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Abstract: We present a measurement of the time-dependent CP asymmetry in B0 →
K0

Sπ
+π−γ decays using a data set of 365 fb−1 recorded by the Belle II experiment and

the final data set of 711 fb−1 recorded by the Belle experiment at the Υ(4S) resonance.
The direct and mixing-induced time-dependent CP violation parameters C and S are de-
termined along with two additional quantities, S+ and S−, defined in the two halves of
the m2(K0

Sπ
+) − m2(K0

Sπ
−) plane. The measured values are C = −0.17 ± 0.09 ± 0.04,

S = −0.29 ± 0.11 ± 0.05, S+ = −0.57 ± 0.23 ± 0.10 and S− = 0.31 ± 0.24 ± 0.05, where the
first uncertainty is statistical and the second systematic.
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1 Introduction

Flavor-changing neutral currents, in particular b → sγ transitions, are sensitive probes of
the Standard Model (SM) of particle physics [1–3]. The emitted photon in these transitions
is predominantly left-handed. A right-handed photon is predicted to occur only due to a
chirality flip of the outgoing s-quark line, which is suppressed by a factor proportional
to m2

s/m
2
b . Therefore, in decays of B0 and B0 mesons to a CP eigenstate and a photon,

denoted as B0 → fCPγ, the mixing-induced CP violation is predicted to be very small.
Physics beyond the SM may enhance the mixing-induced CP violation by increasing the
right-handed current contribution to these transitions. Measurement of the mixing-induced
CP asymmetry in these decay channels probes those non-SM processes that result in larger
CP asymmetries.

At the KEKB and SuperKEKB colliders, pairs of B mesons in a coherent quantum
state are produced through e+e− collisions at the Υ(4S) resonance. The B mesons are
referred to as Bsig and Btag, where Bsig is the meson of interest and Btag is the meson
whose information is used to infer the flavor (B0 or B0) of Bsig at the time the Btag
decays. The time-dependent CP asymmetry in neutral B mesons decaying to a final state
fCPγ is defined as

ACP (∆t) =
Γ(Btag=B0(∆t) → fCPγ) − Γ(Btag=B0(∆t) → fCPγ)
Γ(Btag=B0(∆t) → fCPγ) + Γ(Btag=B0(∆t) → fCPγ)

where Γ(Btag=B0(∆t)) is the decay rate of a B meson for which its companion has
been tagged as a B0 at decay, and ∆t ≡ tsig − ttag corresponds to the difference between
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the proper decay times of the Bsig and Btag. It can be parameterized as follows:

ACP (∆t) = S sin(∆m∆t) − C cos(∆m∆t), (1.1)

where S and C are known as the mixing-induced and direct CP violation parameters,
respectively, and ∆m is the mass difference between the heavy and light mass eigenstates of
the neutral B mesons. The BaBar and Belle experiments have reported measurements [4, 5]
of the time-dependent CP asymmetries for the B0 → K0

Sπ
+π−γ decay, with uncertainties

at the level of 25% (the Belle measurement was performed on a subset of the full Belle
data).

This paper presents the combined measurement of the time-dependent CP asymmetry
in B0 → K0

Sπ
+π−γ decays using the entire Belle data set, 711 fb−1, and 365 fb−1 of data

recorded between 2019 and 2022 by Belle II.
The channel of interest is the B0 → Kresγ → (K0

Sπ
+π−)γ decay, where the interme-

diate resonance Kres decays into a K0
S and a charged-pion-pair. Among the many possible

intermediate resonances only those that decay through the two-body Kres → K0
Sρ

0 channel
are true CP eigenstates. For this measurement, we only consider the decay of K0

S to two
charged pions, K0

S → π+π−, while the ρ0 meson is reconstructed using its main decay
mode, ρ0 → π+π−. The time-dependent CP asymmetry we measure has, in addition to
the CP eigenstate B0 → K0

Sρ
0γ mode, contributions from non-CP eigenstates involving

strange meson resonances. The most important of these are

B0 → Kresγ → (K∗±π∓)γ → ((K0
Sπ

±)π∓)γ (1.2)
B0 → Kresγ → ((Kπ)±

0 π
∓)γ → ((K0

Sπ
±)π∓)γ, (1.3)

where (Kπ)±
0 represents a Kπ pair in an S-wave configuration. The contributions of these

modes to the effective time-dependent CP asymmetries could be determined through a
full amplitude analysis [4–6] of the isospin partner mode B+ → K+π+π−γ, which would
provide a full description of the amplitudes and interferences present in the Kres system.
No amplitude analysis is performed in this work, but the isospin partner channel is used
to validate aspects of the analysis strategy.

