for spin, orbital angular
³¹⁹ and total angular momenta up to 2 are introduced.

³²⁰ **3 Tuning Setup, prerequisites, etc**

³²¹ For the general setup, Pythia 8.3.12 (later also 8.3.16 to be discussed below, see A)
³²² was used where the main144 code of the examples section was utilized to enable
³²³ the facility to parse input files and provide yoda output files that are using the
³²⁴ RIVET analysis codes for the data sets specified below. RIVET4.0.1 was used for
³²⁵ the analysis codes, Rivet plotting and the actual data yoda files. A few significant
³²⁶ exceptions to this are that the most recent Belle measurements for light and charmed
³²⁷ mesons [3] were not available yet, therefore yoda data files, Rivet analysis codes
³²⁸ and plotting instructions were created personally to include them in the tuning.
³²⁹ Similarly, a few issues were found in the official RIVET codes that were fixed locally.
³³⁰ Those include a switching of the ordering of integrated hyperon and charmed baryon
³³¹ cross sections relative to those differential in the momentum fraction. Also for the
³³² transverse momentum dependent measurements, the fractional energy z binning in
³³³ the codes was off by one bin for protons that would be physically impossible to
³³⁴ cover at Belle energies due to its mass. Also for some measurements the treatment
³³⁵ of weak decays was inaccurate as only charmed decays were removed in the RIVET
³³⁶ codes while other weak decays were kept, in contrast to the actual measurements.
³³⁷ Therefore the weak-decay removed measurements that include pions or protons were
³³⁸ not included in the fitting procedure. The tune optimization was performed using
³³⁹ the Professor2.5 package [4].

³⁴⁰ **4 Data sets used in the fitting**

³⁴¹ For the fitting, the following measurements were used, ordered by publication time:

³⁴² **4.1 BELLE_2017_I1606201**

³⁴³ These measurements include various hyperon and charmed baryon final states as
³⁴⁴ a function of the fractional momentum x_p and the total production cross sections
³⁴⁵ [5]. Because of these, these measurements are particularly sensitive to the Baryon
³⁴⁶ production related PYTHIA variables.

³⁴⁷ **4.2 BELLE_2017_I1607562**

³⁴⁸ These measurements contain the invariant mass and fractional energy dependent
³⁴⁹ cross sections for same and opposite charged pairs of pions and kaons within the
³⁵⁰ same hemisphere [6]. As such, they provide information on the various mass peaks
³⁵¹ in their range and therefore also indirectly on higher spin and orbital momentum
³⁵² particles that feed into these spectra.

³⁵³ **4.3 BELLE_2019_I1718551**

³⁵⁴ These measurements contain the cross sections of pions, kaons and protons as a
³⁵⁵ function of energy fraction z and transverse momentum relative to the thrust axis,
³⁵⁶ in bins of the thrust value [7]. Therefore they are most sensitive to the transverse
³⁵⁷ momentum generation in the fragmentation, but indirectly also the main LUND
³⁵⁸ related fragmentation variables, etc.

³⁵⁹ **4.4 BELLE_2020_I1777678**

³⁶⁰ In this publication the cross sections as a function of fractional energy z for pions,
³⁶¹ kaons and protons are included, being likely sensitive to the main Lund fragmenta-
³⁶² tion parameters, as well as the baryon related ones for the protons [8]. Additionally,
³⁶³ also pairs of pions or kaons in same or opposite hemispheres as well as any pairs are
³⁶⁴ measured as function of the fractional energies of each hadron. Apart from the nom-
³⁶⁵ inal fractional energy definition two alternate definitions are also included, however
³⁶⁶ for this exercise they were not included in the tuning effort since those would be
³⁶⁷ mostly redundant.

³⁶⁸ **4.5 BELLE_2024_I2849895**

³⁶⁹ This is the newest result, just published earlier in 2025, and contains a larger number
³⁷⁰ of cross sections differential in the momentum fraction x_p for various lighter and
³⁷¹ charmed mesons decaying into two or three pions or kaons, many for the first time
³⁷² at B factories [3]. This data set is most sensitive to the pseudo-scalar to vector-
³⁷³ meson ratios, the η suppression, the light pseudo-scalar and vector mixing angles,
³⁷⁴ and indirectly also the higher spin resonances.

³⁷⁵ **5 Sample generation, etc**

³⁷⁶ Given that the number of datasets that are used are very large, it was not possible
³⁷⁷ to fit all tuning parameters at the same time. Instead, parameter sets of 6 to 8
³⁷⁸ were optimized simultaneously while iterating over all relevant parameters and pre-
³⁷⁹ forming the optimization many times to avoid running into local minima. In each
³⁸⁰ iteration the best values of the previous tune were set while the next set of variables
³⁸¹ were allowed to float. In the initial iterations the parameter ranges were mostly
³⁸² identical to the allowed ranges in PYTHIA while in the later iterations, the ranges
³⁸³ were narrowed down somewhat for variables that were very stable over the previous
³⁸⁴ steps. In PROFESSOR, the initial configurations are randomly created based on the
³⁸⁵ boundaries of the variables to optimize using the command *prof2-sample*. In earlier
³⁸⁶ iterations about 500 to 1000 samples were generated while in the later stages 2000
³⁸⁷ samples were generated. This ensured that the interpolation of the parameter tunes
³⁸⁸ and responses could be performed using 5th order polynomials, still. For each sample
³⁸⁹ initially 1.2 M and later 5 M $e^+e^- \rightarrow q\bar{q}$ events were generated for uds and charm
³⁹⁰ flavors together. As all these measurements had already been corrected for non- $q\bar{q}$

Table 1: Parameters used in the tuning, their PYTHIA8.3 default values, the BelleII default values (as of release-09-00-01 in generators/modules/fragmentation/-data/pythia_belle2.charm.dat), empty if PYTHIA 8.2 default value is used, the best value after the tuning and a brief explanation of the parameter.

Variable	P8.3	Belle2	Best	description
StringZ:aLund	0.68	0.32	0.525	(1-z) power
StringZ:bLund	0.98	0.62	0.910	Transverse mass term
StringPT:sigma	0.335		0.372	Transverse momentum in fragmentation
StringFlav:probStoUD	0.217	0.286	0.240	Strangeness suppression wrt to ud quarks
StringFlav:etaSup	0.60		0.850	Extra eta suppression
StringFragmentation:stopMass	1.0	0.3	0.831	Stop mass (End point condition?)
StringFlav:mesonUDVector	0.50		0.554	Vector to PS ratio light quarks
StringFlav:mesonUDL1S0J1	0.0		0.311	Higher spin states L=1, S=0, J=1 light q
StringFlav:mesonUDL1S1J0	0.0		0.236	Higher spin states L=1, S=1, J=0 light q
StringFlav:mesonUDL1S1J1	0.0		0.267	Higher spin states L=1, S=1, J=1 light quarks
StringFlav:mesonUDL1S1J2	0.0		0.400	Higher spin states L=1, S=1, J=2 light quarks
StringFlav:mesonSvector	0.55		0.870	Vector to PS ratio strange quarks
StringFlav:mesonSDL1S0J1	0.0		0.118	Higher spin states L=1, S=0, J=1 s quarks
StringFlav:mesonSDL1S1J0	0.0		0.374	Higher spin states L=1, S=1, J=0 s quarks
StringFlav:mesonSDL1S1J1	0.0		0.365	Higher spin states L=1, S=1, J=1/2 s quarks
StringFlav:mesonSDL1S1J2	0.0		0.588	Higher spin states L=1, S=1, J=1/2 s quarks
StringZ:rFactC	1.32	1.0	0.410	Bowler modification for charm quarks
StringFlav:mesonCvector	0.88	2.8	2.226	Vector to PS ratio charm quarks
StringFlav:mesonCDL1S0J1	0.0	0.06	1.729	Higher spin states L=1, S=0, J=1 charm
StringFlav:mesonCDL1S1J0	0.0	0.1775	0.635	Higher spin states L=1, S=1, J=0 charm
StringFlav:mesonCDL1S1J1	0.0	0.1868	2.644	Higher spin states L=1, S=1, J=1 charm
StringFlav:mesonCDL1S1J2	0.0	0.1836	1.972	Higher spin states L=1, S=1, J=2 charm
StringFlav:thetaPS	-15		-15.71	Mixing angle for PS mesons
StringFlav:thetaV	36		27.08	Mixing angle for V mesons
StringFlav:probQQtoQ	0.081	0.133	0.064	Diquark over quark ratio
StringZ:aExtraDiquark	0.97		1.696	Lund extra a term for diquarks(baryons)
StringFlav:probSQtoQQ	0.9156	0.323	0.521	Strange over light diquark suppression
StringFlav:probQQ1toQQ0	0.0275	0.0468	0.252	Vector over scalar diquark suppression
StringFlav:popcornRate			0.055112	mesons between diquark pairs
StringFlav:popcornSpair			0.106073	strange Popcorn diquark
StringFlav:popcornSmeson			0.447140	strange meson in Popcorn

391 contributions, no other hard processes are included. Also ISR had been corrected in
 392 the measurements so it was switched off in the MC generation as well.

393 The following sets of parameters were optimized together initially:

- 394 • Set A (main Lund): StringZ:aLund, StringZ:bLund, StringPT:sigma, StringFlav:probStoUD,
 395 StringFlav:etaSup, StringFragmentation:stopMass
- 396 • Set B (baryons and charm): StringFlav:probQQtoQ, StringFlav:probSQtoQQ,
 397 StringFlav:probQQ1toQQ0, StringZ:aExtraDiquark, StringZ:rFactC, StringFlav:mesonCvector
 398 StringFlav:mesonCL1S0J1, StringFlav:mesonCL1S1J0
- 399 • Set C (vector mesons, mixing): StringFlav:mesonUDvector, StringFlav:mesonUDL1S0J1,
 400 StringFlav:mesonUDL1S1J0, StringFlav:mesonSvector, StringFlav:mesonSL1S0J1,
 401 StringFlav:mesonSL1S1J0, StringFlav:thetaPS, StringFlav:thetaV
- 402 • Set D (higher spin states): StringFlav:mesonUDL1S1J1, StringFlav:mesonUDL1S1J2,
 403 StringFlav:mesonSL1S1J1, StringFlav:mesonSL1S1J2, StringFlav:mesonCL1S1J1,

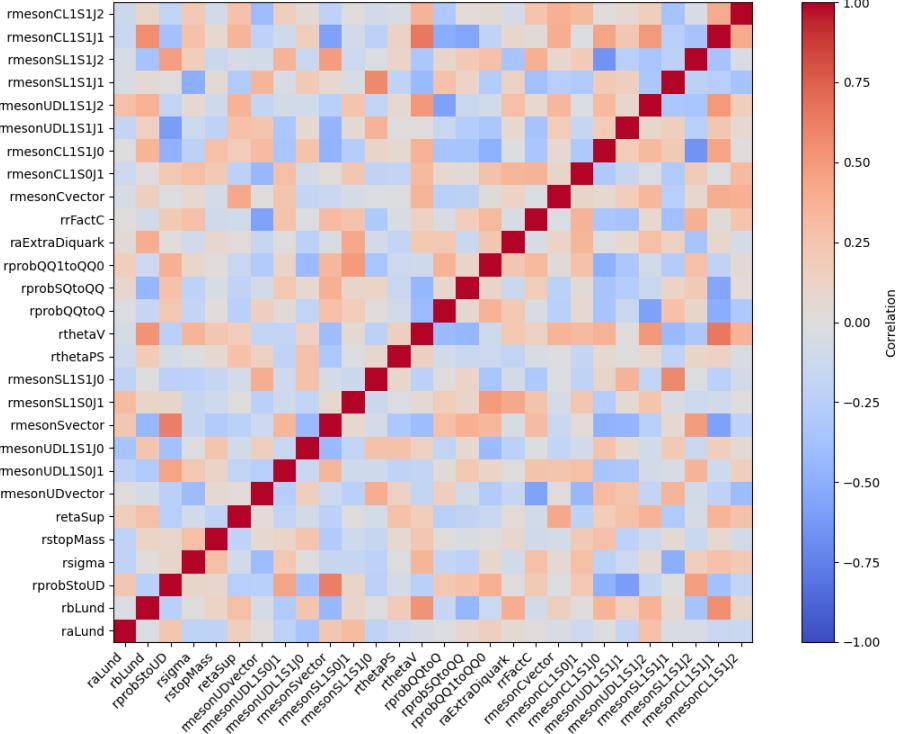


Figure 1: Correlation matrix of all parameters as obtained from a test tuning set that was run over 5000 parameters, a reduced set of data sets and only a third order interpolation in order to be computationally feasible at all.

404 `StringFlav:mesonCL1S1J2`

405 As can be seen in Fig. 1, all these 28 parameters are not uncorrelated, nor do the
 406 parameters of each set factorize either but generally they are somewhat less corre-
 407 lated between sets. Because of this an iterative approach was used where sets A to D
 408 were optimized several times after optimizing each set first (i.e. A → B → C → D → A → B → etc.)
 409 The individual correlation matrices after the last iteration of each tuning set are
 410 shown in Fig. 2. As one can see, within a tuning set correlations are more pro-
 411 nounced, most notably between the main two Lund parameters, but also, to a lesser
 412 extend between others.

413 At later iterations of the optimization, the more stable variables were retired
 414 (`StringPT:sigma`, `StringFlav:probStoUD`, `StringFlav:mesonUDvector`, `StringFlav:probQQtoQ`),
 415 using their best values from then on, but including the additional higher spin states
 416 and eventually the popcorn variables. The later settings therefore became:

417 • Set A' (main Lund): `StringZ:aLund`, `StringZ:bLund`, `StringFlav:etaSup`, `StringFrag-`
 418 `mentation:stopMass`, `mesonUDL1S0J1`, `mesonUDL1S1J0`

419 • Set B' (baryons): `StringFlav:probSQtoQQ`, `StringFlav:probQQ1toQQ0`, `StringZ:aExtraDiquark`
 420 `popcornRate`, `StringFlav:popcornSpair`, `StringFlav:popcornSmeson`

421 • Set C' (strange+mixing): `StringFlav:mesonSvector`, `StringFlav:mesonSL1S0J1`,

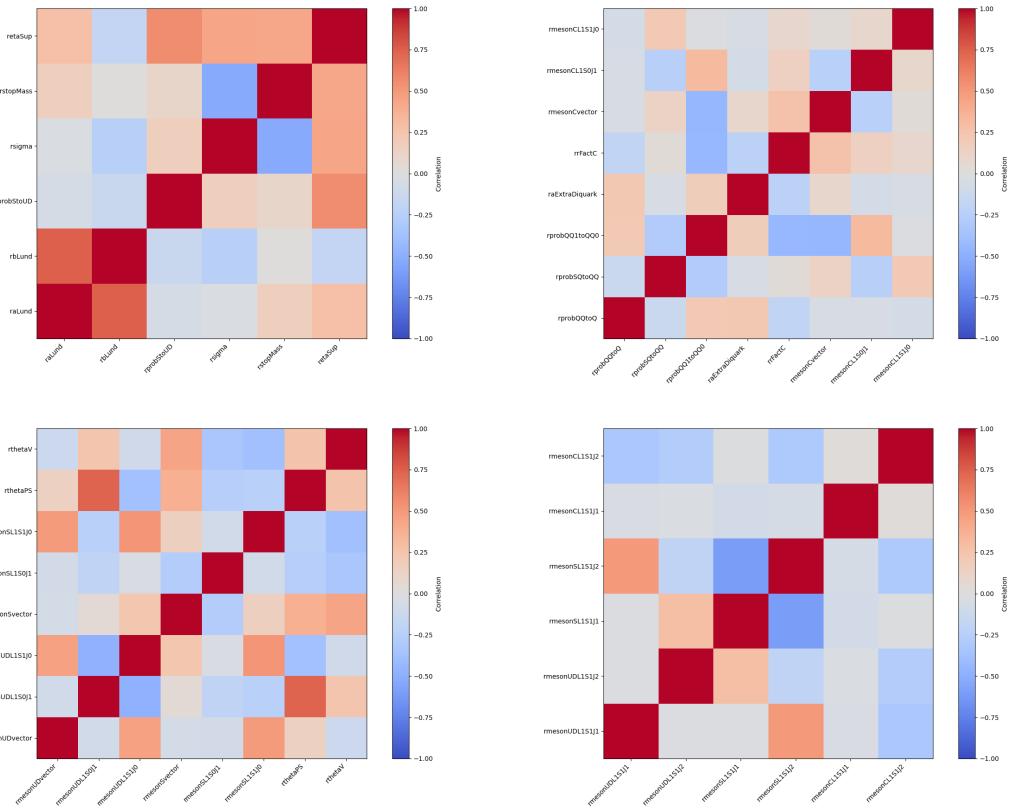


Figure 2: Correlation matrices of each tuning set separately, obtained from the last iterations of the nominal tuning procedure and interpolation based on 2000 parameter sets each, the full data sets and a 5th order polynomial interpolation.

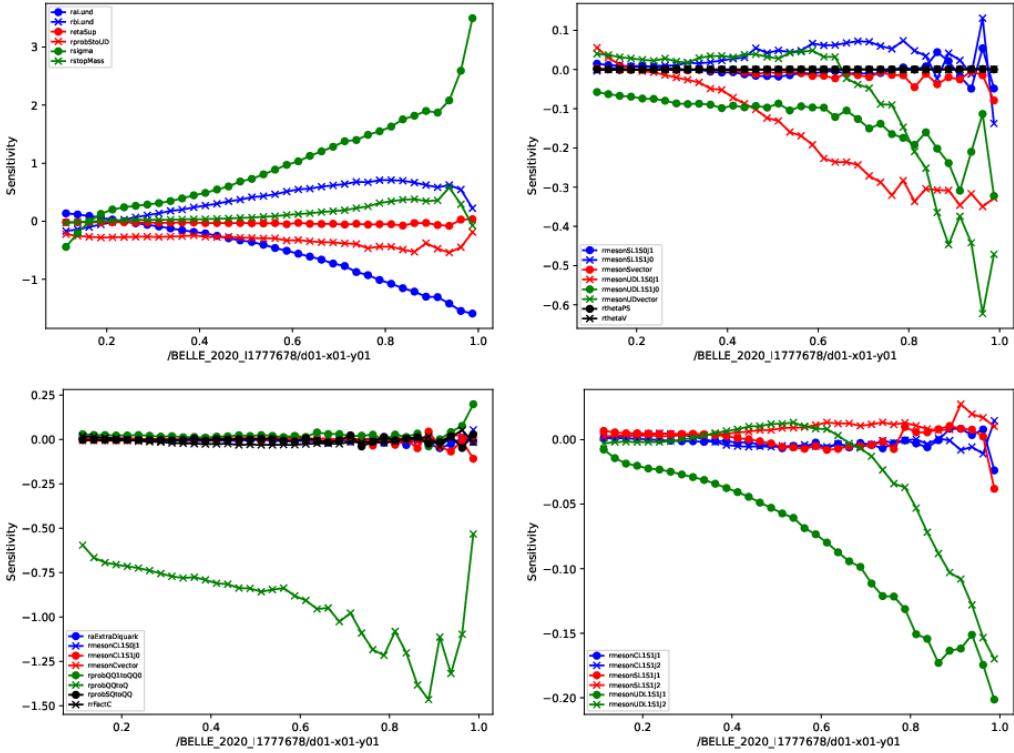


Figure 3: Sensitivities of the pion cross sections as a function of the fractional energy z . The different curves correspond to the sensitivities to the various tune parameters.

422 StringFlav:mesonSL1S1J0, StringFlav:mesonSL1S1J1, StringFlav:mesonSL1S1J2,
 423 StringFlav:thetaPS, StringFlav:thetaV

424 • Set D' (charm): StringZ:rFactC, StringFlav:mesonCvector, StringFlav:mesonCL1S0J1,
 425 StringFlav:mesonCL1S1J0, StringFlav:mesonCL1S1J1, StringFlav:mesonCL1S1J2

426 6 Individual sensitivities

427 In the following the individual sensitivities to the various tune parameters are shown
 428 for several of the key measurements.

429 6.1 Single hadron cross sections

430 This single pion cross sections have naturally a very high sensitivity to the main Lund
 431 fragmentation parameters, as well as to the fragmentation transverse momentum as
 432 can be seen in Fig. 3. There is also some sensitivity to the light quark vector mesons
 433 to pseudoscalar ratios and higher spin states. For kaons the sensitivities are similar
 434 except that strangeness suppression and the corresponding strange quark VM and
 435 higher spin variables are more sensitive as can be seen in Fig. 4. Protons in contrast
 436 are mostly sensitive to the diquark ratio and to a lesser extend the main Lund
 437 parameters.

