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(The Belle and Belle II Collaborations)

We report the first observation of the two-body baryonic decays BT — £.(2455)"TZ_ and B® —
Ec(2455)0§2 with significances of 7.3 and 6.2 0, respectively, including statistical and systematic
uncertainties. The branching fractions are measured to be B(BT — X.(2455)T1E.) = (5.74 &+

111 4+ 0.42%247) x 107* and B(B® — %.(2455)°E0) = (4.83 + 1.12 + 0.377972) x 10~*. The first
and second uncertainties are statistical and systematic, respectively, while the third ones arise from

the absolute branching fractions of Z, or ES decays. The data samples used for this analysis have
integrated luminosities of 711 fb™' and 365 fb~!, and were collected at the Y(4S) resonance by
the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energy ete™

colliders, respectively.

Baryonic B decays provide an important dynamical
system for studying the production mechanisms of
baryon—antibaryon pairs in the nonperturbative regime
of quantum chromodynamics (QCD). Over the past
three decades, a number of such decays have been
observed [1] that have many interesting features, such as
threshold enhancements in the baryon-antibaryon mass
spectra [2-5] and a hierarchy in the branching fractions
between two-body and multi-body decays [6, 7]. These
observations help elucidate the intricate kinematic and
dynamical properties of baryonic B decays [8].

In 2003, the Belle experiment reported the first
observation of a two-body baryonic decay, and measured

the decay B — A_p to have a branching fraction
of order 1075 [9]. In 2006, Belle observed the
double-charm decays B — A=, [10]; this result was
later confirmed by the BaBar experiment [11]. The
double-charm decays have branching fractions of order
1073, The decays B® — A_.p and B — A}E,,
which proceed via the quark-level transitions b — cdu
and b — c¢s¢, respectively, involve combinations of
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
of comparable magnitudes [12].  Nevertheless, their
branching fractions differ by nearly two orders of
magnitude, suggesting that certain mechanisms may
enhance or suppress specific processes. Several possible
mechanisms have been proposed to account for the
large decay rates into pairs of charmed baryons,
including o /7 meson exchange via soft nonperturbative
interactions [13, 14], final-state interactions [15], and
hard gluon exchange [16]. Further measurements of
B decays into charmed baryon pairs are useful for
probing the underlying dynamics and discriminating
among different theoretical mechanisms.

Theoretical studies of the BT — ¥.(2455)T+Z_ and

B — 26(2455)(@2 decays use a QCD sum rule [17] and
the diquark model [18]. The QCD sum rule predicted
these double-charm branching fractions to be as large as
4 %1073 [17], while the diquark model estimated them to
be of the order 107, or 30%-70% of those of the B* —
Ajég and B® — A}E,_ decays [18]. These two decays
proceed through a purely internal W-boson emission
amplitude [19], as shown in Fig. 1. This topology gives
rise to a nonfactorizable amplitude [20], stemming from

the nonperturbative QCD dynamics such as final-state
interactions and soft gluon exchanges [21-24]. These
two decay modes thus provide a theoretically reliable
environment to probe such effects. In addition, according
to SU(3) flavor symmetry, the ¥.(2455) baryon belongs
to a sextet of flavor-symmetric states, while the =,
baryon belongs to an antitriplet of flavor-antisymmetric
states. To date, no B decays into charmed baryon pairs
containing both an antitriplet and a sextet have been
observed.

b < - c _
§EC
w+ q
B
q22455
c
q : ¢ 2.(2455)

FIG. 1: Diagram representing the internal W-boson emission
amplitude for the decays BT — X.(2455)*T=, and B° —
26(2455)()?2, corresponding to ¢ = u and q = d, respectively.