In addition to the measurement of the time-dependent CP asymmetries, S and C, we
measure two new CP observables, proposed in Ref. [6]. We construct these new CP observ-
ables from a combined measurement of the time-dependent CP asymmetry in two halves of
the (m2(K0

Sπ
+),m2(K0

Sπ
−)) plane defined by the inequalities m2(K0

Sπ
+) ≶ m2(K0

Sπ
−). To

ease the notation, in subsequent sections we refer to the half-plane wherem2(K0
Sπ

+) > m2(K0
Sπ

−)
as the “up” half while the opposite half is referred to as the “down” half. Following this
notation, the two new observables are defined as

S+ = Sup + Sdown

S− = Sup − Sdown,

where Sup and Sdown are the values of S, defined in Eq. 1.1, measured in the two half-
planes. These new CP observables can be combined with two parameters (a, b), that can
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be extracted from an amplitude analysis of the isospin partner channel. These parameters
describe the different proportions and the interference properties of the CP mode with
respect to the non-CP-eigenstate modes. These four quantities, taken together, could
provide constraints on the photon polarization in the B0 → Kresγ → (K0

Sπ
+π−)γ mode.

The candidate selection and fit strategy are developed and validated before accessing
the data containing the signal mode. Throughout this paper, the inclusion of the charge
conjugate decay mode is implied unless otherwise specified.

The outline of this paper is as follows: we present the detectors, Belle and Belle II,
and the corresponding data samples in Sec. 2 and Sec. 3, respectively. The reconstruction
and selection of candidates from the decay channel of interest, B0 → K0

Sπ
+π−γ, and of

its isospin partner are described in Sec. 4. We discuss the strategy to extract the CP
observables and the associated uncertainties in Sec. 5. Finally, we present the results of
the measurement and our conclusions in Sec. 6.

2 The Belle and Belle II experiments

The Belle and Belle II detectors both have a cylindrical geometry whose symmetry axis
z is nearly aligned with the electron beam direction at the interaction point. The polar
angle θ is defined relative to the z axis.

The Belle detector [7, 8] was located at the KEKB e+e− accelerator [9], which collided
electrons and positrons at and near the Υ(4S) resonance with beam energies of 8 GeV
and 3.5 GeV, respectively. It recorded data from 1999 to 2010. The Belle detector was
a large-solid-angle magnetic spectrometer composed of a silicon vertex detector (SVD),
where two different configurations of the silicon vertex detector and beam pipe radius
were used over the course of the experiment, a central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-shaped arrangement of time-of-
flight (TOF) scintillation counters, and an electromagnetic calorimeter (ECL) comprised
of CsI(Tl) crystals located inside a superconducting solenoid coil that provided a magnetic
field of 1.5 T. An iron flux-return yoke, placed outside the coil, was instrumented with
resistive-plate chambers to detect K0

L mesons and identify muons. The SVD and CDC
were used to reconstruct charged particle tracks and vertices, the ACC and TOF, along
with ionization energy-loss (dE/dx) measurements from the CDC, were used for charged
particle identification (PID) purposes, and photons were reconstructed from clusters in the
ECL.

The Belle II detector [10] is located at the SuperKEKB accelerator, which collides
electrons and positrons at and near the Υ(4S) resonance [11] with beam energies of 7 GeV
and 4 GeV, respectively. The Belle II detector [10] has a cylindrical geometry and in-
cludes a two-layer silicon-pixel detector (PXD) surrounded by a four-layer double-sided
SVD [12] and a 56-layer CDC. These detectors reconstruct tracks from charged parti-
cles. Only one sixth of the second layer of the PXD was installed for the data analysed
here. Surrounding the CDC, which also provides dE/dx energy-loss measurements, there
is a time-of-propagation counter (TOP) [13] in the central region and an aerogel-based
ring-imaging Cherenkov counter (ARICH) in the forward region. These detectors provide
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charged-particle identification. Surrounding the TOP and ARICH there is an ECL based
on CsI(Tl) crystals that primarily provides energy and timing measurements for photons
and electrons. Outside of the ECL there is a superconducting solenoid magnet. Its flux
return is instrumented with resistive-plate chambers and plastic scintillator modules to
detect muons, K0

L mesons, and neutrons. The solenoid magnet provides a 1.5 T magnetic
field that is oriented parallel to the z axis.

3 Datasets

This measurement is based on 365 fb−1 of data recorded by the Belle II experiment and
711 fb−1 recorded by the Belle experiment, both at the Υ(4S) resonance. Additional data
samples, 43 fb−1 for Belle II and 86 fb−1 for Belle, recorded below the Υ(4S) → BB

threshold are used for background studies.
We use several Monte-Carlo simulated samples (MC samples) to model, study, and

validate different parts of the measurement process. Samples of e+e− → Υ(4S) → BB are
generated, together with the subsequent particle decays, using the EvtGen [14] program
interfaced to the Pythia 8 (Pythia 6) software [15] for Belle II (Belle). Quark-antiquark
pairs created in the e+e− → qq process (q = u, d, s, c), referred to as continuum events, are
generated with the KKMC [16] package together with Pythia 8 (Pythia 6) to handle
the fragmentation process. The detector response is simulated by the Geant 4 (Geant
3) [17] package. The simulated samples include the effects of beam-induced background,
as described in Ref. [18]. We use MC samples from generic e+e− collisions, i.e., combin-
ing B0B0, B+B− and qq samples, and also specific samples of BB, where one of the B
mesons decays into a specified mode of interest (signal MC). We use generic MC samples
corresponding to four (six) times the data luminosity for the Belle II (Belle) analysis. In
addition, in Belle, we use a sample of specific rare BB decays with fifty times the recorded
Belle luminosity to study other decay modes that may affect our measurement as back-
ground sources. The signal MC samples are substantially larger than the generic ones, and
are generated with a single intermediate resonance, Kres = K1(1270) → K0

Sρ for both Belle
and Belle II analyses.