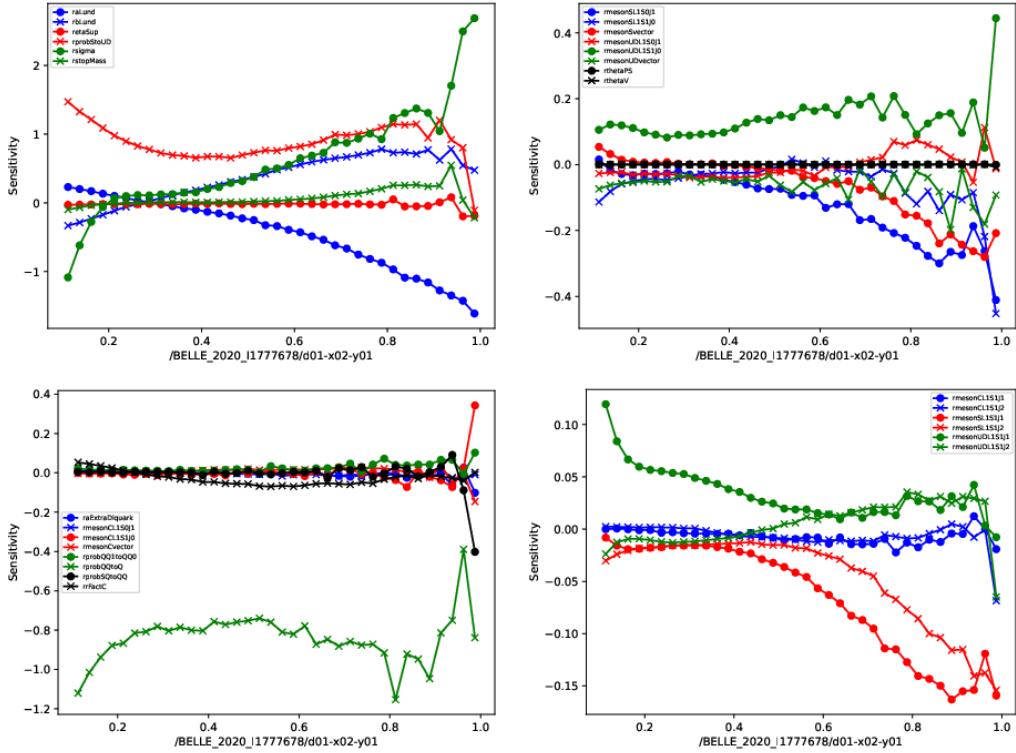


Figure 4: Sensitivities of the kaon cross sections as a function of the fractional energy z . The different curves correspond to the sensitivities to the various tune parameters.

438 For the vector mesons cross sections, the vector mesons variables for the relevant
 439 flavors are clearly the most sensitive parameters as can be seen in Fig. 6 for the ρ
 440 mesons, Fig. 7 for the ω Fig. 8, for the K^* and Fig. 9 for the ϕ mesons. The strange
 441 mesons do also have some sensitivity to the strangeness suppression again.

442 The η mesons naturally are most sensitive to the eta suppression parameter while
 443 they also provide a small sensitivity to the pseudoscalar mixing angle, apart from
 444 the regular Lund parameters, as shown in Fig. 10.

445 The charmed mesons obtain additional sensitivity to the extra charm term for
 446 the fragmentation, as well as for the vector mesons to the charmed VM hand higher
 447 spin state variables.

448 6.2 Di-hadron cross sections

449 For the di-hadron cross sections, again the vector mesons components appear in
 450 the vicinity of their masses, while additionally some sensitivity to the higher spin
 451 mesons is visible, particularly at higher masses as those can mostly be only indirectly
 452 obtained in these di-hadron spectra.

453 6.3 Transverse momentum dependent cross sections

454 The transverse momentum dependent cross sections naturally have a very high sen-
 455 sitivity to the transverse momentum generated in the fragmentation process as can

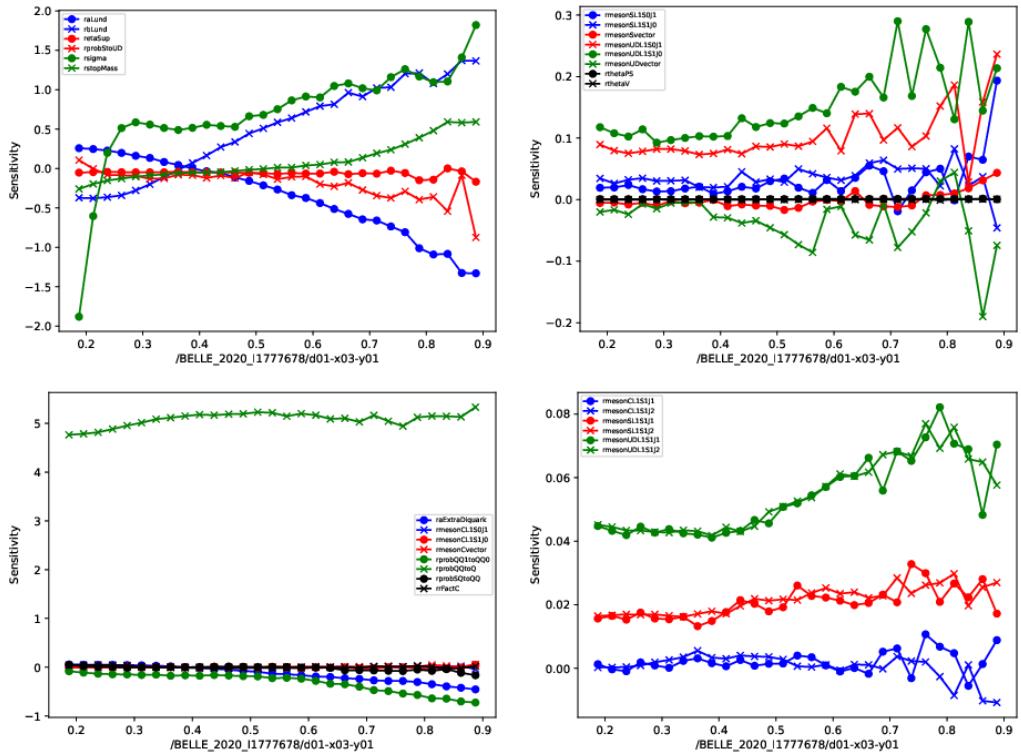


Figure 5: Sensitivities of the proton cross sections as a function of the fractional energy z . The different curves correspond to the sensitivities to the various tune parameters.

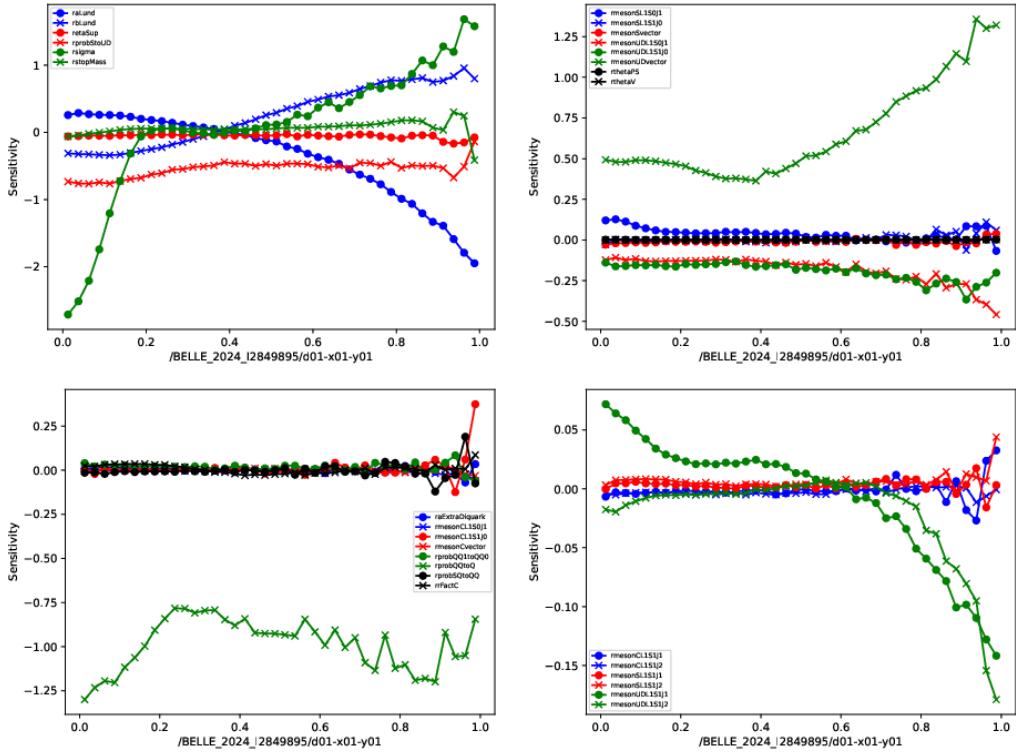


Figure 6: Sensitivities of the ρ^0 cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.

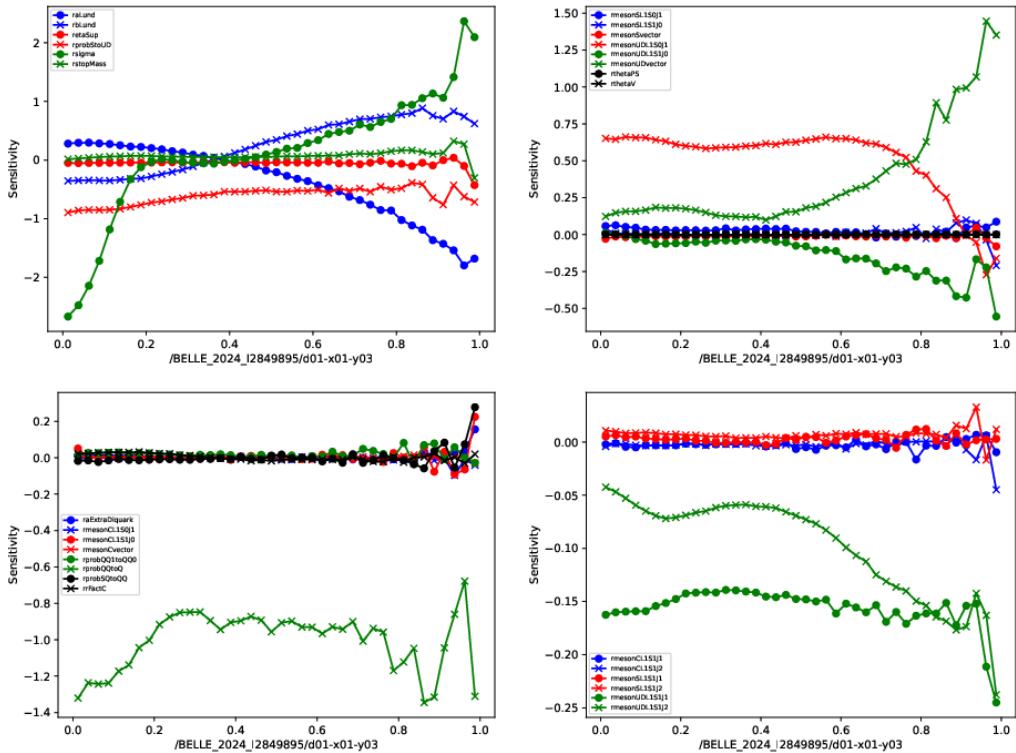


Figure 7: Sensitivities of the ω cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.

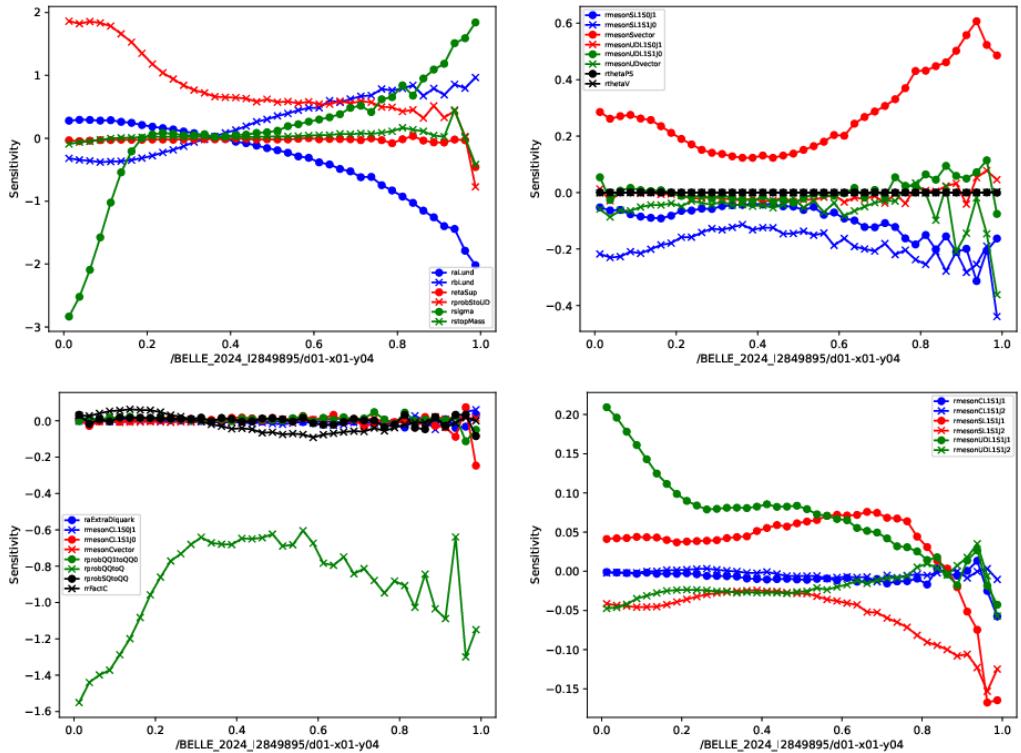


Figure 8: Sensitivities of the K^{*0} cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.

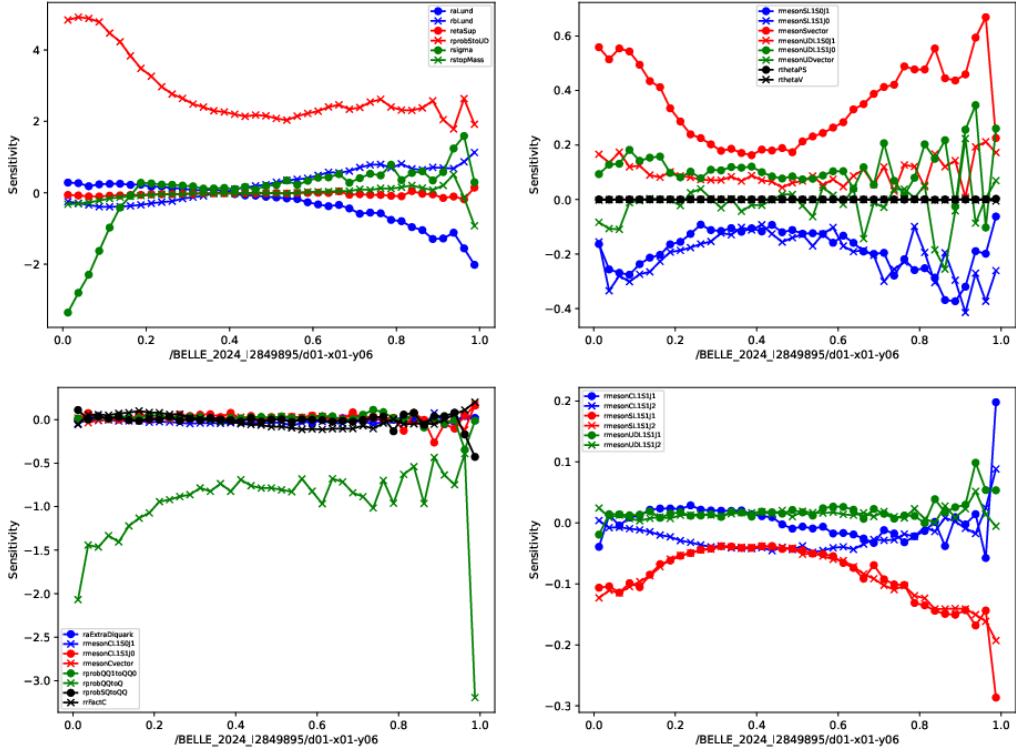


Figure 9: Sensitivities of the ϕ cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.

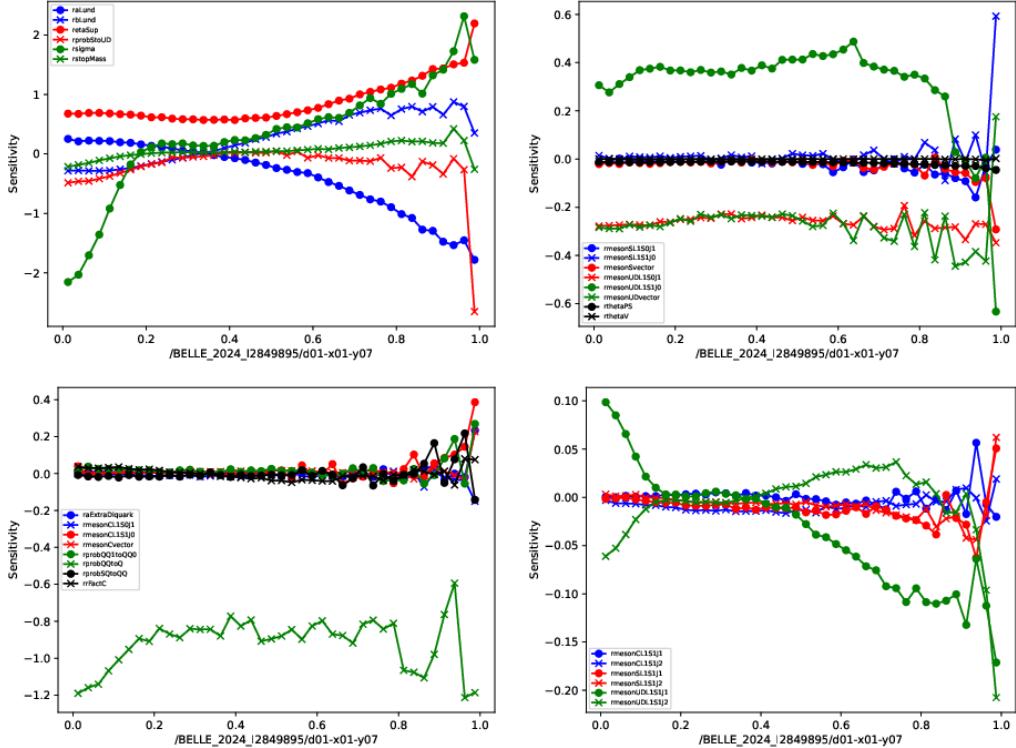


Figure 10: Sensitivities of the η cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.

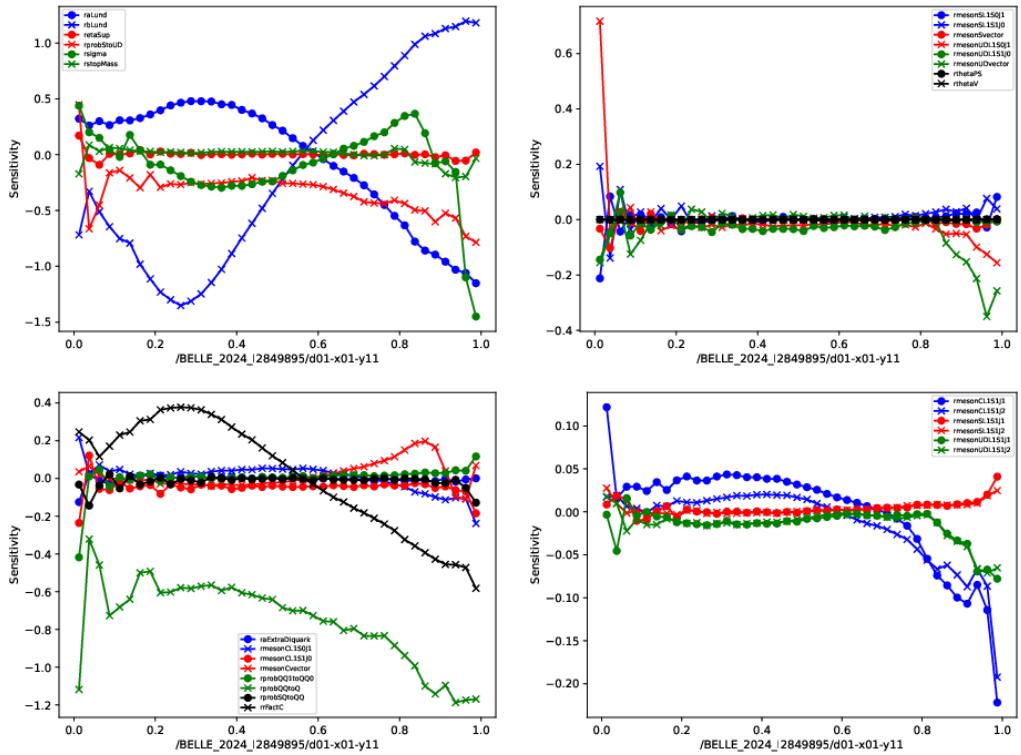


Figure 11: Sensitivities of the D^+ cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.