We report the first search for the decays BT —
$.(2455)*+5, and B® — ¥,(2455)°Z.. Charge-
conjugate channels are implicitly included throughout
this analysis. This study is based on data samples that
have integrated luminosities of 711 fb™! [25], collected
by the Belle detector [26], and 365 fb™' [27], collected
by the Belle II detector [28], at the ete™ center-of-mass
(c.m.) energy (y/s) of 10.58 GeV. The data sets contain
(772 + 11) x 10% Y(4S) events for Belle and (387 =+
6) x 105 Y(4S) events for Belle II. The X.(2455)"+0
baryons are reconstructed in their AT7% decays followed
by the Af — pK~7" and AT — pKY decays. The
Z. baryon is reconstructed via Z, — E -7 and
pKTr~ decays, and the ES baryon via Eg & g
and AK 7~ decays, followed by ' — Arxt. To avoid
experimental bias, the signal region is not examined until
the analysis procedure is finalized. All selection criteria
are determined by iteratively optimizing the figure-of-
merit for an observation at a significance level of five
standard deviations based on simulation [29]. The signal



yields are extracted from a two-dimensional (2D) fit to
the distributions of the difference between the expected
and observed B meson energy and the Al invariant
mass. The 2D fit is performed simultaneously on events
from the signal and sideband regions of the =, invariant
mass.

The Belle detector operated at the KEKB [30]
asymmetric-energy ete™ collider, while the Belle II
detector operates at its successor, the SuperKEKB
collider [31]. The two detectors are nearly 4w
hermetic solenoidal magnetic spectrometers. They
both consist of an inner silicon vertex detector and
a central drift chamber, surrounded by Cherenkov-
based charged-particle identification detectors, a crystal
electromagnetic calorimeter, and outer detectors for
muon and K9 meson identification via penetration depth.
Detailed descriptions of the Belle and Belle II detectors
can be found in Refs. [26, 28].

Monte Carlo (MC) simulated signal events are
used to optimize the selection criteria, calculate the
reconstruction efficiencies, and determine the fit models.
The EVTGEN [32] and PYTHIA [33, 34] software packages
are used to generate ete”™ — Y(45) — BB with
final-state radiation simulated by the PHOTOS software
package [35]. In the simulation, one B meson decays
inclusively, while the other decays into a signal mode.
Inclusive simulated samples of ete™ — qg, where ¢
indicates a u, d, s, or ¢ quark, and Y(4S) — BB are
used to optimize the selection criteria and identify the
background sources [36]. The KKMC [37] and PYTHIA [33,
34] software packages are used to simulate the e e™ — ¢q
processes. The detector responses are modeled by the
software packages GEANT3 [38] for Belle and GEANT4 [39]
for Belle II.

We use the Belle II analysis software framework (basf2)
to reconstruct both Belle and Belle II data [40, 41].
The Belle data are converted to the Belle II format
for basf2 compatibility using the B2BII framework [42].
The hardware trigger, which relies on total energy
and neutral-particle multiplicity, is optimized to select
hadronic events and is fully efficient for the signal modes.
In the offline analysis, the distance of closest approach
to the interaction point for charged-particle trajectories
(tracks) is required to be less than 2.0 cm in the plane
perpendicular to the z axis and less than 4.0 cm parallel
to it, except for the Kg, A, and = decay products.
The z axis is the solenoid axis, with positive direction
along the e~ beam, common to both Belle and Belle II.
The identification of charged tracks uses the likelihood
ratio R(h|h') = L(h)/[L(h) + L(R')], where L(h(")) is the
likelihood of the charged track being a hadron h() =
p, K, or m. This likelihood ratio is determined using
a particle identification (PID) algorithm that integrates
information from the Belle or BelleII subdetectors [43,
44].  Tracks with R(p|K) > 0.6 and R(p|r) >
0.6 are identified as proton candidates; charged kaon
(pion) candidates must satisfy R(K|r) > 0.6 (< 0.4).

The efficiencies of these PID requirements range from
85% to 94%, with corresponding misidentification rates
between 3% and 8%. We omit PID requirements for

the pion candidates used to reconstruct Kg, A, and

=+ . . . . . .
= candidates, as their kinematic properties provide
sufficient discrimination.