We use the Belle II analysis software [19, 20] to process both collision data and the
simulated MC samples in Belle II, while we use a specific Belle analysis and software
framework for Belle.

4 Candidate selection

The trigger systems selects events based on the number of charged and neutral particles,
along with the total ECL energy deposition, and retains hadronic BB events with an
efficiency close to 100% for the signal decay mode.

In each event, the Bsig meson is reconstructed first, and the remaining reconstructed
particles are assigned to the Btag decay. The Bsig candidate selection is optimized to
enhance the signal contribution relative to background contributions. While the selection
criteria are largely similar between Belle and Belle II, differences emerge due to differences
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in detector performance and background conditions. Candidate Υ(4S) events are required
to have a minimum of 4 (3) charged tracks for Belle II (Belle) and a visible energy of at
least 4 GeV.

Candidate signal photons are reconstructed from ECL clusters with no associated
track and with energies higher than 1.5 (1.4) GeV for Belle II (Belle). An upper bound
is set on the energy of these ECL clusters at 4 (3.5) GeV to remove photon candidates
arising from beam background. The photon polar angle must satisfy cos θγ ∈ [−0.87, 0.95]
([−0.65, 0.86]). Multivariate classifiers that combine information from the photon candidate
and the rest of the event are used to remove photon candidates from π0 → γγ and η → γγ

decays [21, 22].
The pion candidates that arise directly from the Kres decay, and not through the

subsequent K0
S decay, are referred to as prompt pions. The corresponding charged tracks

are required to point to the beam interaction region with a longitudinal distance smaller
than 3 cm and a transverse distance smaller than 0.5 (1) cm for Belle II (Belle). Using the
PID system, a loose requirement is placed on these tracks to be compatible with a pion
hypothesis.

The K0
S candidates are formed by combining two opposite-sign charged particle tracks

displaced with respect to the IP, and their invariant mass, assuming they are pions, is
required to be within ±20 MeV/c2 of the known K0

S mass. The K0
S invariant mass resolution

is about 6 MeV/c2. Additionally, a multivariate classifier is used to determine the likelihood
of the candidate to be a K0

S , using the kinematic information from the tracks and their
combination, the flight length of the K0

S candidate and the number of hits in the vertex
detectors. In Belle the algorithm is based on a NeuroBayes Neural Network [23, 24], while
in Belle II we use a Boosted Decision Tree (BDT) [25].

The Kres candidates are constructed by summing the four momenta of the prompt
pions and K0

S candidates. The Kres candidates are required to have an invariant mass
mKres ∈ [0.9, 1.8] GeV/c2, which allows higher mass structures arising from B decay back-
grounds containing a charm meson to be removed. Their momentum in the center of
mass (c.m.) frame is required to satisfy p∗

Kres ∈ [1, 3.5] GeV/c; no candidates arising from
the signal mode are expected outside this range. The Bsig candidates are constructed by
combining the four-momenta of the Kres and photon candidates. The reconstructed de-
cay vertex of the Bsig candidate is indistinguishable from the decay vertex of the Kres,
since the latter decays via the strong force. We determine the Bsig vertex position by
performing a fit, using only the prompt pion tracks, while constraining the Bsig to come
from the beam interaction region. We only keep Bsig candidates for which the vertex fit
has converged. The effect of adding the K0

S information into the reconstructed vertex is
found to be negligible, so this information was not used. The momenta of all particles,
including the photon, in the Bsig decay are recomputed after the vertex fit. Additionally,
the Bsig are required to have Mbc > 5.20 GeV/c2 and ∆E ∈ [−0.2, 0.2] GeV, where the
beam-energy-constrained mass and energy difference are defined as Mbc ≡

√
(
√
s/2)2 − p∗2

B

and ∆E ≡ E∗
B −

√
s/2. The variables p∗

B, E∗
B are the momentum and the energy of the B

meson in the c.m. frame, respectively, and
√
s is the c.m. energy of the e+e− collision. An
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additional requirement is imposed on the invariant mass of the two prompt pions forming
the ρ0, mπ+π− ∈ [0.6, 0.9] GeV/c2. This last requirement is the only selection step that
enhances the fCP contribution to the B0 → Kresγ mode.

The Btag vertex is reconstructed by combining the tracks in the event that have not
been used in the reconstruction of the Bsig [26]. The position of its decay vertex is deter-
mined by constraining the Btag direction, computed as the difference between the position
vector of the decay vertex and the position vector of the center of the interaction region,
to be collinear with its momentum vector [27].