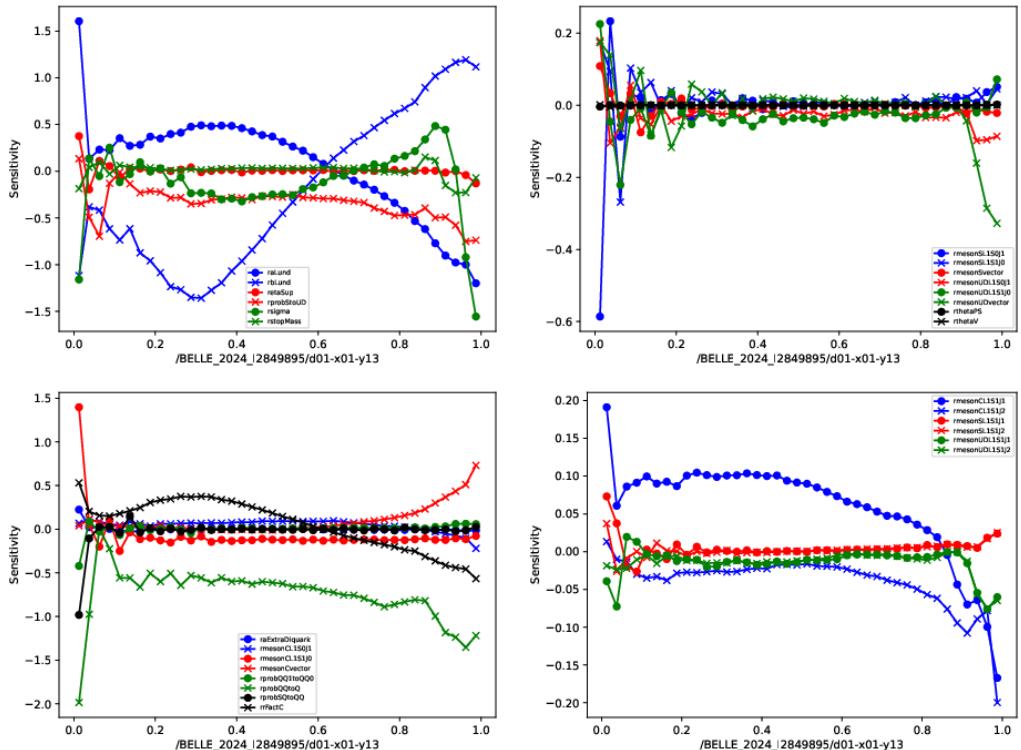


Figure 12: Sensitivities of the D^{*0} cross sections as a function of the fractional energy x_p . The different curves correspond to the sensitivities to the various tune parameters.

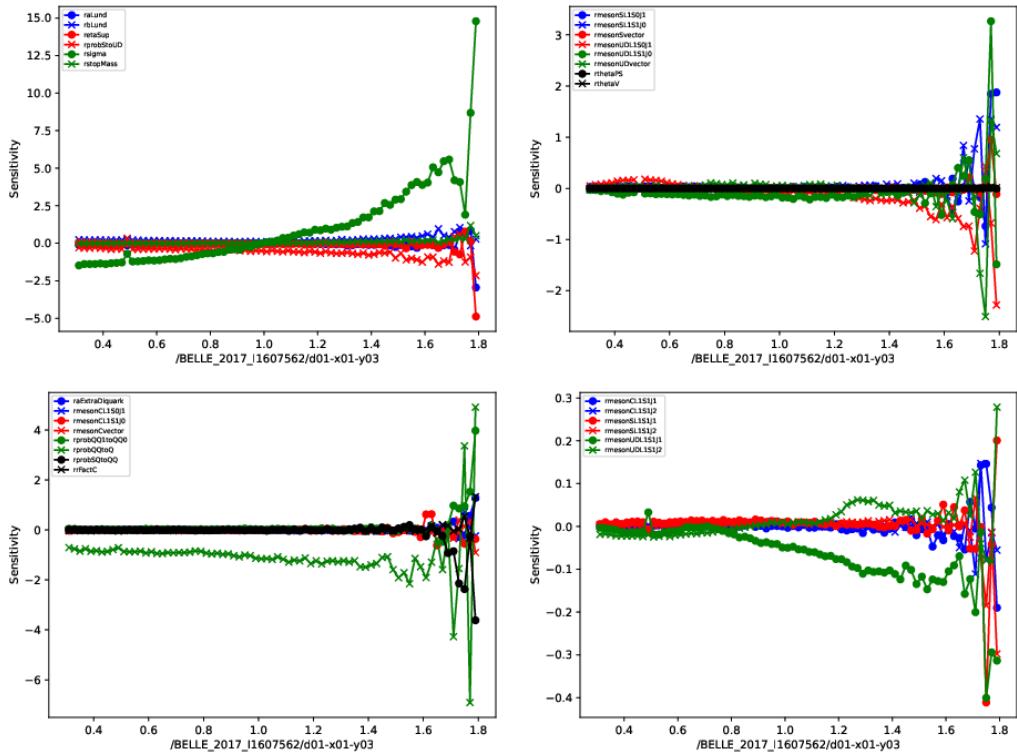


Figure 13: Sensitivities of the $\pi^+\pi^-$ cross sections as a function of the invariant mass, in the z bin. The different curves correspond to the sensitivities to the various tune parameters.

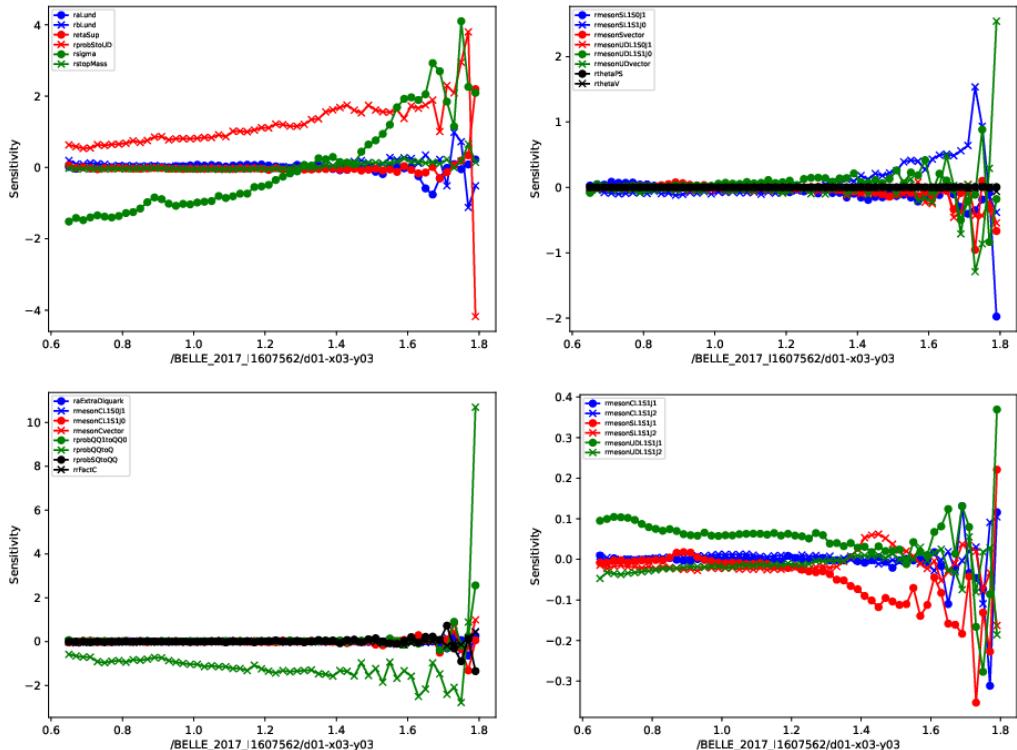


Figure 14: Sensitivities of the π^+K^- cross sections as a function of the invariant mass, in the z bin. The different curves correspond to the sensitivities to the various tune parameters.

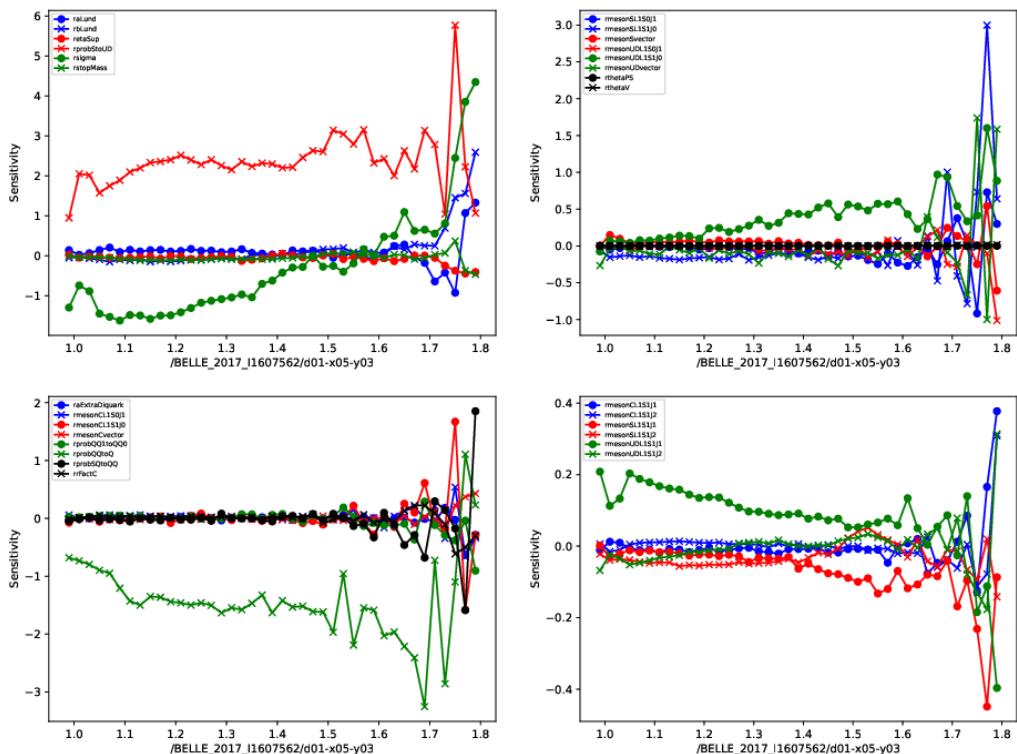


Figure 15: Sensitivities of the K^+K^- cross sections as a function of the invariant mass, in the z bin. The different curves correspond to the sensitivities to the various tune parameters.

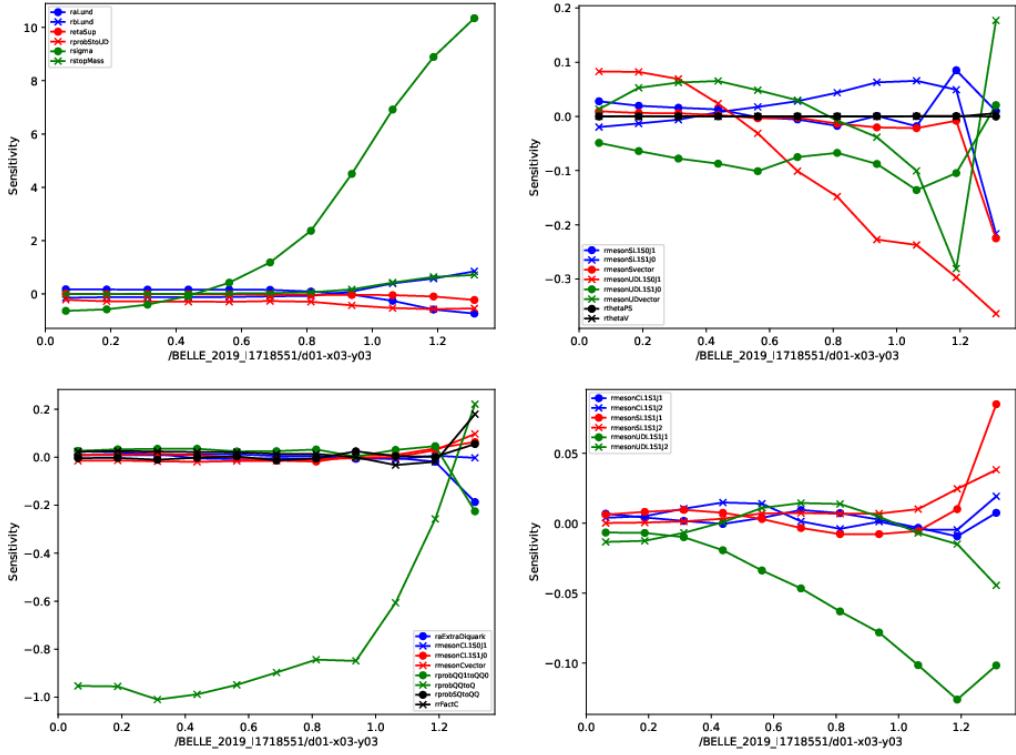


Figure 16: Sensitivities of the π cross sections as a function of the transverse momentum in the z bin and a thrust value of $0.8 - 0.9$. The different curves correspond to the sensitivities to the various tune parameters.

456 be seen in Figs. 16 to 18.

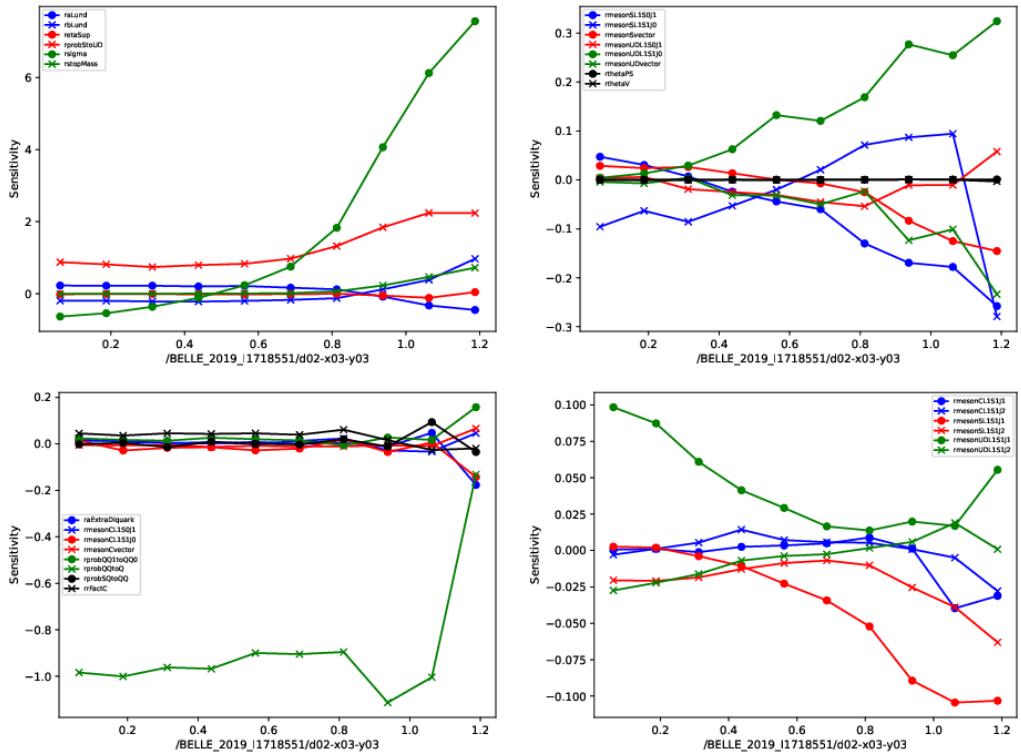


Figure 17: Sensitivities of the π cross sections as a function of the transverse momentum in the z bin and a thrust value of $0.8 - 0.9$. The different curves correspond to the sensitivities to the various tune parameters.

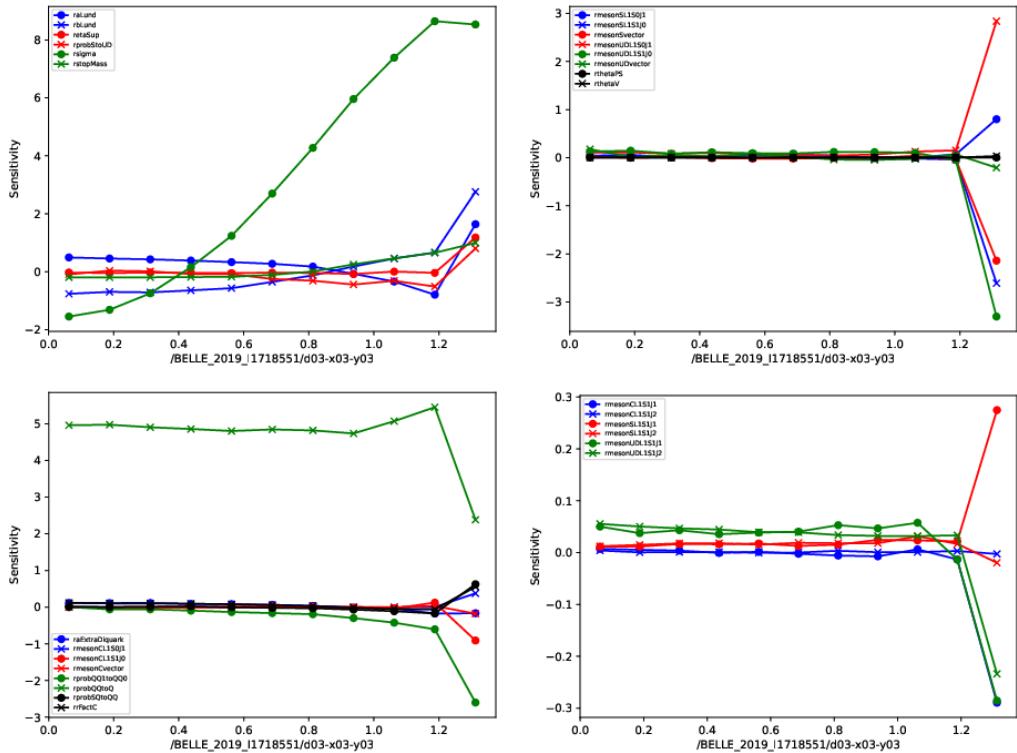


Figure 18: Sensitivities of the π cross sections as a function of the transverse momentum in the z bin and a thrust value of $0.8 - 0.9$. The different curves correspond to the sensitivities to the various tune parameters.

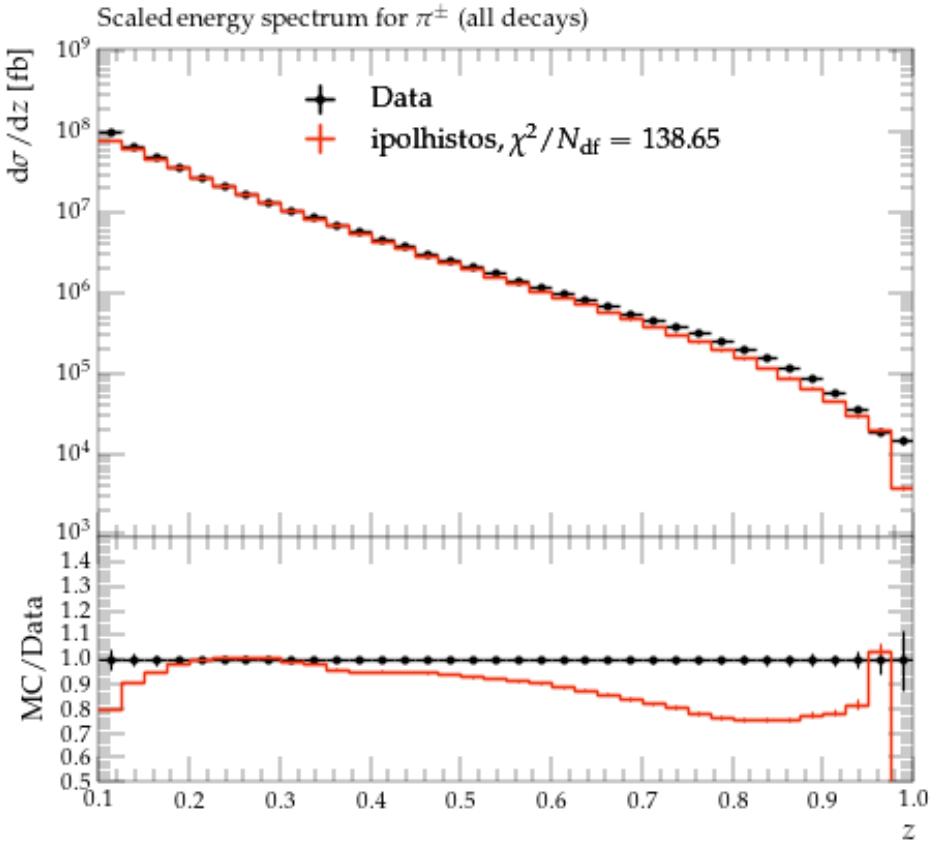


Figure 19: Pion cross sections as a function of the fractional energy z . The data is displayed by black points while the best fit result in red.

457 7 Tuning fits

458 7.1 Main hadrons

459 The best results can be seen in Fig. 19 to 21 for the main pion, kaon and proton
 460 cross sections. One can see that for the mesons the data can be described reasonably
 461 well overall, while the high precision of the pion data still results in fairly high χ^2 .
 462 The proton data cannot be described so well which appears to be a common problem
 463 for baryon production in the Lund model as will be apparent from the other baryon
 464 related results below.

465 7.2 Decaying and charmed mesons

466 For the various light mesons that were studied in publication [3], the tuning efforts
 467 are able to provide a good description of the data and generally low χ^2 . Those fit
 468 results are displayed in Figs. 22 to 25.

469 Charmed mesons are also mostly well described, with the vector mesons compar-
 470 ing particularly well, as can be seen in Figs. 26 to 28. On the strange D mesons are
 471 slightly less well described as apparently the additional shift in the peak positions
 472 due to the heavier strange quarks cannot be well accommodated in the Lund model.

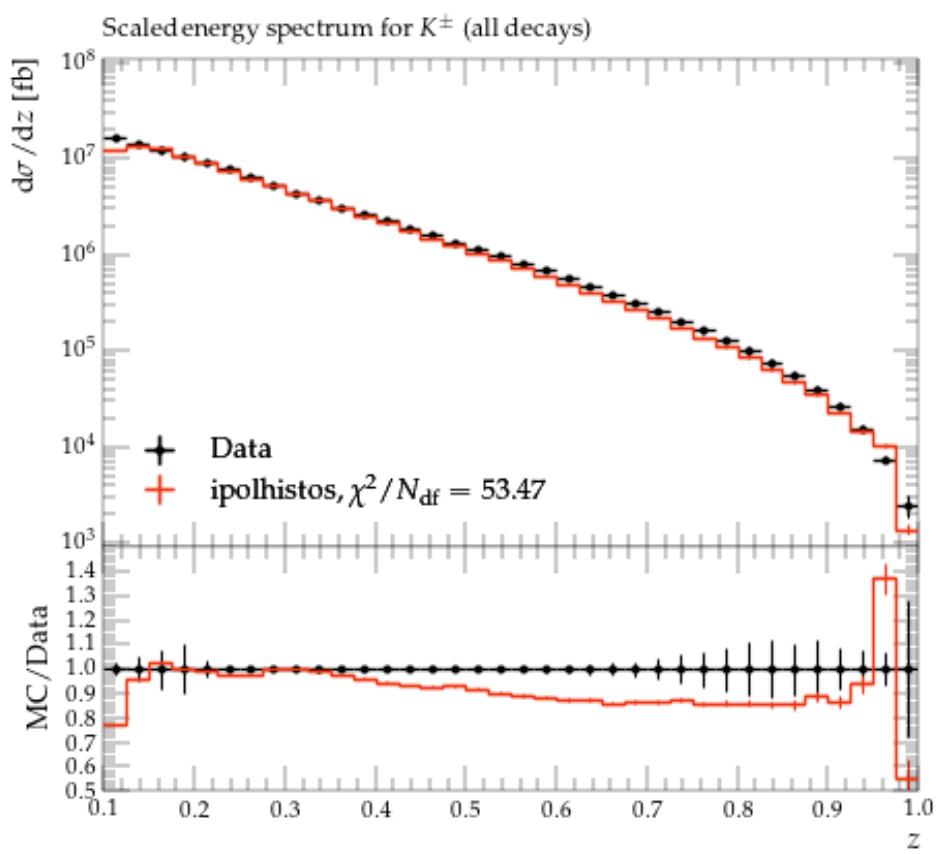


Figure 20: Kaon cross sections as a function of the fractional energy z . The data is displayed by black points while the best fit result in red.

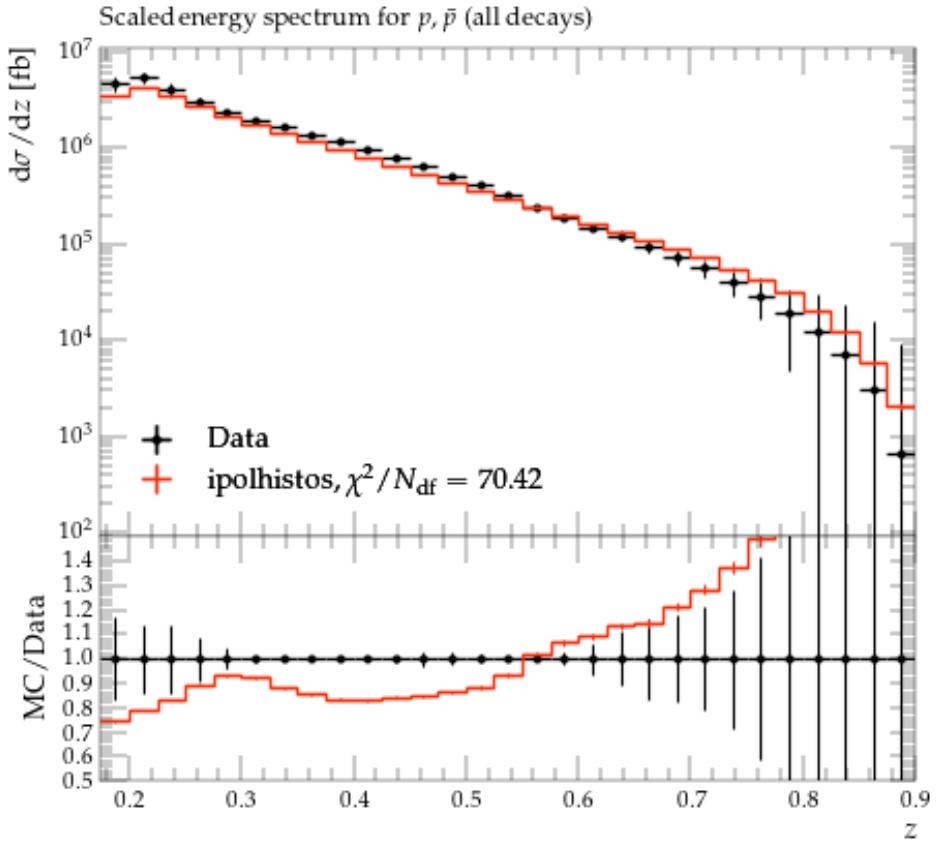


Figure 21: Proton cross sections as a function of the fractional energy z . The data is displayed by black points while the best fit result in red.

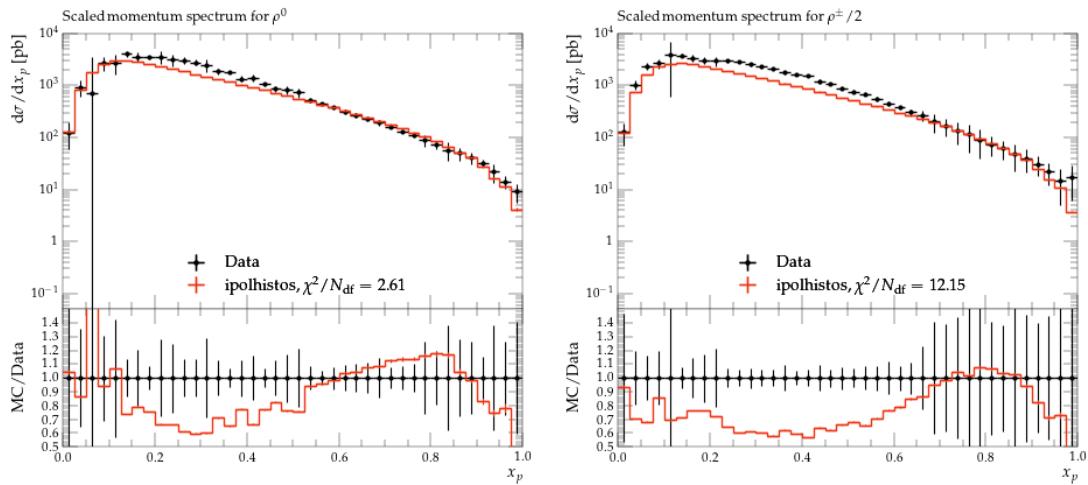


Figure 22: Left: neutral ρ cross sections as a function of the fractional momentum x_p . Right: charged ρ cross sections. The data is displayed by black points while the best fit result in red.

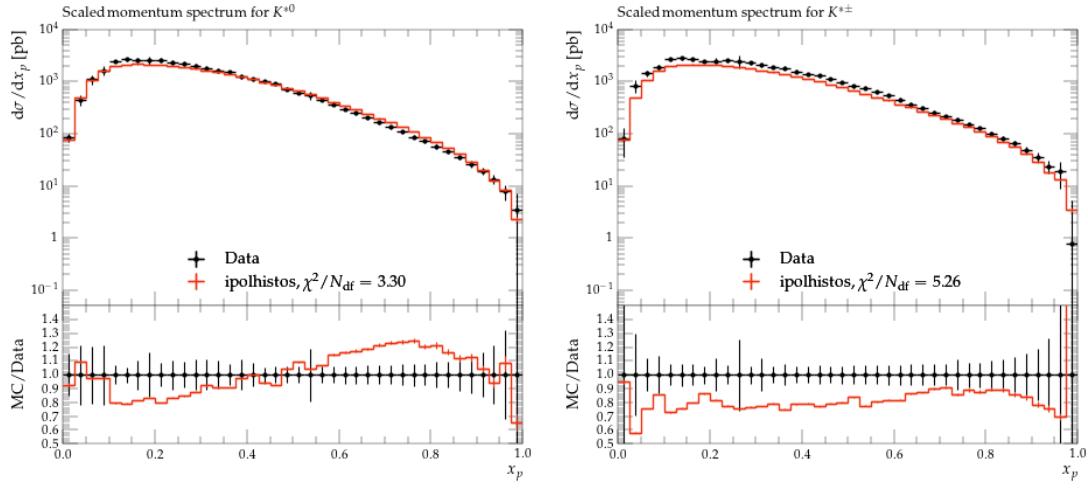


Figure 23: Left: neutral K^* cross sections as a function of the fractional momentum x_p . Right: charged K^* cross sections. The data is displayed by black points while the best fit result in red.

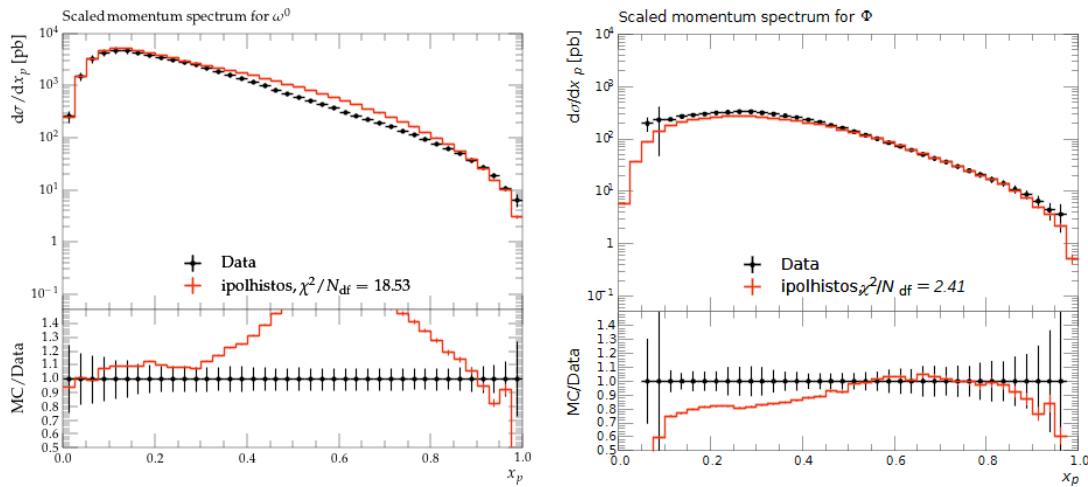


Figure 24: Left: ω cross sections as a function of the fractional momentum x_p . Right: ϕ cross sections. The data is displayed by black points while the best fit result in red. The missing χ^2 is 3.96.

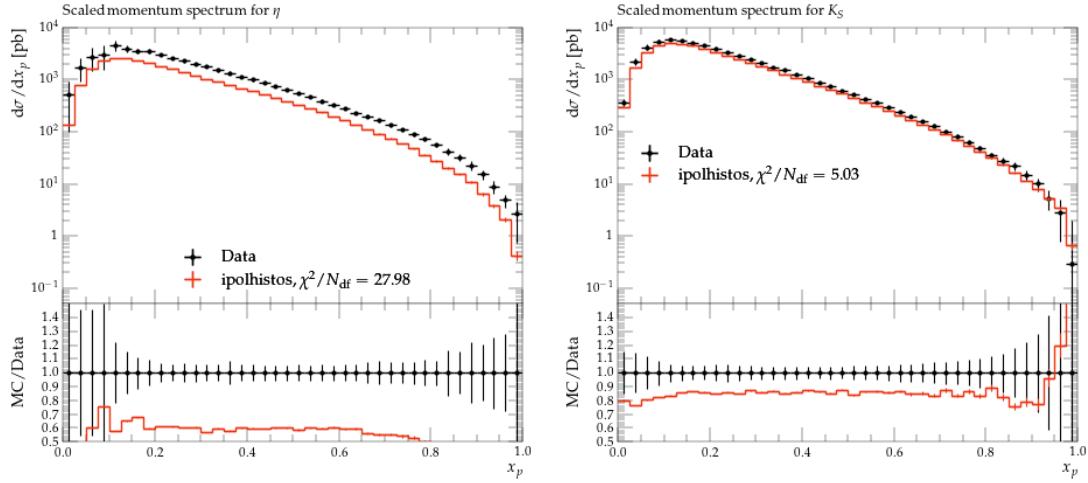


Figure 25: Left: η cross sections as a function of the fractional momentum x_p . Right: K_S cross sections. The data is displayed by black points while the best fit result in red.

⁴⁷³ In the figures the χ^2 values are often given as nans, since Rivet cannot deal with
⁴⁷⁴ empty bins, but they were added by hand based on the professor tuning outcome
⁴⁷⁵ which does provide them correctly.

⁴⁷⁶ 7.3 Di-hadrons in various configurations

⁴⁷⁷ In the following, examples of the dihadron invariant mass distributions are shown
⁴⁷⁸ for one low and one higher fractional energy bin in Figs. 29 to 34. One can see that
⁴⁷⁹ for many hadron combinations, the overall description is good, but some features
⁴⁸⁰ are not well reproduced. Most notably in the opposite-sign pion-kaon spectra the
⁴⁸¹ bump at around 1.5 GeV is not as pronounced in the MC, or rather somewhat
⁴⁸² elongated in comparison to the data. As the underlying decay of D mesons into
⁴⁸³ $K\pi\pi$ is also present in PYTHIA, likely some of the details are not as well described
⁴⁸⁴ there compared to EvtGen (as the bump was very clearly visible in the Belle I MC
⁴⁸⁵ as well). Another aspect that is not well described are the same-sign pion pair's low
⁴⁸⁶ mass region which generally underestimates the amount of pairs. For pion-kaon and
⁴⁸⁷ kaon pairs the description is generally quite resonable also at lower masses.

⁴⁸⁸ Also the back-to-back di-hadron distributions as a function of fractional energies,
⁴⁸⁹ the description of the data by the best tune is again very reasonable, as shown in
⁴⁹⁰ Figs. 35 to 40 for selected fractional energy bin and hadron type combinations.

⁴⁹¹ 7.4 Transverse momentum dependent cross sections

⁴⁹² The transverse momentum dependent cross sections are also fairly well described,
⁴⁹³ particularly the low transverse momentum region that most directly is sensitive to
⁴⁹⁴ the transverse momentum generated in the fragmentation process. In the higher
⁴⁹⁵ transverse momentum tails, some slight differences can be seen, albeit with rather
⁴⁹⁶ large uncertainties on the measurements.

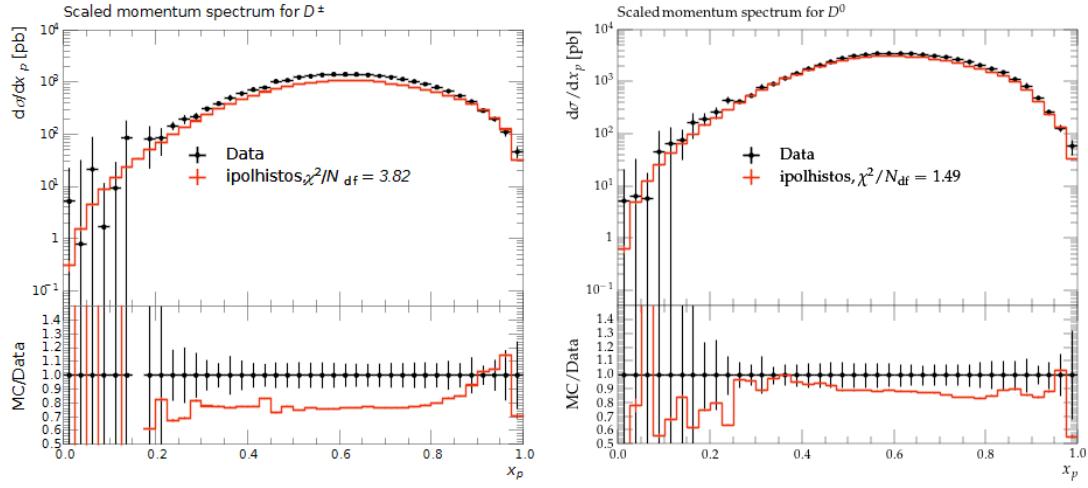


Figure 26: Left: D^+ cross sections as a function of the fractional momentum x_p . Right: D^0 cross sections. The data is displayed by black points while the best fit result in red.

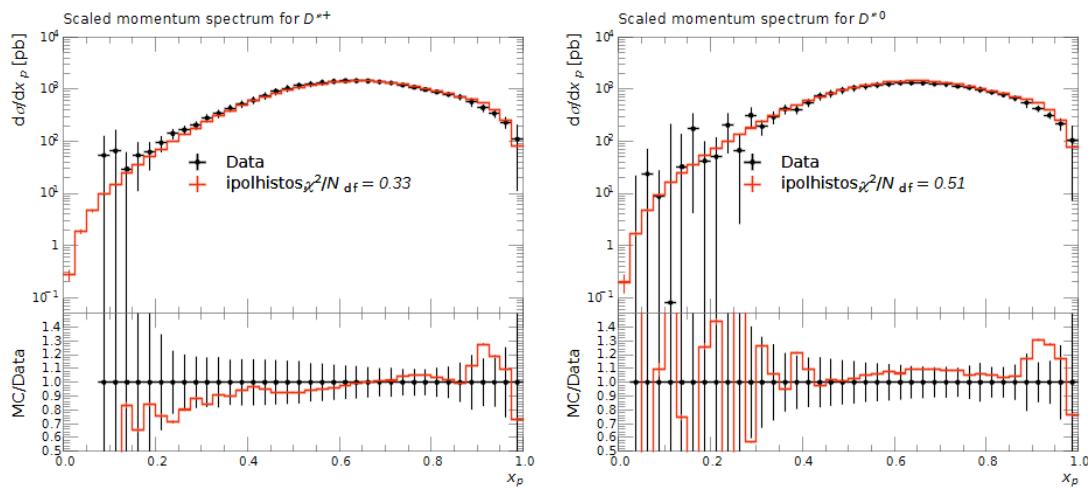


Figure 27: Left: D^{*+} cross sections as a function of the fractional momentum x_p . Right: D^{*0} cross sections. The data is displayed by black points while the best fit result in red.