We build a multivariate BDT classifier to distinguish true signal candidates from con-
tinuum events, the main source of background. These continuum events feature a boosted
jet-like topology whereas BB events result in a more isotropic distribution of final state
particles. The different topologies are exploited in the BDT. The variables used for train-
ing the BDT are common between Belle and Belle II, but each BDT is trained indepen-
dently. The signal MC samples are used as a proxy for signal while the continuum MC
samples are used as a proxy for background. We use a total of eleven variables in the
BDT: the polar angle of the signal B candidate in the c.m. frame, the angle between the
Bsig thrust axis and the thrust axis of the rest of the event, and a total of nine modified
Fox-Wolfram moments [28, 29]. We determine the optimal BDT output threshold by max-
imizing the signal significance, NS/

√
NS +NB, where NS and NB denote the expected

number of signal and background candidates, respectively, in a specific signal-enhanced
window of ∆E ∈ [−0.2, 0.1] GeV and Mbc ∈ [5.27, 5.29] GeV/c2. The BDT efficiency is
about 65 − 70% for signal and between 5 − 8% for the continuum background.

There are multiple Bsig candidates in 15% of events. As the final step of the candidate
selection procedure, we select a single Bsig candidate in each event. For Belle, we keep
only the candidate with the best corrected χ2 of the vertex fit using a variable, ξ, discussed
in Ref. [30]. The ξ parameter is built specifically for time-dependent CP measurements
in Belle, because using the χ2 of the vertex fit directly would introduce a bias in the ∆t
distribution, since these are correlated. Unfortunately, the differences between the Belle
and Belle II vertexing process makes ξ unusable for Belle II, as it has been found to
introduce a bias. Thus, for Belle II, we randomly choose one candidate from the event. For
events with multiple candidates these procedures select the correct candidate 45% (65%)
of the time in Belle II (Belle). We check using simulated samples that none of the selection
criteria biases the measurement of the time-dependent CP asymmetries.

Using the simulated MC samples we can estimate the ratios of our final selection
efficiencies for the different modes present in the B0 → K0

Sπ
+π−γ decays:

RK∗ = ϵK∗

ϵK0
Sρ0

, R(Kπ)0 =
ϵ(Kπ)0

ϵK0
Sρ0

, (4.1)

where ϵK∗ , ϵ(Kπ)0 and ϵK0
Sρ0 are the efficiencies of the decay modes quoted in Eq. 1.2,

Eq. 1.3 and of the fCPγ decay, B0 → K0
Sρ

0γ, respectively. These efficiency ratios are
expected to be insensitive to potential mismodeling of the detector to first order, since
these processes result in a common set of final state particles. The estimated ratios are
RK∗ = 1.04 ± 0.04 (0.48 ± 0.03) and R(Kπ)0 = 1.00 ± 0.04 (0.35 ± 0.03) for the full selection
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without (with) the prompt pion pair mass, mπ+π− , requirement. This information is needed
to compute the proportion of the CP mode with respect to the non-CP modes and thus
determine the value of the mixing-induced CP observable SK0

Sρ0 .
The same procedure is applied to reconstruct and select our control modeB+ → K+π+π−γ,

which is also the isospin partner mode of B0 → K0
Sπ

+π−γ. We use it to validate different
steps of the fit strategy. The candidate selection for this mode is performed in exactly
the same manner as for the decay mode of interest, with the exception of requiring a K+

instead of a K0
S . The K+ candidate must satisfy the same charged track requirements used

for prompt pions, but must have PID information consistent with the kaon hypothesis.
Since the K0

S is not used to reconstruct the B0 decay vertex, we do not use the K+ track
information to reconstruct the B+ decay vertex.

5 Time-dependent CP fit strategy

5.1 Time-dependence and flavor tagger

The ∆t distribution is sensitive to the CP parameters, C, S, S+ and S−. In Belle, the ∆t
observable is computed as ∆t = ∆z/βγc, where ∆z ≡ zsig − ztag is the difference between
the z positions of the Bsig and Btag decay vertices and β and γ are the relativistic Lorentz
factors. For Belle II, instead of ∆z, we make use of ∆l, the distance of the Bsig and Btag
decay-vertex positions along the Υ(4S) boost direction and calculate ∆t = ∆l/βγc. For
Belle, βγ ≈ 0.425, while for Belle II βγ ≈ 0.284, because the beam energy asymmetry
is smaller. The precise value of βγ is periodically calibrated using data. In Belle II we
apply a correction [31] for the small boost of the B mesons in the c.m. frame [32], to
account for the transverse component of the B flight in the laboratory frame. For Belle,
the correction is not applied and the residual effect is taken into account as part of the
resolution function [30].

To ensure an accurate extraction of the time-dependent CP asymmetry parameters,
the physics probability density function (p.d.f.) is convolved with the finite ∆t detector
resolution, described by a resolution function R(∆t). We use different parameterizations
of the ∆t resolution function for Belle and Belle II.