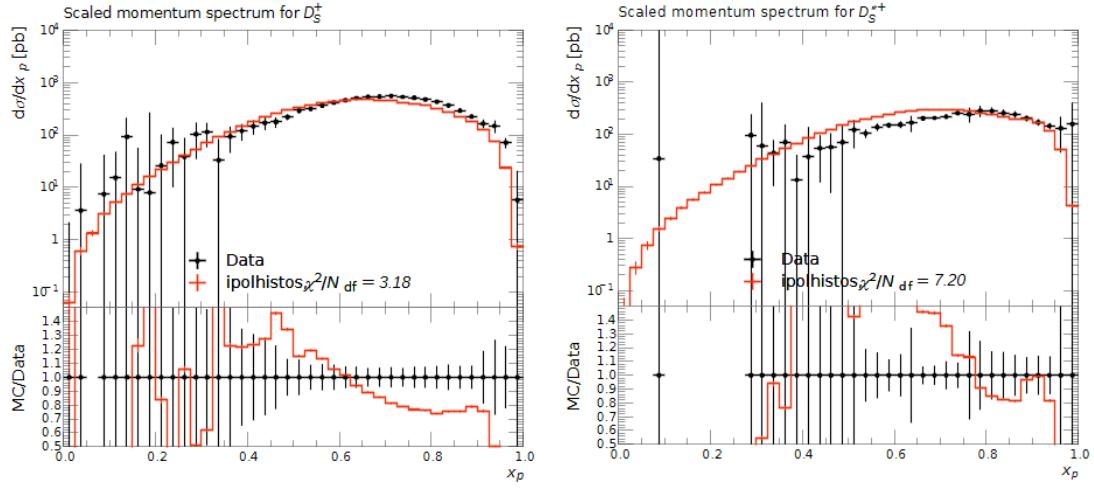


Figure 28: Left: D_s^+ cross sections as a function of the fractional momentum x_p . Right: D_s^{*+} cross sections. The data is displayed by black points while the best fit result in red.

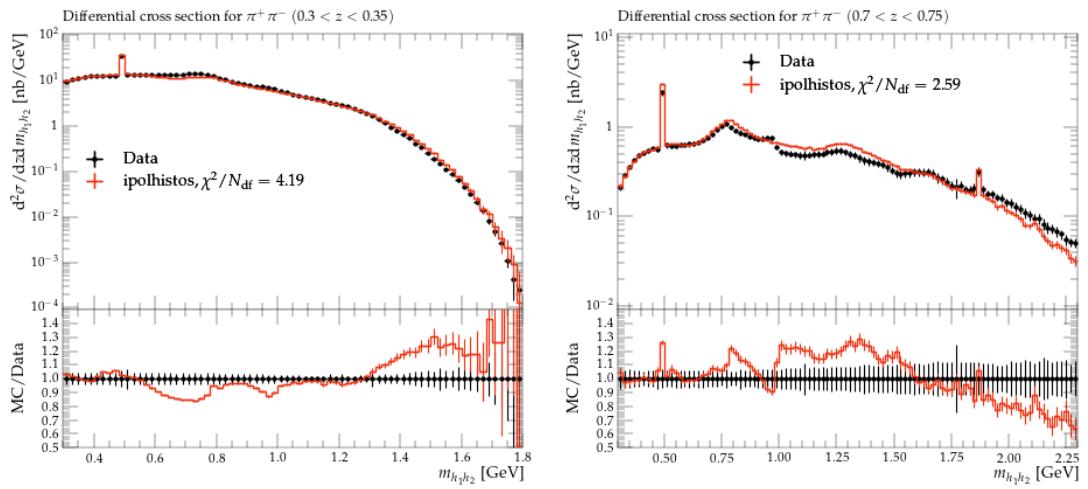


Figure 29: Left: $\pi^+\pi^-$ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.

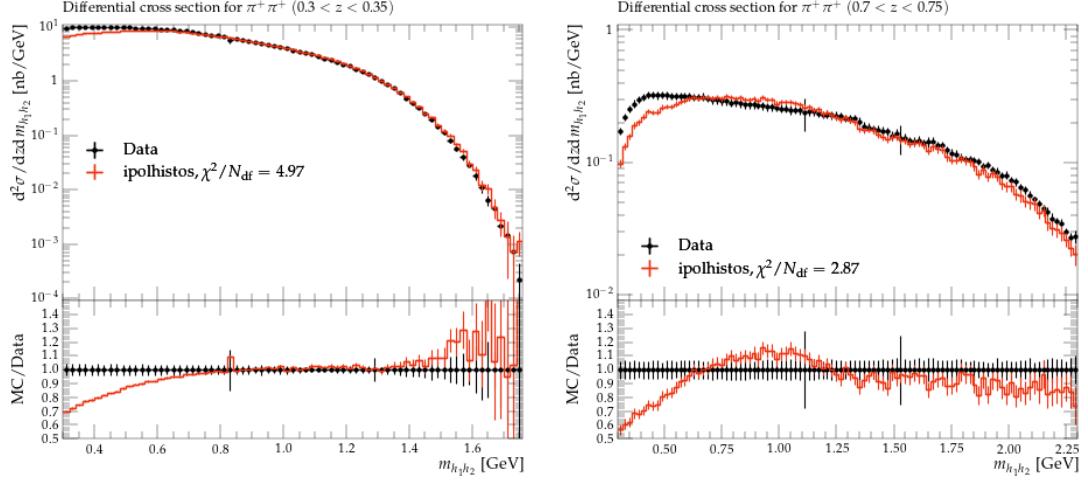


Figure 30: Left: $\pi^+\pi^+$ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.

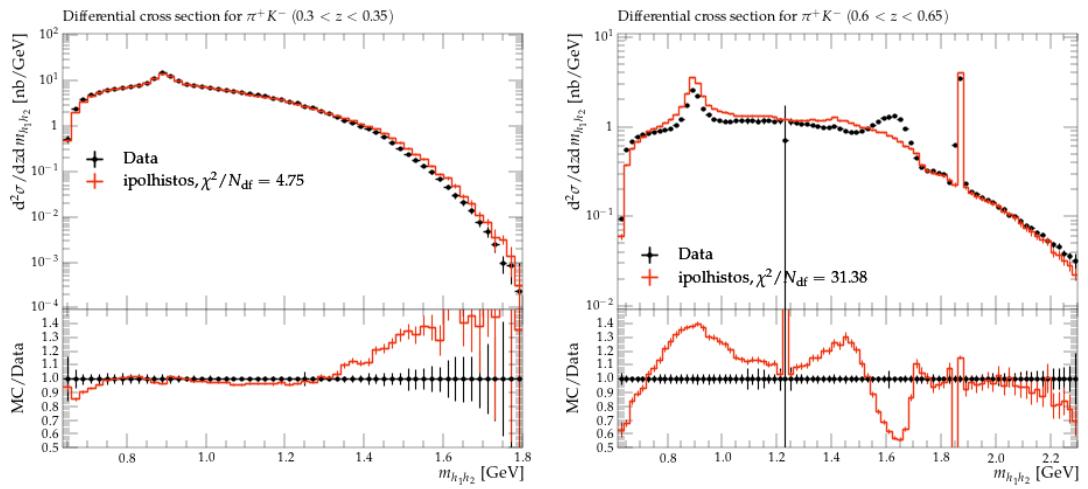


Figure 31: Left: π^+K^- pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.6 - 0.65$. The data is displayed by black points while the best fit result in red.

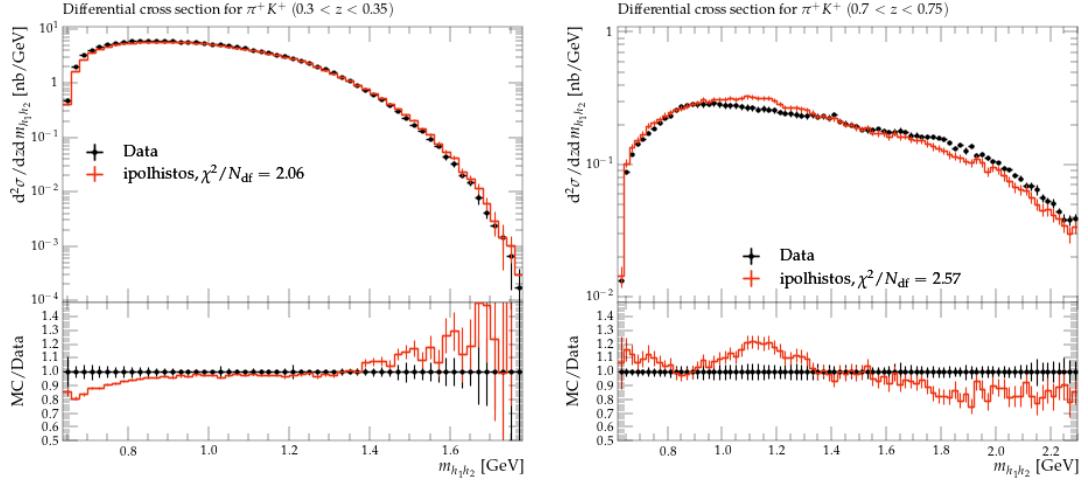


Figure 32: Left: $\pi^+ K^+$ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.

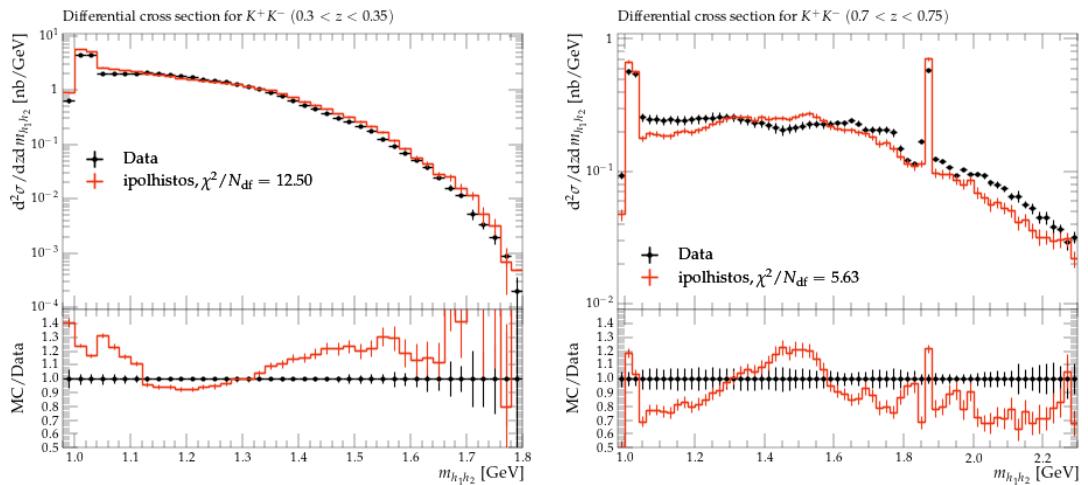


Figure 33: Left: $K^+ K^-$ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.3 - 0.35$. Right: The same for the fractional energy bin $0.7 - 0.75$. The data is displayed by black points while the best fit result in red.

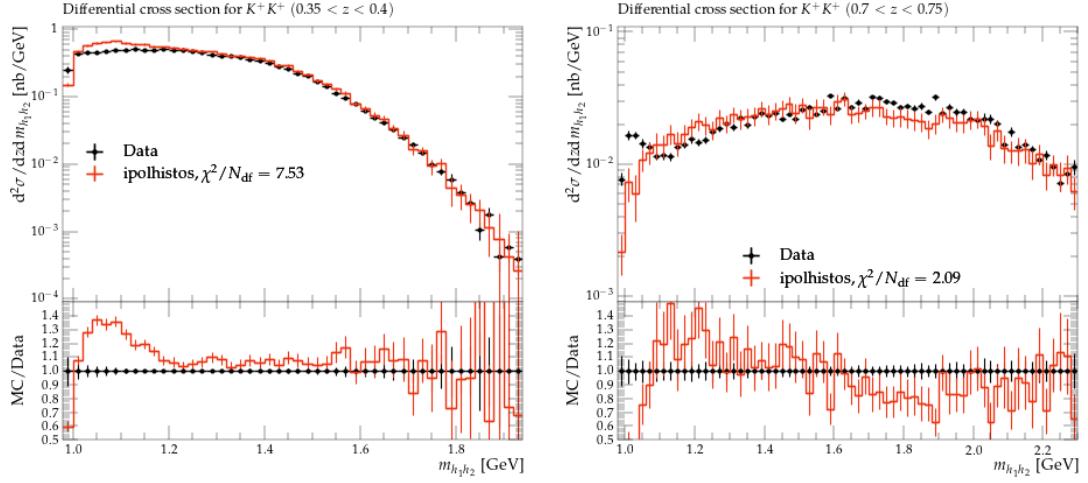


Figure 34: Left: K^+K^+ pair cross sections as a function of the invariant mass m for the fractional energy bin $0.35 < z < 0.4$. Right: The same for the fractional energy bin $0.7 < z < 0.75$. The data is displayed by black points while the best fit result in red.

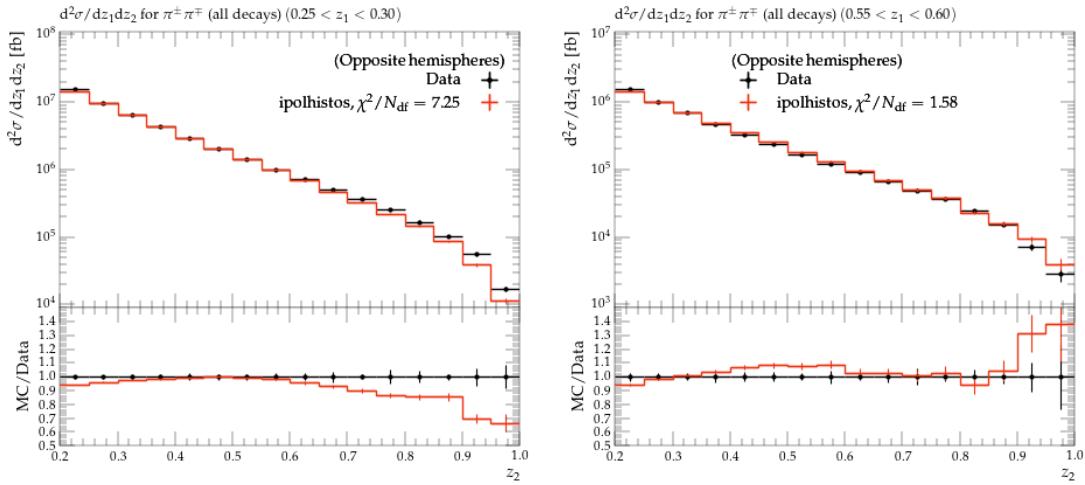


Figure 35: Left: $\pi^+\pi^-$ pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.

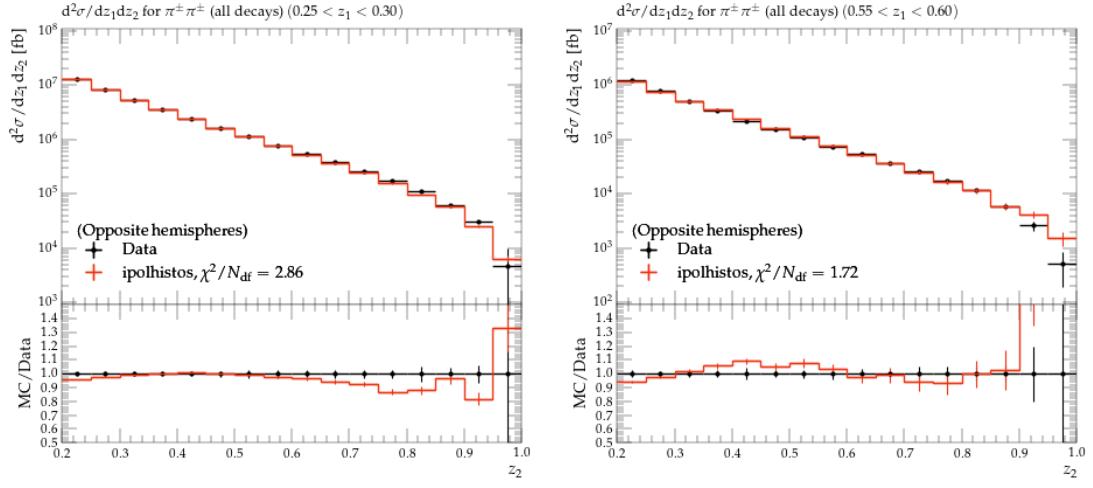


Figure 36: Left: $\pi^+\pi^+$ pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.

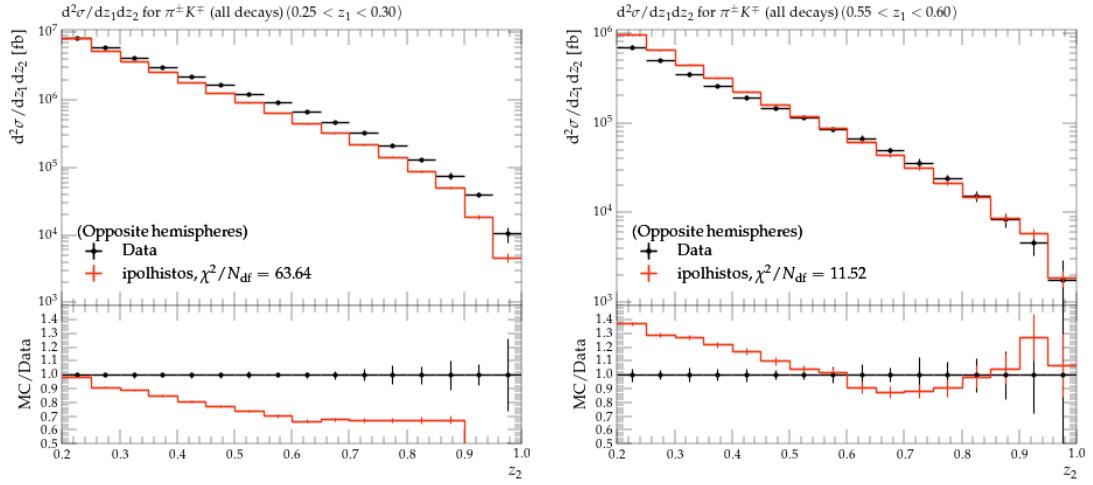


Figure 37: Left: π^+K^- pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.

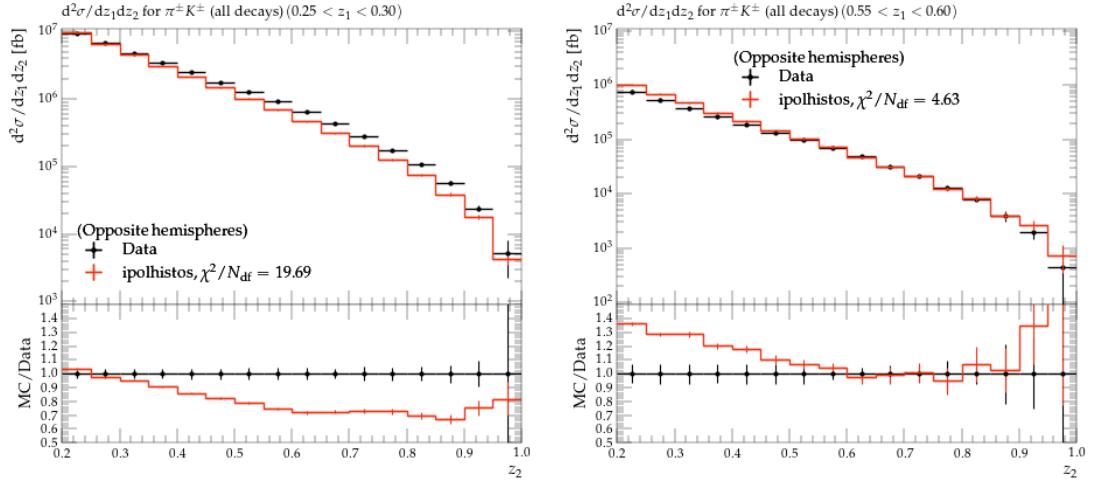


Figure 38: Left: π^+K^+ pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.

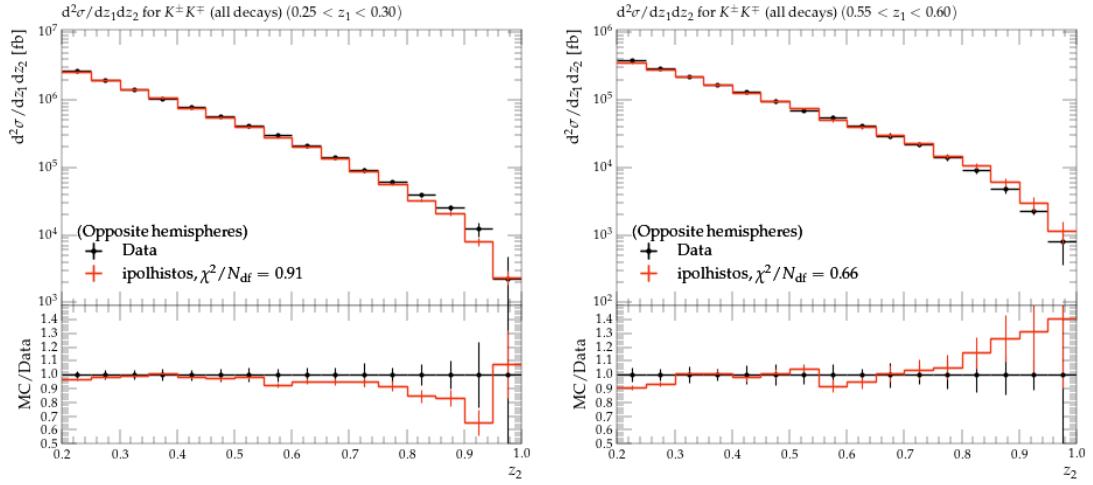


Figure 39: Left: K^+K^- pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.