The ∆t resolution function for Belle [30] is the combination of four individual contri-
butions, arising from the resolution on the Bsig decay vertex position (zsig), the resolution
on the Btag decay vertex position (ztag), the resolution effects induced by tertiary vertices,
in particular due to tracks stemming from D meson decays biasing the Btag decay vertex,
and lastly a contribution to correct for the small boost of the B mesons in the c.m. frame.
The resolution function is conditional on several per-candidate observables of the fitted
signal and tag vertices: the number of tracks, the number of degrees of freedom, χ2 values
and uncertainties on the longitudinal position of the vertices.

For Belle II, we parameterize the ∆t resolution function by combining several Gaussian-
like distributions with a per-candidate dependence on the ∆t uncertainty, σ∆t. The de-
scription of the resolution function and its calibration is detailed in Ref. [26].

The measurement of the time-dependent CP asymmetries requires the flavor of the
decaying signal B meson. Since the Btag and Bsig are entangled, by measuring the flavor
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of the tag B when it decays we can infer the flavor of the signal B. This premise is valid
independently of which B meson decays first, i.e. ∆t can assume negative values.

The Btag decay products are input into dedicated multi-variate analysis tools referred
to as flavor-tagging (FT) algorithms. Different FT algorithms are used for the Belle and
Belle II measurements. We use the algorithm described in Ref. [33] for Belle, which achieves
around a 30% effective tagging efficiency. For Belle II, we use a graph neural network to
estimate the flavor of the Btag meson, GFlat [26]. The GFlat algorithm provides an effective
tagging efficiency of about 37%.

The FT algorithm provides the flavor prediction q (q = 1 for Btag = B0 and q = −1 for
Btag = B0) and the tag quality, r, which ranges from zero for no discriminating power to one
for unambiguous flavor assignment. The imperfect assignment of the flavor by the FT algo-
rithm is described by three parameters: the wrong-tag probability, w; the wrong-tag prob-
ability difference between B0 and B0, ∆w; and the tagging efficiency asymmetry between
B0 and B0, atag. The values of these parameters are obtained through data-driven calibra-
tion in seven bins of tag-quality r ≈ 1−2w [26, 33]. The r-calibration binning is defined as
[0, 0.1, 0.25, 0.5, 0.625, 0.75, 0.875, 1] for Belle and as [0, 0.1, 0.25, 0.45, 0.6, 0.725, 0.875, 1] for
Belle II. For Belle, the calibration on the first bin r ∈ [0, 0.1] provides no inherent flavor dis-
crimination (i.e. w ≡ 0.5) so this bin is not used for the measurement of the time-dependent
CP asymmetries. In both Belle and Belle II, the output of the FT algorithm is used on a
per-candidate basis when performing the fit. Additionally, for Belle II, we split our sample
into a good quality range r ∈ [0, 0.875] and an excellent quality range r ∈ [0.875, 1] and
perform the fit simultaneously in these two r regions. This provides improved statistical
sensitivity by accounting for the different background levels. For Belle, atag is neglected in
the calibration procedure, whereas it is included in Belle II. The values of this parameter
in both experiments are consistent with zero within uncertainties.

The p.d.f. describing the ∆t distribution is:

P (∆t, q, w,∆w, atag) = e−|∆t|/τB0

4τB0

{
1 − q∆w + qatag(1 − 2w)

+ [q(1 − 2w) + atag(1 − q∆w)][S sin (∆m∆t) − C cos (∆m∆t)]
}

⊗R(∆t),
(5.1)

where τB0 is the lifetime of B0 meson, and ⊗ denotes the convolution of the physics p.d.f.
with the resolution function, R(∆t).

5.2 Extraction of the CP parameters

We measure the time-dependent CP asymmetries by performing an unbinned maximum
likelihood fit inMbc, ∆E and ∆t. The beam-energy constrained mass and energy difference,
described previously, are powerful observables to disentangle the signal component from
the background components. The ∆t distribution is sensitive to the time-dependent CP
asymmetries as previously discussed. The fit is performed independently for Belle and
Belle II.

In addition to the signal component, three background sources are present in the
fit region. The main background contribution is the one arising from continuum events:
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while these events are highly suppressed by the candidate selection, a significant number
still remains. The second background contribution is from misreconstructed BB decays,
including both B0 and B+ decays. These include several B decays that can partially mimic
our final state, mainly radiative B decays to two hadrons (K0

S , π±) plus a particle from
the Btag side. The third background source is self cross-feed (SCF): true B0 → K0

Sπ
+π−γ

signal decays that are incorrectly reconstructed. The leading source of SCF is when a pion
from the Btag is reconstructed as one of the signal prompt pions.

We model each of the four components using the simulated MC samples, independently
in each of the fit observables (Mbc,∆E,∆t). Two exceptions are discussed later, affecting
the ∆t distribution of continuum candidates and the Mbc and ∆E distributions of the
contribution from misreconstructed BB candidates. The same modeling is used in the fit
for Belle and Belle II if not otherwise stated. The parameters for the modeling are fixed to
those determined in fits to the simulated MC samples if not otherwise stated. The models
for each observable and component are presented in the following.

For the signal component, the Mbc and ∆E distributions are expected to peak at
Mbc = mB0 and ∆E = 0, where mB0 is the mass of the B0 meson. We describe both
distributions with Crystal Ball functions [34, 35], which combine a Gaussian core with
power-law distributions for the tails. The mean and width parameters of the Gaussian
cores are allowed to float freely in the fit to the data. The ∆t fit function for the signal
component was presented in Eq. 5.1. The values of the CP observables S and C are free
parameters. The values of the B0 lifetime and mass difference are fixed to the world-average
values, τB0 = 1.517 ± 0.004 ps and ∆m = 0.5063 ± 0.0019 ps−1 [36] and their uncertainties
are propagated as systematic uncertainties.

For the SCF component, the Mbc distribution is modeled by the sum of a bifurcated
Gaussian distribution and an ARGUS p.d.f. [37]. We use a second order Chebychev poly-
nomial to describe the ∆E distribution. For Belle II, we use a Chebychev polynomial
with an additional bifurcated Gaussian distribution for improved modeling. The ∆t dis-
tribution for the SCF component is also modeled with Eq. 5.1, with SSCF = κSCF · S and
CSCF = κSCF ·C, where κSCF is common for both observables and is obtained from a fit to
the simulated samples. In the unbinned maximum likelihood fit, a Gaussian constraint of
mean 0.8 and width 0.2 is applied to κSCF: this accounts for the statistical fluctuations of
κSCF in the simulated samples.

For the continuum component we model the Mbc distribution using an ARGUS p.d.f.
The threshold parameter of the ARGUS function is common to all contributions to the
Mbc distribution and is free to float in the fit to the data. We model the ∆E distribution
with an exponential function. Different approaches are taken to model the ∆t distribution
in Belle and Belle II. The Belle modeling uses the combination of a Gaussian distribution
and an exponential convolved with a Gaussian [30]. We observe mismodeling between the
∆t distribution in our continuum MC samples and the ∆t distribution of the data samples
below the Υ(4S) energy, where only continuum events are present. We correct our ∆t
distribution in the MC samples using weights obtained in 40 ∆t bins from −10 ps to 10 ps.
These weights are given by the ratio, in each ∆t bin, of the yields of the data below the
Υ(4S) energy to the continuum MC. We obtain the weights from the isospin partner mode.
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For Belle II, the ∆t distribution is modeled by the sum of three Gaussian functions,
describing the core, the tail, and the outliers of the resolution. The widths of the core and
tail Gaussians are free to float in the fit to the data.

The last background contribution, the misreconstructed BB component, is modeled
differently in all three distributions for Belle and Belle II. In Belle, we model the Mbc
distribution as the sum of a Gaussian and an ARGUS p.d.f. while we model the ∆E
distribution with a sum of a Gaussian and an exponential distribution. The ∆t distribution
is modeled similarly to the continuum component, with a Gaussian and an exponential
convolved with a Gaussian. It is worth noting that we find a similar quality of description
if we instead use Eq. 5.1, with both C and S fixed to zero; this alternative is used to evaluate
the systematic uncertainty. For Belle II, we describe the Mbc and ∆E distributions together
using a kernel density estimator, to take into account small correlations between the two
variables. The ∆t distribution is modeled with Eq. 5.1 with both CP observables, C and
S, fixed to zero. Most of the BB background arises from charged B meson decays and
other radiative decays, thus the values of the CP parameters are expected to be zero or
very close to it. The validity of this assumption is considered when assigning systematic
uncertainties.

We allow three yields to be completely free in data when performing the unbinned
maximum likelihood fit. The continuum component and the misreconstructed BB compo-
nent have their yields free to float. The sum of the signal and SCF yields is free to float.
The relative proportion of the signal and SCF components is fixed to the value extracted
from the simulated MC samples. This value is around 29% for Belle. For Belle II it is 38%
for the first r-region and 27% for the second r-region.

Additionally, for Belle II, as previously described, a simultaneous fit is performed
in two regions of flavor tagging quality, r. The yields in each r bin are free to float.
Consequently, for Belle we have a total of 10 free parameters: S, C, three yields, and five
modeling parameters. In Belle II, we have 15 free parameters, due to the additional two free
parameters in the ∆t distribution of the continuum component and the three additional
yields, due the additional r-bin.

The results of unbinned maximum likelihood fits to Mbc, ∆E and ∆t in the signal
channel are C = −0.04 ± 0.11 and S = −0.18 ± 0.17, for the Belle dataset, and C =
−0.29 ± 0.13 and S = −0.36 ± 0.16, for the Belle II dataset, where the uncertainties
are statistical only. The correlations between the CP parameters are +4.8% for Belle and
+10.4% for Belle II. We obtain 475±31 signal candidates for Belle and 350±23 for Belle II.
The projections of the fit result in Mbc and ∆E are shown in Fig. 1 for Belle and Belle II.
The projections on ∆t are shown in Fig. 2. The ∆t projections for B0- and B0-tagged
events are also shown, together with the asymmetry, in a signal enhanced region. The
signal over background ratio in this region is about 3.4 for Belle and 2.4 for Belle II.