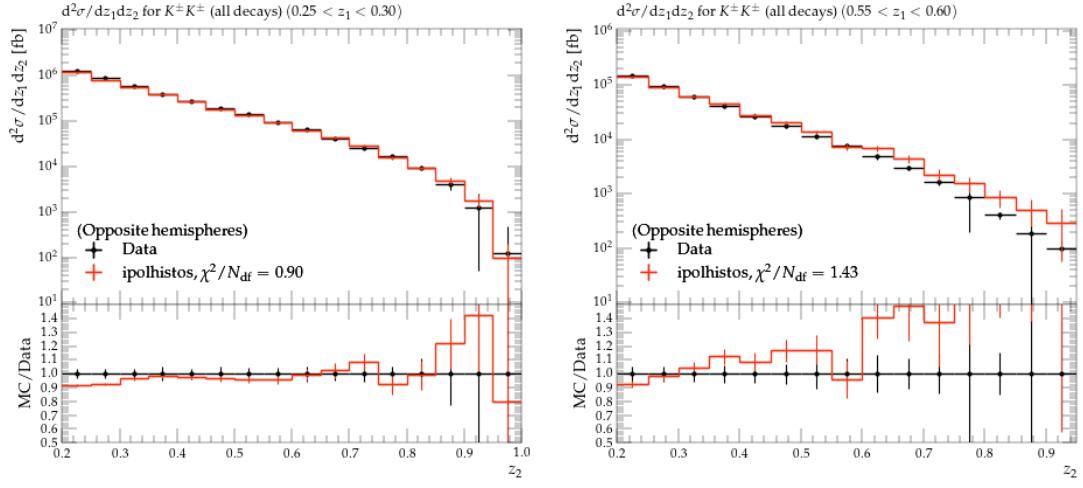


Figure 40: Left: K^+K^- pair cross sections in opposite hemispheres as a function of the invariant mass z_2 for the fractional energy bin $0.25 < z_1 < 0.3$. Right: The same for the fractional energy bin $0.55 < z_1 < 0.6$. The data is displayed by black points while the best fit result in red.

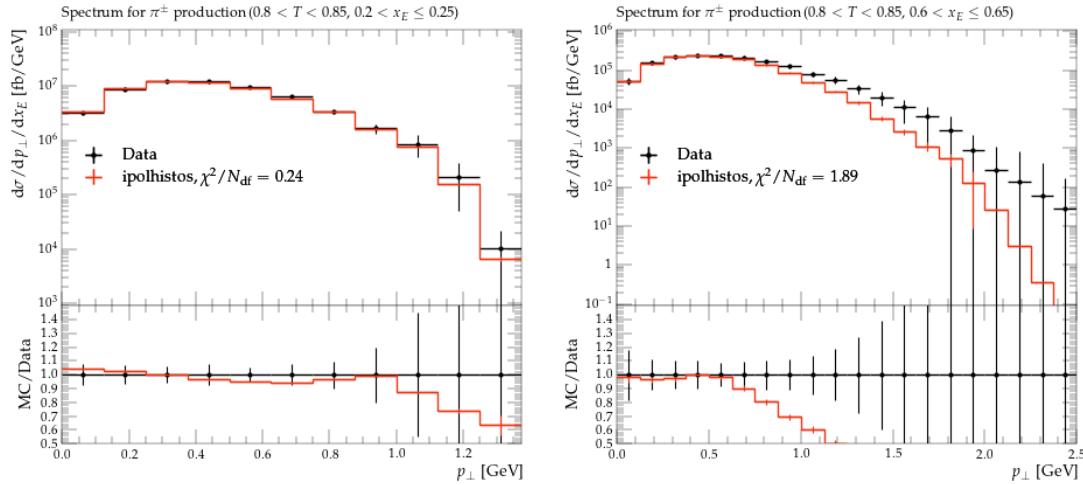


Figure 41: Left: π^\pm cross sections as a function of the transverse momentum p_T for the fractional energy bin $0.2 < z_1 < 0.25$ in the thrust bin $0.8 - 0.9$. Right: The same for the fractional energy bin $0.6 < z_1 < 0.65$. The data is displayed by black points while the best fit result in red.

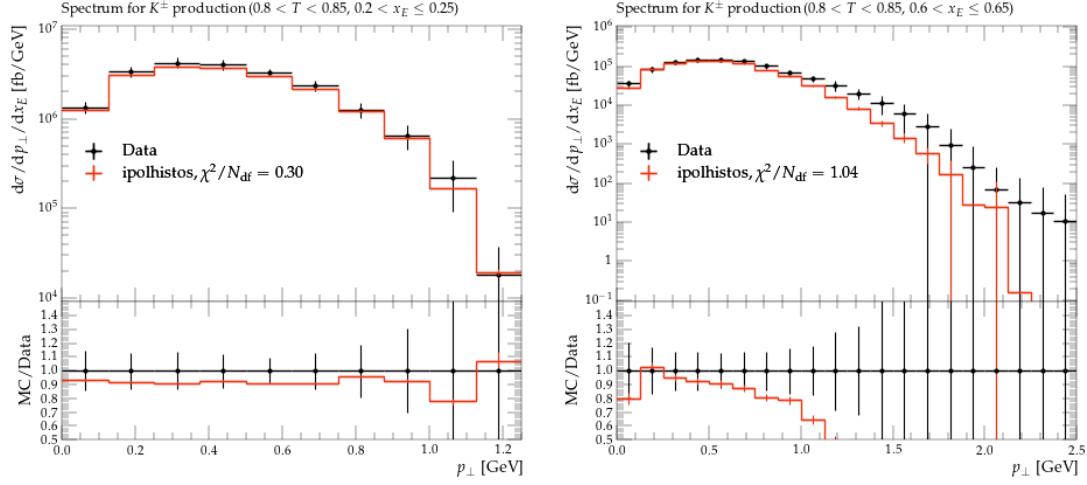


Figure 42: Left: K^\pm cross sections as a function of the transverse momentum p_T for the fractional energy bin $0.2 < z_1 < 0.25$ in the thrust bin $0.8 - 0.9$. Right: The same for the fractional energy bin $0.6 < z_1 < 0.65$. The data is displayed by black points while the best fit result in red.

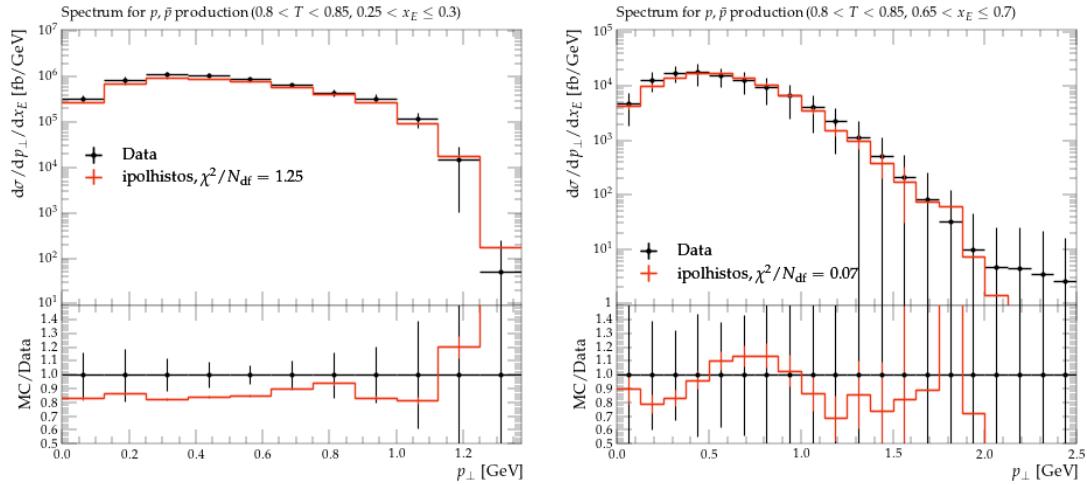


Figure 43: Left: p cross sections as a function of the transverse momentum p_T for the fractional energy bin $0.2 < z_1 < 0.25$ in the thrust bin $0.8 - 0.9$. Right: The same for the fractional energy bin $0.6 < z_1 < 0.65$. The data is displayed by black points while the best fit result in red.

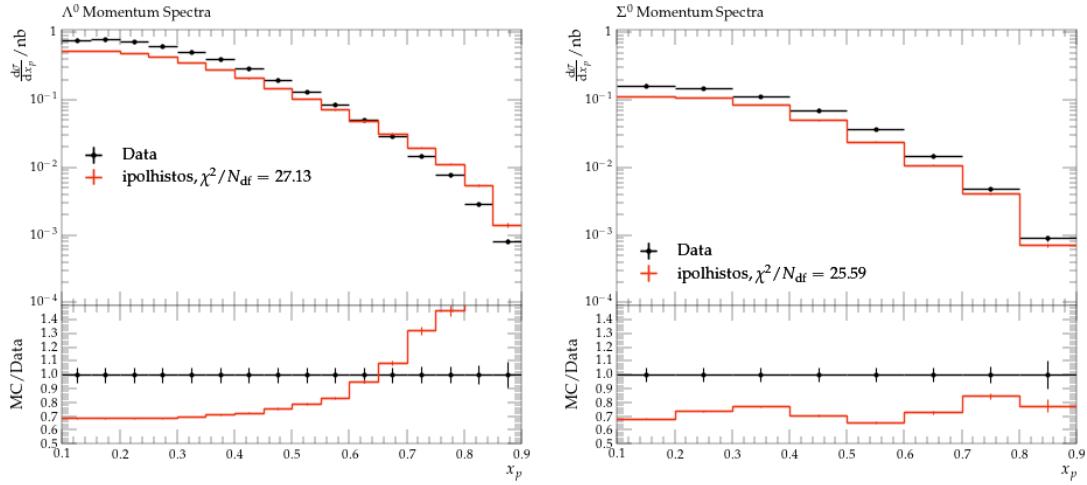


Figure 44: Left: Λ spectrum as a function of x_p . Right Σ^0 spectrum as a function of x_p . The data is displayed by black points while the best fit result in red.

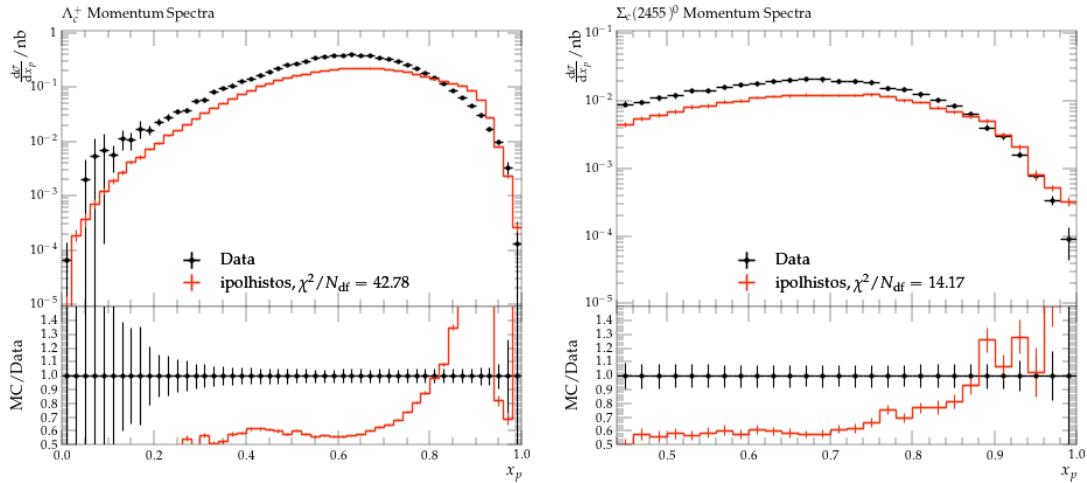


Figure 45: Left: Λ_c^+ spectrum as a function of x_p . Right $\Sigma_c(2455)^0$ spectrum as a function of x_p . The data is displayed by black points while the best fit result in red.

497 7.5 Hyperons and charmed baryons

498 For hyperons the description is still not as good, even after including the popcorn
 499 variables and used the bug-fixed version of PYTHIA. The overall shapes do have
 500 improved, however, as can be seen in Figs. 44 and 45 for some hyperons and charmed
 501 baryons, respectively. The peak position of the charmed baryons is somewhat similar
 502 to the measurements, but the tune predicts a rather abrupt drop-off of the cross
 503 sections at very high momentum fractions that is not confirmed in the data, or at
 504 least not as sharp.

505 8 Systematic uncertainties and tests

506 The best variables and their variations are summarized in Table 2 in comparison to
 507 the default values of PYTHIA and currently in use in Belle2. In this table the best
 508 values are given in the second column, the lower and upper values represent the
 509 lowest and highest variations of the tune iterations to the best value (i.e. the last
 510 iteration for that particular variable). The variations are just given as a measure
 511 of how much these variables varied during the tuning evaluations and cannot be
 512 considered as reliable uncertainties. In turn, the statistical uncertainties from the
 513 tuning efforts are tiny and are therefore not tabulated. One can see that the variables
 514 that have been retired after several iterations were quite stable. The corresponding
 515 results are also highlighted in Fig. 46 in comparison to the other values.

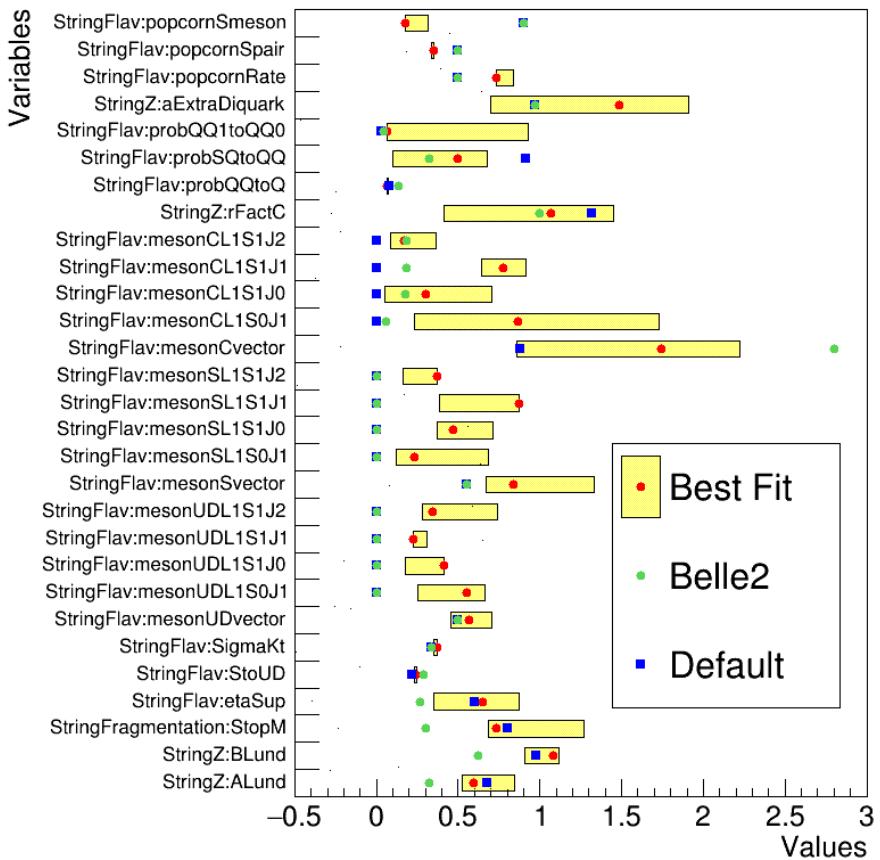


Figure 46: Best tune results (Red points), including their estimated uncertainties as discussed in the text (yellow bars) in comparison to the currently used (Darkgreen) and PYTHIA default (Blue boxes) values for each variable. Due to the significantly larger ranges, the results from mixing angles are not shown.,

516 The individual sets of variables and their variations are also visualized in the fol-
 517 lowing figures as a function of their iterations. The Main Lund string fragmentation
 518 variables can be found in Fig. 47. One sees again that the strangeness suppression
 519 and the transverse momentum generation are indeed not changing much over the
 520 iterations.

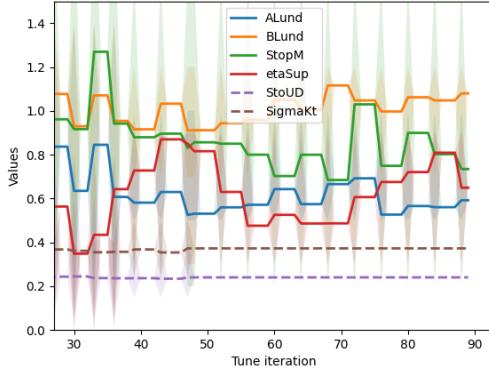


Figure 47: Main Lund variables, the allowed ranges are shown in shaded regions and the best values as a function of the various tuning iterations

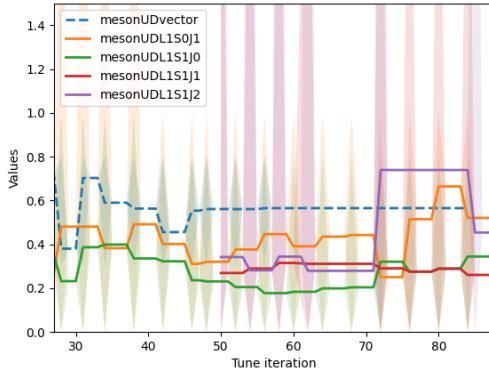


Figure 48: Light quark related vector meson and higher spin variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.

521 The light quark vector meson and higher spin variables can be seen in Fig. 48.
 522 Especially the higher spin variables are not particularly well determined and thus
 523 fluctuate from iteration to iteration, but the vector meson fraction is fairly stable
 524 which is why it was fixed eventually.

525 The corresponding strange and charm variables are displayed in Figs. 49 and 50,
 526 respectively. In these, one can see that the two vector mesons fractions are again
 527 the most stable variables and that the charm vector meson fraction is significantly
 528 larger than that of strange quarks which again is slightly larger than that for light
 529 quarks. The higher spin values typically vary much as well.

530 The baryon related fragmentation variables are displayed in Fig. 51. Apart from
 531 the main diquark fragmentation and the extra Lund factor for diquarks, the values
 532 are fluctuating significantly between iterations. After the inclusion of the popcorn
 533 values, the vector diquark fraction also appears to stabilize.

534 The vector and pseudoscalar mixing angles are displayed in Fig. 52. Especially
 535 the pseudoscalar mixing value is fluctuating significantly while the vector angle is

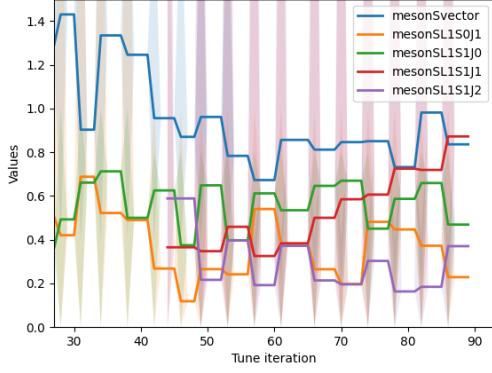


Figure 49: Strange quark related vector meson and higher spin variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.

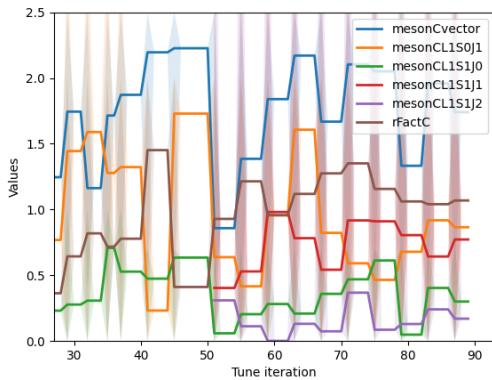


Figure 50: Charm quark related vector meson and higher spin variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.

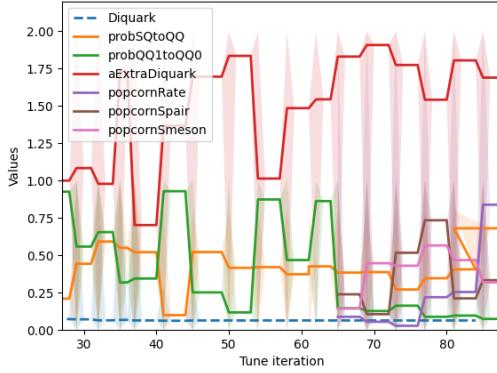


Figure 51: Baryon related variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.

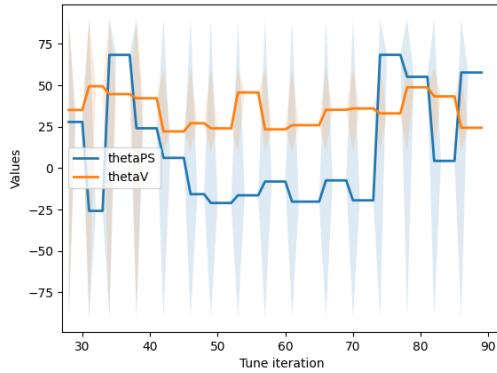


Figure 52: Mixing related variables as a function of the various tuning iterations, the allowed ranges are shown in shaded regions and the best values as the center line. Dashed lines represent variables that have been fixed after they became stable.

536 slightly more stable.

537 Last, the evolution of the goodness of fit as a function of the tune iterations is
 538 displayed in Fig. 53. One can generally see that the reduced χ^2 did decrease for the
 539 most part with the occasional fluctuations. After including the higher spin states
 540 and fixing some variables not too much improvement can be seen. Another reduction
 541 can be seen when including the popcorn variables at around tune iteration 65, but
 542 again after an initial drop the values flatten out. The last improvement can be seen
 543 from using the correct treatment of the extra a parameter that was fixed by the
 544 PYTHIA maintainers from iteration 77. Since then, the χ^2 does not improve anymore
 545 over two further iterations for each set of variables. This suggests that within the
 546 space of variables, no significant further improvements can be achieved and likely
 547 these are the best settings one can get.

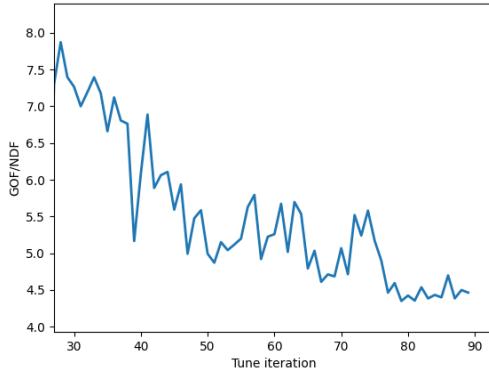


Figure 53: Evolution of the goodness of fit normalized by the number of degrees of freedom as a function of the various tuning iterations.

548 8.1 Comparison to older settings

549 It is also instructive to learn how the different settings after tuning compare to
 550 the settings used as default or previously at Belle2. Those are displayed for vari-
 551 ous measurements in the figures 54 to 61. Due to some empty bins in the latest
 552 measurements which Rivet cannot handle well, the individual χ^2/NDF for these
 553 measurements are given as "nan". It is visible that while individual spectra for very
 554 abundant particles such as light mesons are often reasonably well-described by the
 555 older settings, especially di-hadron mass or momentum spectra and heavier particles
 556 can be much better described after tuning.

557 Summing up all other χ^2/NDF results gives average values of 15.3 for the Pythia
 558 default settings, 14.4 for the previously used Belle2 settings and 6.3 for the latest
 559 best settings. Note that these numbers are different from the actual fit numbers
 560 since here the average over all individual spectra is taken, rather than summing all
 561 points as is done in the fit. Those and the corresponding figures make it abundantly
 562 clear, that the tuning effort successfully improved the description of the included
 563 measurements.

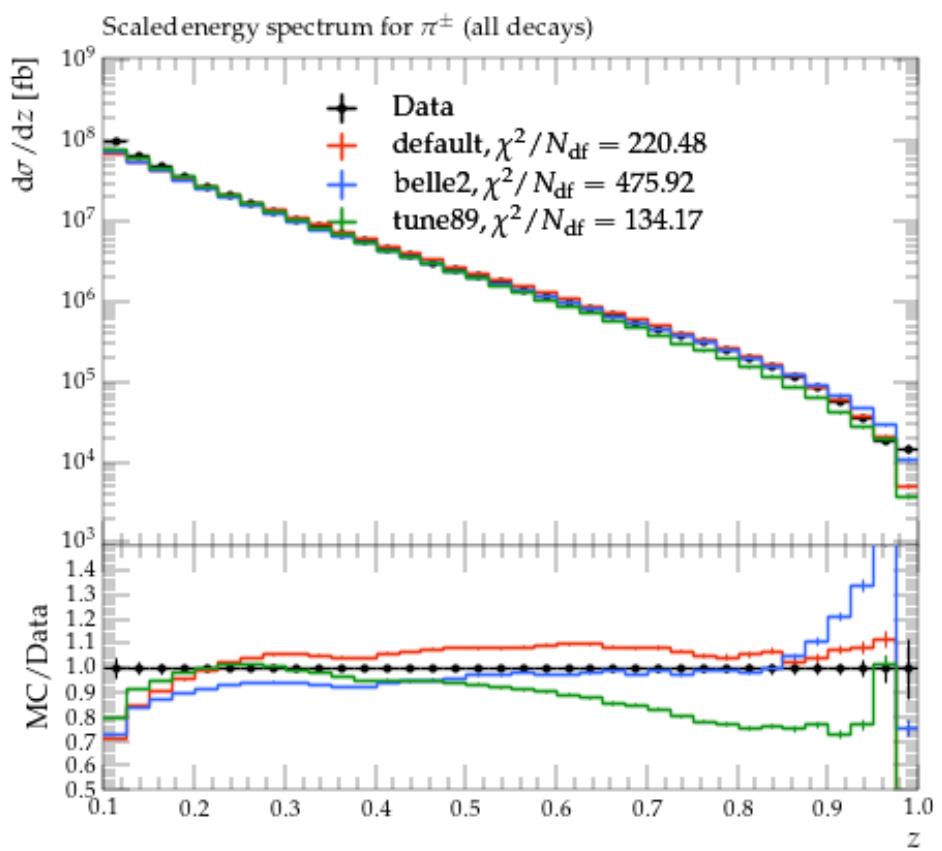


Figure 54: Pion cross sections as a function of the fractional energy z . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

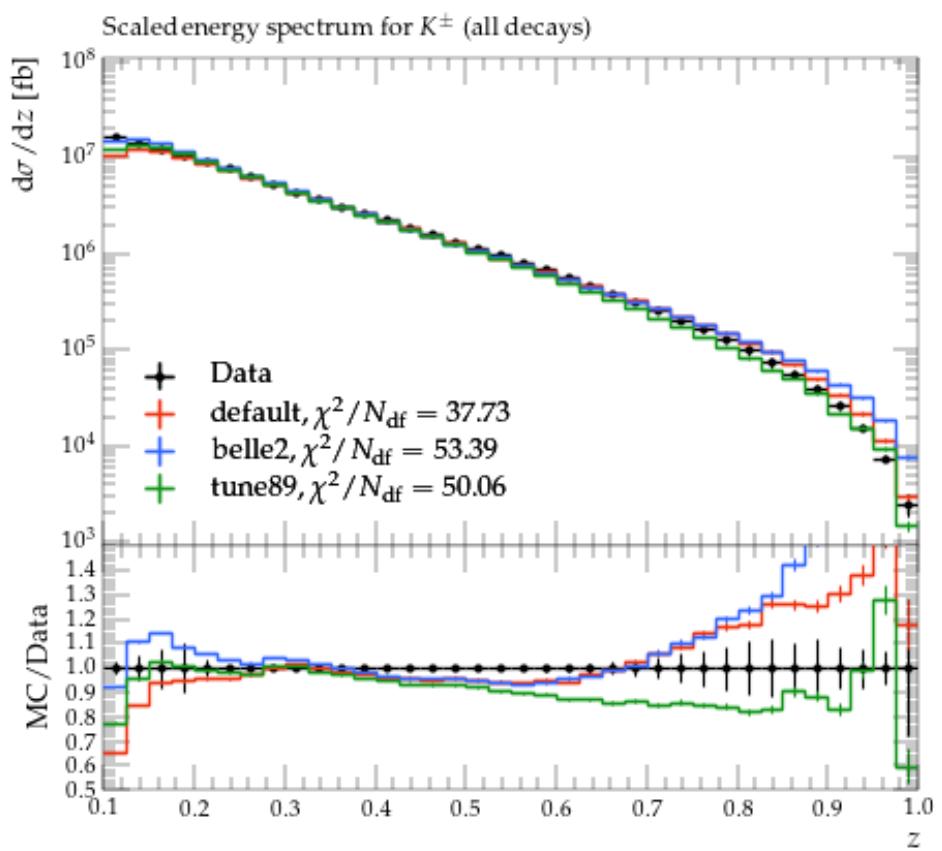


Figure 55: Kaon cross sections as a function of the fractional energy z . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

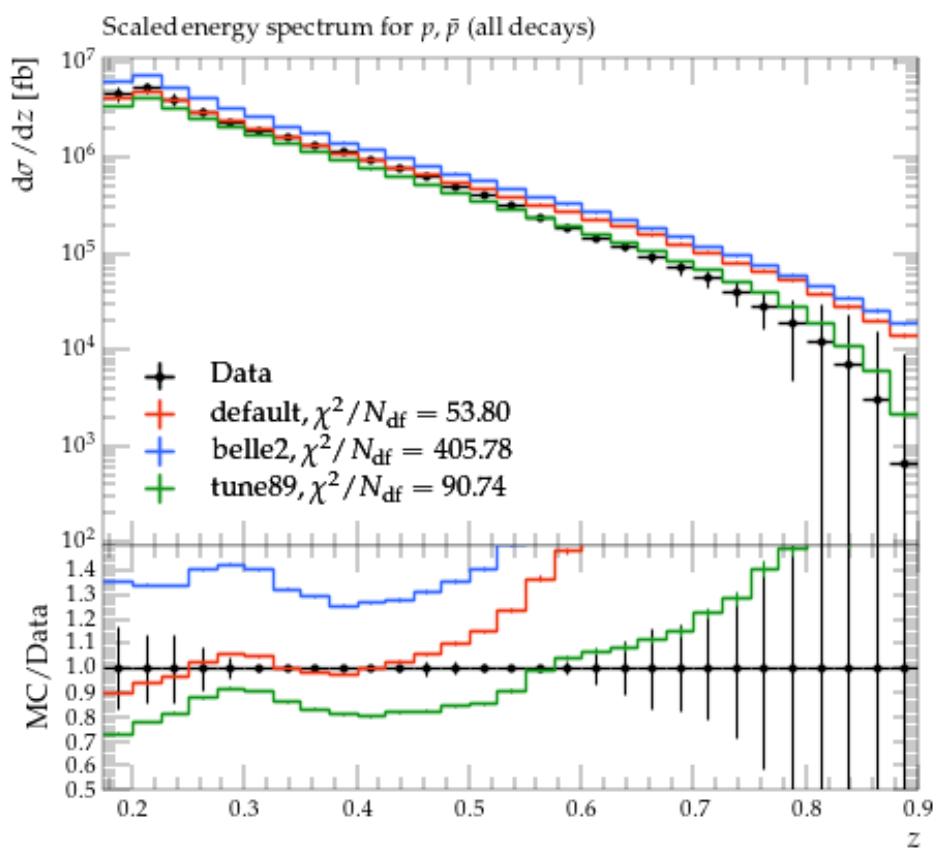


Figure 56: Proton cross sections as a function of the fractional energy z . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

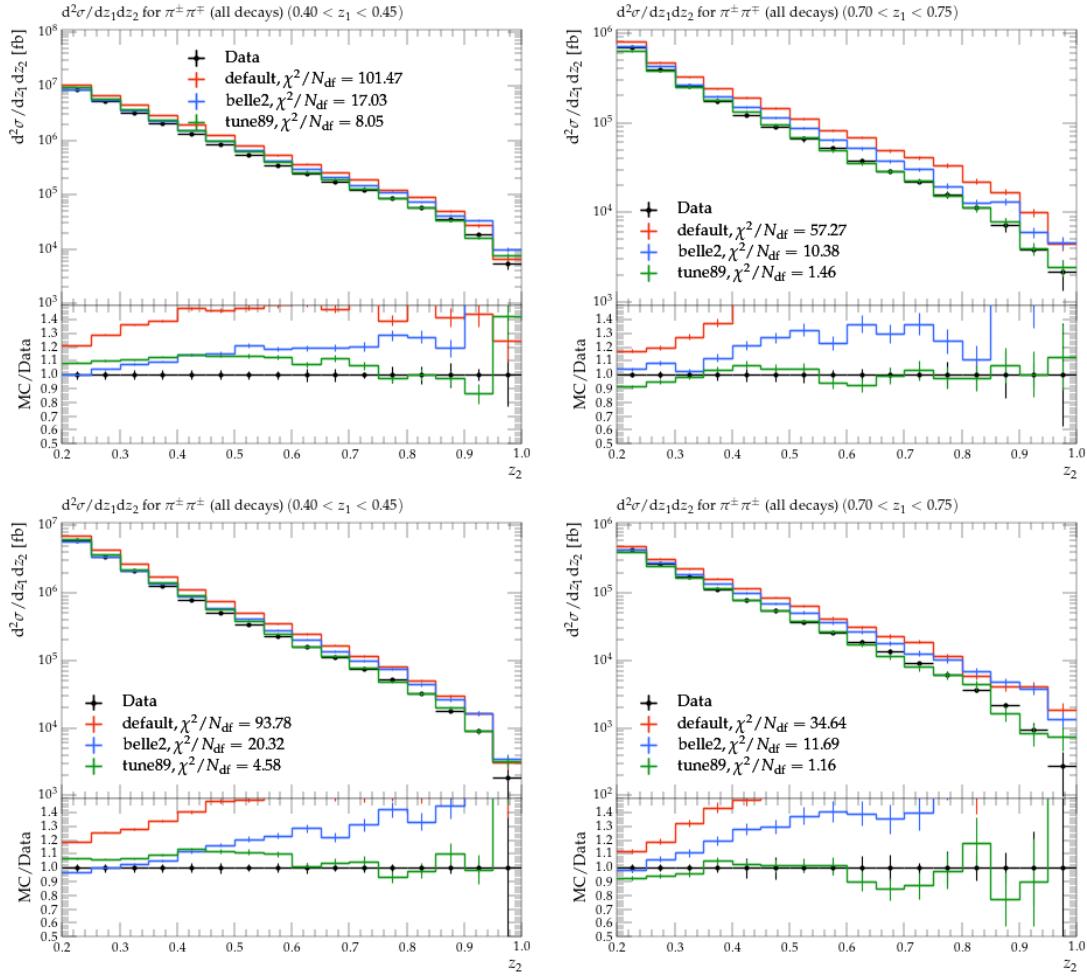


Figure 57: Top: $\pi^\pm\pi^-$ spectra as a function of z_2 for two bins of z_1 . Bottom: $\pi^\pm\pi^\pm$ spectra for the same z bins. The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

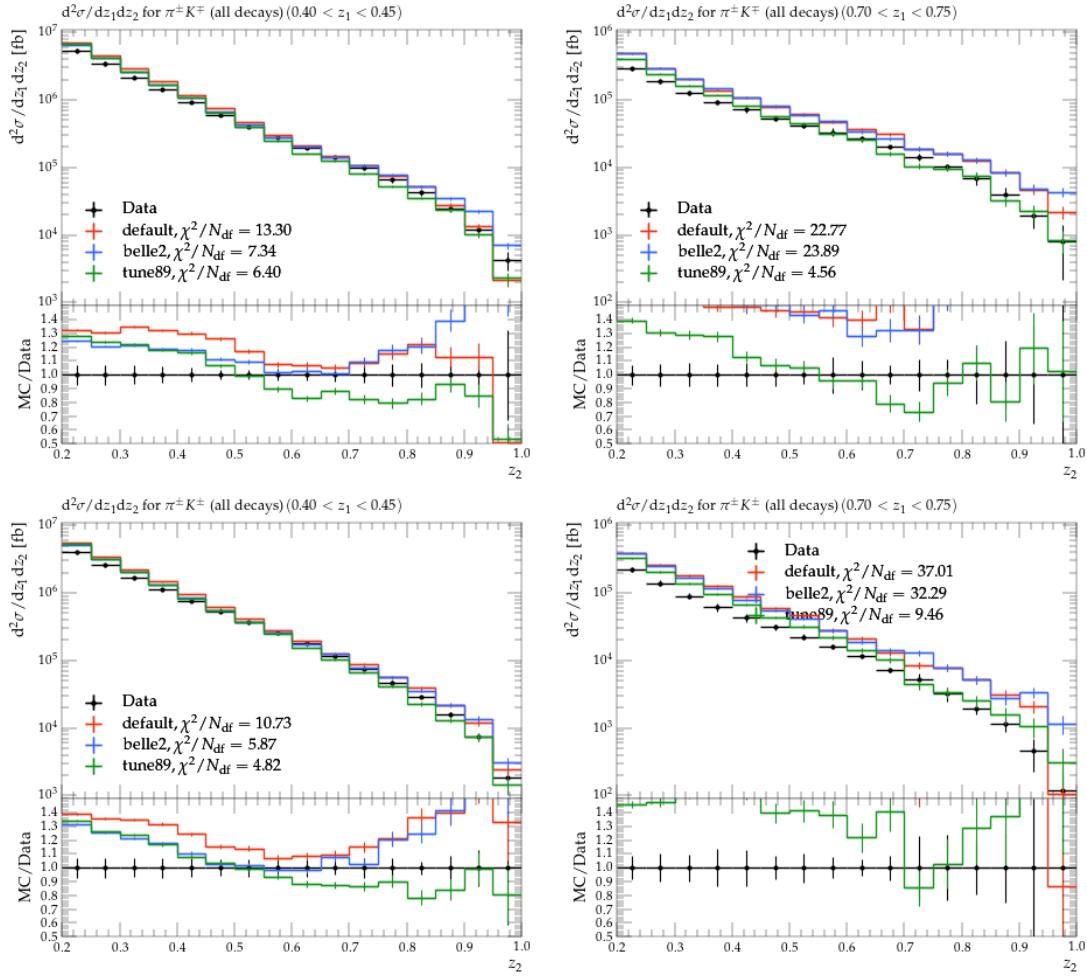


Figure 58: Top: π^+K^- spectra as a function of z_2 for two bins of z_1 . Bottom: $\pi^\pm K^\pm$ spectra for the same z bins. The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

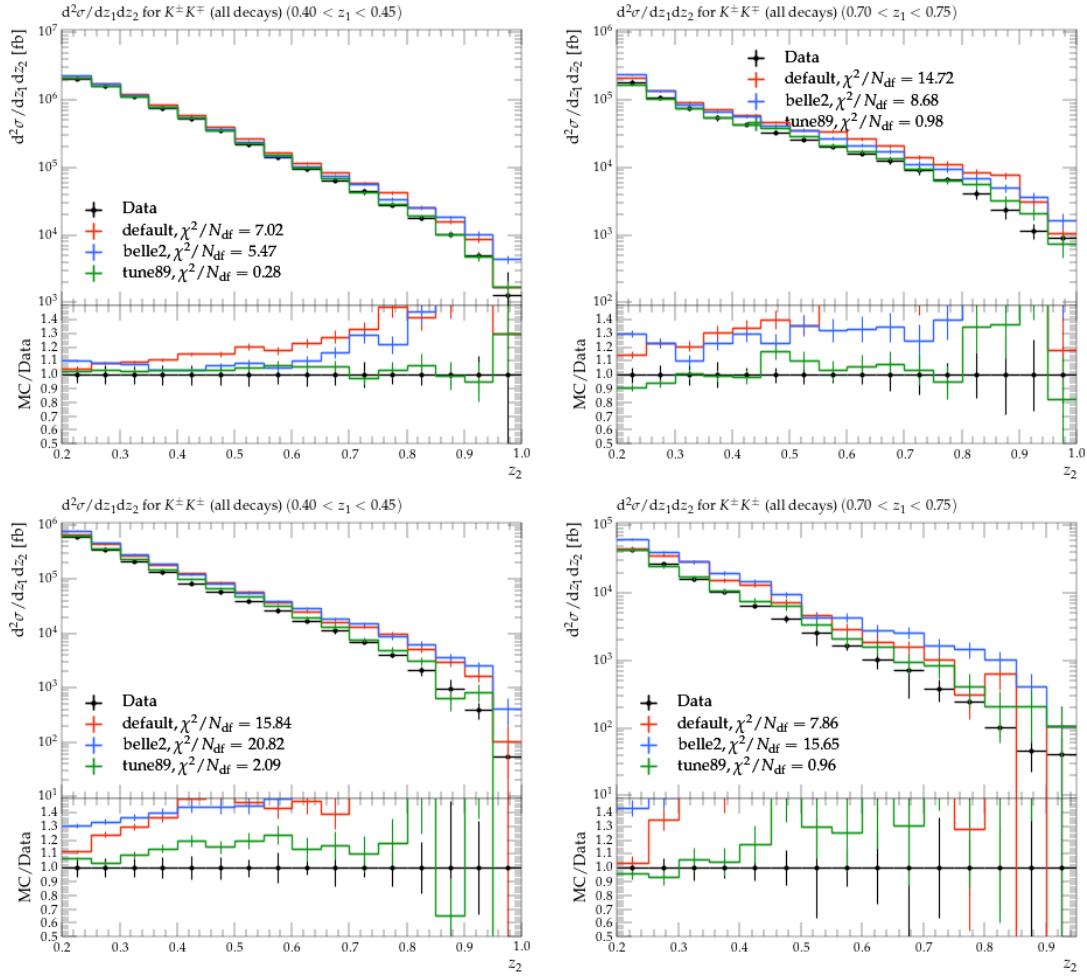


Figure 59: Top: K^+K^- spectra as a function of z_2 for two bins of z_1 . Bottom: $K^\pm K^\pm$ spectra for the same z bins. The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