The same fit strategy is used to extract the CP observables using the two halves of
the (m2(K0

Sπ
+),m2(K0

Sπ
−)) plane, S+ and S−. Candidates in the two halves of the plane

are fit simultaneously. All free-floating parameters are common in the simultaneous fit to
the two halves with the exception of the yields. This unbinned maximum likelihood fit is
independent of the previous one. It has a total of 14 free floating parameters for Belle, due
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Figure 1. Unbinned maximum likelihood projections on Mbc (left) and ∆E (right) using the Belle
(top) and Belle II (bottom) datasets.

to an additional CP observable: C, S+ and S− (instead of only C and S) and a total of
six free floating yields instead of three. For Belle II the number of free-floating parameters
rises to 22.

The results of the simultaneous unbinned maximum likelihood fit in the two half-
planes are S+ = −0.33 ± 0.34 and S− = −0.36 ± 0.38 for Belle and S+ = −0.72 ± 0.31 and
S− = 0.70 ± 0.30 for Belle II, with correlations of −5.9% and +6.5%, respectively.

5.3 Validation and systematic uncertainties

We validate the fit strategy using the simulated MC samples for both the signal mode B0 →
K0

Sπ
+π−γ and the control mode B+ → K+π+π−γ. Then we validate on the data using

the control mode and finally we perform the time-dependent CP asymmetry measurement.
The strategy for extracting the CP observables is first validated with MC samples.

Using our nominal model, we create and fit a large number of data-like MC samples, with a
luminosity equivalent to that used in the measurement, by resampling with replacement the
combined MC samples of all components. The signal component in these data-like samples
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Figure 2. Unbinned maximum likelihood projection on ∆t (left) and unbinned maximum likelihood
projection on ∆t split by tagged B0 and B0 candidates in a signal enhanced window defined by:
Mbc > 5.27 GeV/c2, |∆E| < 0.1 GeV and r ∈ [0.875, 1] (right), using the Belle (top) and Belle II
(bottom) dataset.

is generated with one of several different values of the mixing-induced CP observable, S.
The differences between the fitted and expected values of the CP observables (and yields)
from this validation process are taken as systematic uncertainties.

We perform the measurement of the time-dependent CP asymmetries in the control
mode using the same procedure as for the signal mode, and the same values for the ∆m
and FT parameters. No time-dependent CP asymmetry is expected in B+ decays; we find
results for C and S compatible with zero within one standard deviation. Additionally, we
fit for the B+ lifetime and obtain, τB+ = 1.62 ± 0.06 (1.71 ± 0.06) ps for Belle II (Belle),
which are compatible with the world average value within one standard deviation.

As a last validation step, we fit the B0 lifetime in the data samples for B0 → K0
Sπ

+π−γ

signal candidates, obtaining τB0 = 1.52 (1.47) ± 0.11 (0.10) ps for Belle II (Belle), compat-
ible with the world-average value.

We consider several sources of systematic uncertainty that may affect the time-dependent
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CP asymmetry measurement. These are computed independently for the Belle and Belle II
datasets. We list the sources in Table 1 for Belle and Table 2 for Belle II. The majority of
the uncertainties are evaluated by fitting the samples with alternative fit models and com-
paring the results to those from the nominal fit. The main systematic uncertainties arise
from the vertex detector misalignment for Belle and the differences of the CP observables
obtained as part of the validation process for Belle II.

We evaluate the systematic uncertainties arising from the parameterization of the fit
distributions, the FT calibration, the resolution function model, and the usage of exter-
nal parameters (τB0 ,∆m), in a similar manner. These are evaluated by fitting the data
samples with alternative values of the corresponding fixed parameters. The alternative
values are obtained by drawing values of each parameter from a normal distribution whose
width is set by the parameter uncertainty or the covariance matrix obtained from MC
simulated samples. The systematic uncertainty is computed as the standard deviation of
the distribution of the fitted CP observables that are obtained from the alternative fits.

Additionally, we evaluate a systematic uncertainty due to the fixed ratio between the
signal and the SCF by varying it by ±20% and refitting. This variation accounts for
the statistical fluctuations of this ratio in the simulated samples. The shift in the CP
observables is assigned as the systematic uncertainty.

We use the validation process to assign a systematic uncertainty due to possible biases
on the extracted yields and CP observables. For the yields, we perform an alternative
fit to the validation MC samples with the yields fixed to the generated values, and take
the difference of the resulting CP observable values with respect to the nominal fit as the
associated uncertainty. For the CP observables, we fit the validation MC samples using
the nominal model and take the average deviation from the generated CP observables, for
different values of S, as the systematic uncertainty. This uncertainty accounts for various
contributing factors, including the limited size of the MC samples used in the validation as
well as any discrepancies among the Mbc, ∆E and ∆t distributions in the MC samples and
the models used to describe them. Although this systematic uncertainty is small compared
to the statistical uncertainty, it remains the dominant contribution to the overall systematic
uncertainty for Belle II.

A systematic uncertainty is computed for the tag-side-interference as described in
Ref. [38]. This uncertainty is the only one that is correlated between Belle and Belle II.

A systematic uncertainty is computed for possible CP violation in the misreconstructed
BB background component. The values of the assumed CP observables for the misrecon-
structed BB background are varied in the data samples: each of CBB and SBB is inde-
pendently assigned a value of ±0.1. The maximum difference of these four combinations
relative to the nominal fit is assigned as the systematic uncertainty. The magnitude of this
uncertainty is different between Belle and Belle II. The nominal ∆t model for the misre-
constructed BB background component for Belle, as previously presented, is not Eq. 5.1,
whereas to compute this systematic we use Eq. 5.1 as the alternative model.

Lastly, we evaluate systematic uncertainties arising from a residual vertex detector
misalignment: we reconstruct the B candidates with various misalignment scenarios us-
ing simulated MC samples, leading to slightly different fit results. These variations are
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performed separately for Belle and Belle II, given the intrinsic detector differences. In
particular, for Belle, this irreducible source of systematic uncertainty is obtained for S and
C, and the uncertainties for S+ and S− are computed from S as fully correlated. This
uncertainty dominates the overall systematic uncertainty for Belle.

Table 1. Systematic uncertainties for the Belle measurement.
Source of uncertainty C S S+ S−

Fixed shape parameters 0.003 0.002 0.004 0.004
Flavor Tagging parameters 0.003 0.002 0.006 0.006

Resolution function parameters 0.009 0.033 0.063 0.027
τB0 & ∆m 0.001 0.001 0.002 0.002

Fixed SCF fraction 0.005 0.006 0.010 < 0.001
Yield bias 0.001 0.008 0.015 0.002

CP fit validation 0.018 0.019 0.035 0.075
Tag-side interference 0.028 < 0.001 < 0.001 < 0.001

CP violation in BB background 0.047 0.039 0.060 0.079
Residual misalignment 0.03 0.06 0.12 < 0.001

Total systematic uncertainty 0.066 0.081 0.153 0.112

Table 2. Systematic uncertainties for the Belle II measurement.
Source of uncertainty C S S+ S−

Fixed shape parameters 0.003 0.005 0.005 0.004
Flavor Tagging parameters 0.018 0.007 0.014 0.012

Resolution function parameters 0.005 0.014 0.023 0.018
τB0 & ∆m < 0.001 0.001 0.001 0.003

Fixed SCF fraction 0.006 0.004 0.008 0.011
Yield bias 0.005 0.004 0.008 0.014

CP fit validation 0.027 0.054 0.117 0.033
Tag-side interference 0.028 < 0.001 < 0.001 < 0.001

CP violation in BB background 0.019 0.017 0.034 0.001
Residual misalignment 0.005 0.003 0.006 0.012

Total systematic uncertainty 0.048 0.059 0.126 0.045
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6 Results and conclusions

The measured values of the CP parameters in the decay B0 → K0
Sπ

+π−γ from the Belle
data are:

C = −0.04 ± 0.11 ± 0.07
S = −0.18 ± 0.17 ± 0.08
S+ = −0.33 ± 0.34 ± 0.15
S− = −0.36 ± 0.38 ± 0.11 (6.1)

Using the Belle II data we measure:

C = −0.29 ± 0.13 ± 0.05
S = −0.36 ± 0.16 ± 0.06
S+ = −0.72 ± 0.31 ± 0.13
S− = 0.70 ± 0.30 ± 0.05 (6.2)

where the second term corresponds to the statistical uncertainty and the third term corre-
sponds to the systematic uncertainty.

The measurements of S, C and S+ are in agreement for the two experiments, and
compatible with the SM prediction within 1σ for Belle, and 2.3σ for Belle II. The values
obtained for S− are in slight tension (2.2σ apart), but are independently compatible with
the SM prediction of zero.

We combine the results following the method presented in Ref. [39], taking into account
the correlations between the measured CP parameters. We consider all sources of system-
atic uncertainty as uncorrelated, except the tag-side-interference, which is fully correlated.
The combined results are:

C = −0.17 ± 0.09 ± 0.04
S = −0.29 ± 0.11 ± 0.05
S+ = −0.57 ± 0.23 ± 0.10
S− = 0.31 ± 0.24 ± 0.05 (6.3)

The correlation between C and S is −3%, while the correlation between S+ and S− is
+2%.

Our combined measurement of S and C improves by at least a factor of two the
corresponding uncertainties on the CP observables measured previously by the Belle and
BaBar collaborations. This result supersedes the time-dependent CP asymmetry, namely
Seff , presented in Ref. [5]. We also measure, for the first time, the CP parameters S+ and
S−, which are needed to apply additional constraints to new physics models with enhanced
right-handed currents that may affect the B0 → K0

Sπ
+π−γ transition.

This work, based on data collected using the Belle II detector, which was built and
commissioned prior to March 2019, and data collected using the Belle detector, which was
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