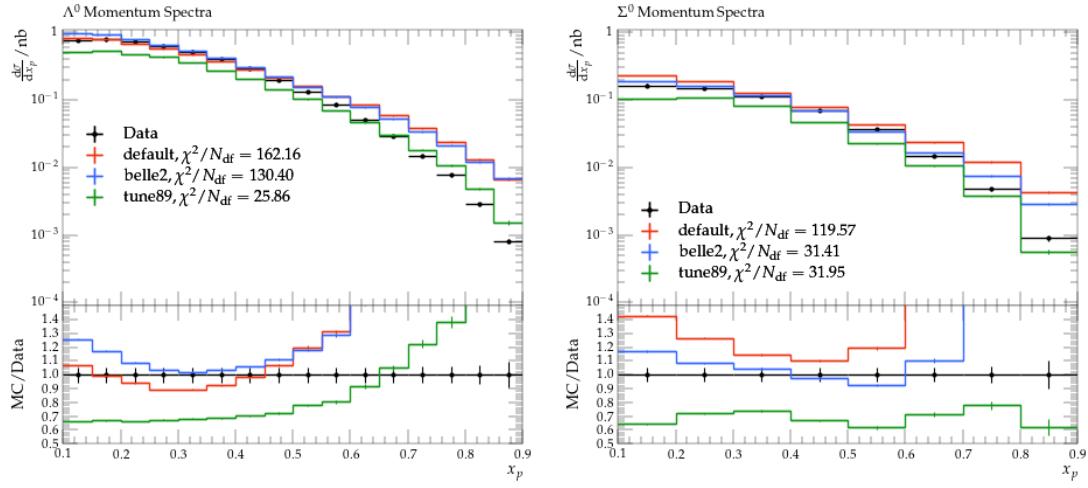


Figure 60: Left: Λ spectrum as a function of x_p . Right Σ^0 spectrum as a function of x_p . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

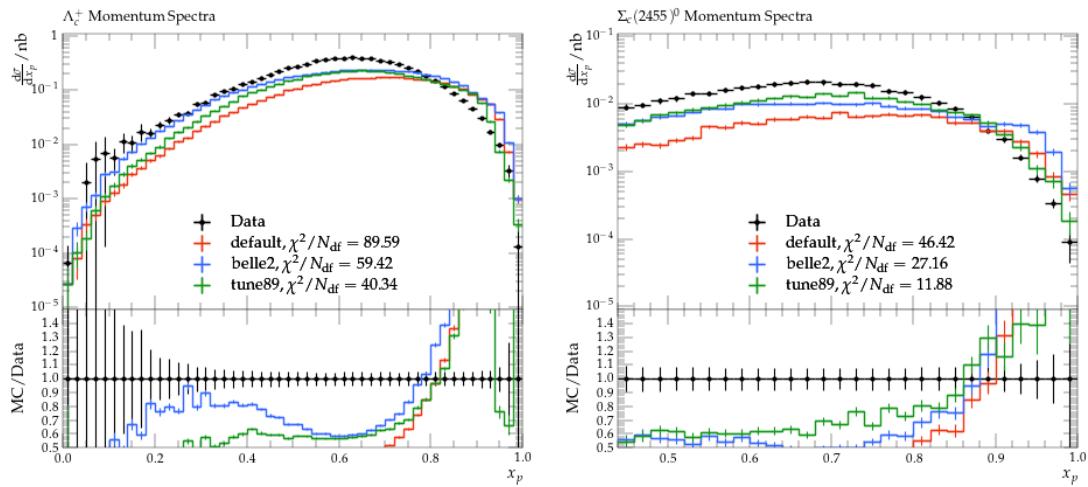


Figure 61: Left: Λ_c^+ spectrum as a function of x_p . Right $\Sigma_c(2455)^0$ spectrum as a function of x_p . The data is displayed by black points while the PYTHIA default is displayed in red, the current Belle2 setting in blue, and the best tune in green.

Table 2: Best tune variables and the variation of the best values during the various tune iterations as well as the PYTHIA default values and the current Belle2 values (release 8/9). Note, that Belle2 has also set the following values etaPrimeSub=0.12, MultIncrease=4.5, and MultIncreaseWeak=2.0 that were not studied here due to lack of sensitivity.

Variable	Best results	default	Belle2
StringZ:ALund	0.592 -0.067 +0.253	0.680	0.32
StringZ:BLund	1.080 -0.170 +0.036	0.980	0.62
StringFragmentation:StopM	0.734 -0.050 +0.535	0.800	0.3
StringFlav:etaSup	0.649 -0.301 +0.221	0.600	0.27
StringFlav:StoUD	0.240 -0.006 +0.004	0.217	0.286
StringFlav:SigmaKt	0.372 -0.019 +0.000	0.335	0.335
StringFlav:mesonUDvector	0.565 -0.109 +0.138	0.500	0.500
StringFlav:mesonUDL1S0J1	0.556 -0.306 +0.108	0	0
StringFlav:mesonUDL1S1J0	0.411 -0.234 +0.000	0	0
StringFlav:mesonUDL1S1J1	0.226 -0.000 +0.086	0	0
StringFlav:mesonUDL1S1J2	0.341 -0.061 +0.399	0	0
StringFlav:mesonSvector	0.836 -0.163 +0.498	0.550	0.550
StringFlav:mesonSL1S0J1	0.229 -0.110 +0.459	0	0
StringFlav:mesonSL1S1J0	0.469 -0.094 +0.243	0	0
StringFlav:mesonSL1S1J1	0.872 -0.489 +0.000	0	0
StringFlav:mesonSL1S1J2	0.370 -0.207 +0.001	0	0
StringFlav:mesonCvector	1.740 -0.882 +0.486	0.880	2.8
StringFlav:mesonCL1S0J1	0.865 -0.634 +0.864	0	0.06
StringFlav:mesonCL1S1J0	0.300 -0.252 +0.408	0	0.1775
StringFlav:mesonCL1S1J1	0.772 -0.129 +0.145	0	0.1868
StringFlav:mesonCL1S1J2	0.170 -0.084 +0.198	0	0.1836
StringZ:rFactC	1.069 -0.658 +0.383	1.32	1.0
StringFlav:probQQtoQ	0.064 -0.002 +0.008	0.081	0.133
StringFlav:probSQtoQQ	0.497 -0.398 +0.184	0.915	0.323
StringFlav:probQQ1toQQ0	0.065 -0.000 +0.864	0.0275	0.0468
StringZ:aExtraDiquark	1.487 -0.785 +0.420	0.970	0.970
StringFlav:popcornRate	0.734 -0.000 +0.104	0.500	0.500
StringFlav:popcornSpair	0.350 -0.016 +0.000	0.500	0.500
StringFlav:popcornSmeson	0.180 -0.000 +0.139	0.900	0.900
StringFlav:thetaPS	57.719 -78.753 +10.675	-15.	-15.
StringFlav:thetaV	24.353 -0.952 +24.444	26.	26.

564 9 Results

565 The best results of the tuning exercise are already tabulated in table 1 together with
566 the default values used in PYTHIA8.3 and BelleII. The overall confidence in the best
567 results is high as indicated by the data-tune comparisons in the previous chapters.
568 There are however different levels of how confident the best variables are depending
569 on the overall sensitivities. Based on those, the main Lund parameters are probably
570 very well determined by the tuning as the sensitivities are very high. The vector me-
571 son related variables are also fairly well determined thanks to the latest Belle paper
572 [3] which explicitly looked at the fragmentation of vector mesons. The higher spin
573 related variables are somewhat less determined due to the fact that no explicit mea-
574 surements of these particles are available. There is some indirect sensitivity via the
575 invariant mass distributions where the higher mass ranges get populated from such
576 particle decays. Last, the baryon related variables seem to be also well-determined,
577 but it is obvious by the differences from the tune to the data that the description of
578 baryon fragmentation in the Lund model seems to be still lacking. It will be still bet-
579 ter to use the optimized values, but there need to be also significant improvements
580 on the model description itself to really obtain a very reliable description of bary-
581 onic final states. As a next step for the BelleII continuum simulation development,
582 it will be important to see whether the optimized settings also directly translate into
583 significant improvements within the overall BelleII simulation framework that uses
584 EvtGen for decays rather than the standalone PYTHIA used in these studies.

585 References

586 [1] Bo Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand. Parton Frag-
587 mentation and String Dynamics. *Phys. Rept.*, 97:31–145, 1983. doi:10.1016/
588 0370-1573(83)90080-7.

589 [2] Bo Andersson. *The Lund Model*, volume 7. Cambridge University Press, 1998.
590 doi:10.1017/9781009401296.

591 [3] R. Seidl et al. Production cross sections of light and charmed mesons in e+e-
592 annihilation near 10.58 GeV. *Phys. Rev. D*, 111(5):052003, 2025. arXiv:2411.
593 12216, doi:10.1103/PhysRevD.111.052003.

594 [4] Andy Buckley, Hendrik Hoeth, Heiko Lacker, Holger Schulz, and Jan Eike von
595 Seggern. Systematic event generator tuning for the LHC. *Eur. Phys. J. C*,
596 65:331–357, 2010. arXiv:0907.2973, doi:10.1140/epjc/s10052-009-1196-7.

597 [5] M. Niiyama et al. Production cross sections of hyperons and charmed baryons
598 from e^+e^- annihilation near $\sqrt{s} = 10.52$ GeV. *Phys. Rev. D*, 97(7):072005, 2018.
599 arXiv:1706.06791, doi:10.1103/PhysRevD.97.072005.

600 [6] R. Seidl et al. Invariant-mass and fractional-energy dependence of inclusive
601 production of di-hadrons in e^+e^- annihilation at $\sqrt{s} = 10.58$ GeV. *Phys. Rev. D*,
602 96(3):032005, 2017. arXiv:1706.08348, doi:10.1103/PhysRevD.96.032005.

603 [7] R. Seidl et al. Transverse momentum dependent production cross sections of
604 charged pions, kaons and protons produced in inclusive e^+e^- annihilation at
605 $\sqrt{s} = 10.58$ GeV. *Phys. Rev. D*, 99(11):112006, 2019. arXiv:1902.01552, doi:
606 10.1103/PhysRevD.99.112006.

607 [8] R. Seidl et al. Update of inclusive cross sections of single and pairs of identified
608 light charged hadrons. *Phys. Rev. D*, 101(9):092004, 2020. arXiv:2001.10194,
609 doi:10.1103/PhysRevD.101.092004.

610 A Pythia StringZ:aExtraDiquark bugfix related 611 changes

612 As indicated in communication by the PYTHIA team, a bug was found in their port-
613 ing of the String fragmentation routines from fortran-based sc pythia6 to PYTHIA8
614 which persisted until version 8.3.14. This bug was related to the handling of the
615 variable StringZ:aExtraDiquark. This behavior was fixed in later versions, but since
616 most tuning efforts using older versions obtained best parameters that included this
617 bug, a switch was introduced to still use the old, incorrect treatment or the corrected
618 one by: StringZ:useOldAExtra = on/off. To test the actual behavior on the Belle2
619 tuning efforts, the best tune iteration at that time (tune71) was compared for the
620 old, previously used PYTHIA version 8.3.13, and the latest version 8.3.16 either hav-
621 ing the old or new treatment explicitly switched on or off. As expected, these changes
622 had no visible effect on any of the meson related measurements used in the tune op-
623 timization. When using the old treatment, also no sizable changes were observed for
624 the various baryon measurements, but the behavior between old and new treatment
625 was significantly different. As intended for this variable, the high- z or x_p shapes be-
626 came softer with the new treatment which resulted in a generally better description
627 of the proton cross sections. Also the behavior of hyperon and charmed baryon cross
628 sections visibly improved while the overall magnitudes are still not well described.
629 The corresponding comparisons are shown in Figs. 62 and 63 for protons, several
630 hyperons and charmed baryons. In these comparisons, it is also visible that the de-
631 fault behavior (i.e. without explicitly setting the StringZ:useOldAExtra = on/off
632 variable) corresponds to the old setting. Because of these changes, and the improve-
633 ments that go with them, the remainder of the tuning effort was performed using
634 the PYTHIA version 8.3.16 and using the new treatment via StringZ:useOldAExtra
635 = off.

636 Initially, it was not clear, that the old treatment is still used per default, which re-
637 sulted in the first tuning efforts after this switch to still use it. Only from tune76 for-
638 ward the new, correct treatment was explicitly implemented via StringZ:useOldAExtra
639 = off.

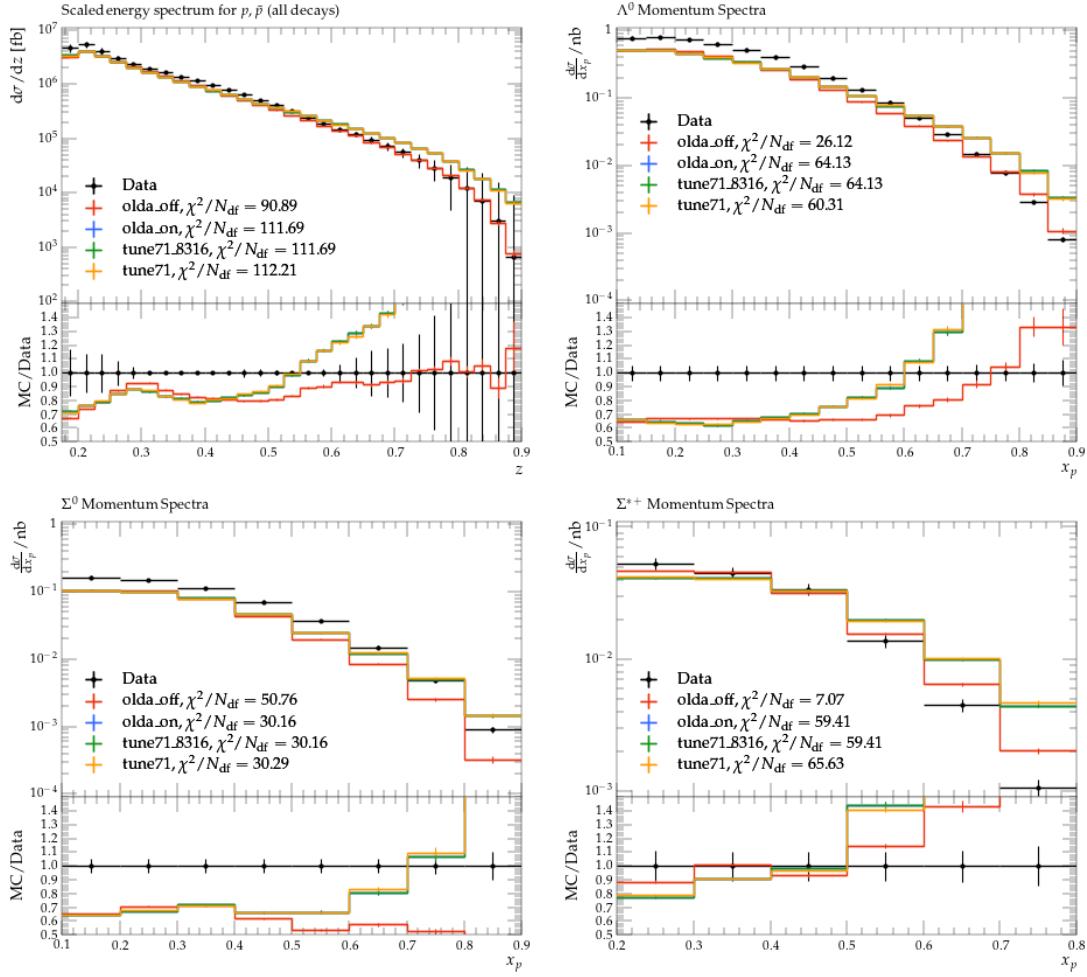


Figure 62: Comparison of the distributions for protons (top left), Λ (top right), Σ^0 (bottom left) and Σ^{*+} as a function of energy or momentum fraction. The black points correspond to the measurements while the yellow points correspond to the best values after tune 71 using PYTHIA8.3.13, the green points correspond to the same tune but using PYTHIA8.3.16, the blue points use the same but explicitly setting `StringZ:useOldAExtra` to "on", and the red points correspond to the same, but switching it to "off".

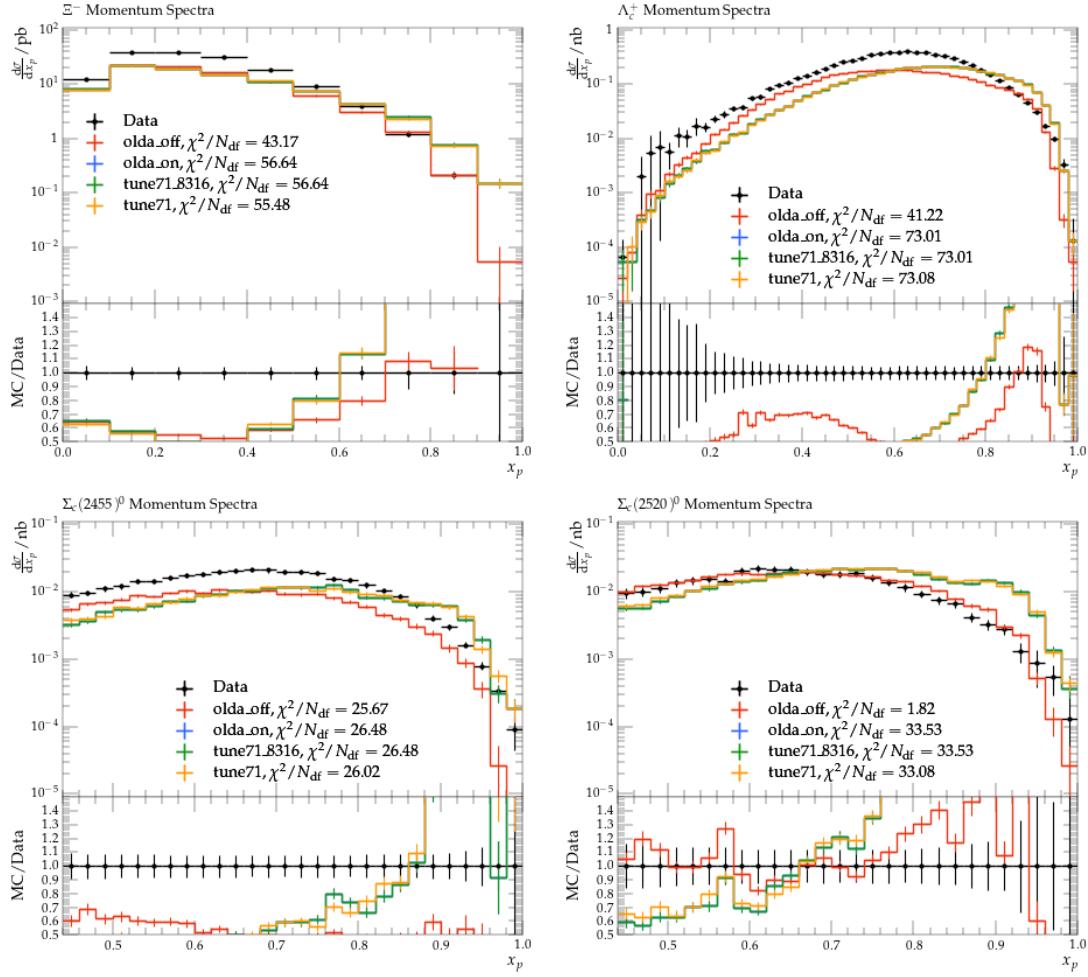


Figure 63: Comparison of the distributions for Ξ^- (top left), Λ_c (top right), $\Sigma_c^0(2455)$ (bottom left) and $\Sigma_c^0(2520)$ as a function of momentum fraction. The black points correspond to the measurements while the yellow points correspond to the best values after tune 71 using PYTHIA8.3.13, the green points correspond to the same tune but using PYTHIA8.3.16, the blue points use the same but explicitly setting `StringZ:useOldAExtra` to "on", and the red points correspond to the same, but switching it to "off".