The Kg candidates are first reconstructed from pairs
of oppositely charged particles assumed to be pions with
a common vertex, and then selected using a neural
network in Belle [45] and a boosted decision tree in
Belle IT [46]. Both discriminators primarily rely on the
kinematic information of K2 and its decay products.
The invariant mass of K candidates is required to be
within 9.0 MeV/c? of its known mass [1], corresponding
to approximately 2.5 times the mass resolution (o). The
A candidates are reconstructed from prt pairs with a
common vertex, and an invariant mass within 5.5 MeV /2
of its mass [1] (approximately 2.50). The selected
§+candidate is then combined with a 14‘ to form a
= candidate. The invariant mass of = candidates
is required to be within 6.5 MeV/c? of its mass []
(approximately 2.50).

The invariant masses of the AT, =, and ES charmed
baryon candidates are required to lie within 15.0, 18.0,
and 18.0 MeV /c? of their known values [1], respectively,
corresponding to mass ranges of approximately 2.50.
The selected A} candidates are combined with 7%

candidates to form ¥.(2455)*"0 candidates, which

are subsequently combined with E;,o candidates to
reconstruct BT? candidates. Each signal channel thus
has four distinct reconstruction modes. For each of
the intermediate particle candidates (Kg, A, §+, AT,
¥.(2455)F 0 and EC_’O), the tracks associated with its
decay products are fitted to a common vertex, and the
invariant mass is constrained to the corresponding known
value [1]. A vertex fit is applied to the BT candidates.
When reconstructing modes involving Z, — pKTn~
decays, a requirement of y?/ndf < 10 on the BT
vertex fit is imposed to further suppress combinatorial
background, where ndf is the number of degrees of
freedom. If multiple candidates are present in an event,
all combinations are retained for further analysis. The
fraction of events with multiple candidates ranges from
3% to 5% in data, in agreement with expectations from
simulation. The average number of candidates in such
events is between 2.02 and 2.06, with misreconstructed
candidates contributing as smooth background.

Backgrounds are studied using both inclusive MC
samples and data from the sideband regions of the

M(A}), M(E;’O), and My, distributions. The M(A)
and M(Z,”) denote the invariant masses of the
reconstructed AT and E;’O candidates, and the My, is
defined as My, = \/Egeam - (Zﬂi}){ where Eheam =
\/s8/2 is the beam energy in the ete™ c.m. system,




and p; is the momentum of the ith daughter of the B
meson. We require My > 5.27 GeV/c?, which retains
more than 97% of the signal. The sideband regions of

M(AF), ME."), and My, are 2231.0 < M(AF) <

2261.0 MeV/c? or 2311.0 < M(AF) < 2341.0 MeV/c?,
2308.0 < M(Z.") < 24340 MeV/c? or 2504.0 <
ME.") < 25400 MeV/c2, and 5235 < My <

5.265 GeV/c?, respectively, which are twice as wide
as the corresponding signal region. The corresponding
M(Afn*) and AE distributions from these sideband
regions in the combined Belle and Belle II data samples
are presented in the supplemental material [47]. Here
and throughout, M (Af7¥) is the invariant mass of the
$.(2455)7 10 candidate, and AFE is defined as AE =
Zi E;— Epeam, where E; is the energy of the ith daughter
of the B meson in the eTe™ c.m. frame. The M (A}) and
My, sideband events have no significant peaks in either
the M(Af7n%) or AE distributions, while the M(E;’O)
sideband events contain small potential peaks in both
distributions.

To extract the signal yields, we perform a 2D extended
maximum likelihood fit to the unbinned M (Af7*) and
AFE distributions, simultaneously using four data sets:

events from the signal and sideband regions of M (Ec_’o)

in both Belle and Belle IT data. The fitting functions
used to model events in the signal and sideband regions

=—0 .
of M(Z, ") are parameterized as

fi(M,AE) = (N3 + 0.5N2Y)s1(M)s2(AE)
+ N2Es) (M)bo(AE) 4+ N5by (M) so(AE)
+ NyEby (M)ba(AE)

and

f2(M,AE) = NPs, (M)so(AE) + N5Pdsy (M)bh,(AE)
+ N2 (M) s2(AE) + Niptvy (M)by(AE),

respectively. Here, s1(M) and s2(AE) denote the signal
probability density functions (PDFs) for the M (A7)
and AFE distributions, respectively, while bg/) (M) and
b5 (AFE) represent the corresponding background PDFs.
A Breit-Wigner function convolved with a Crystal-
Ball function is used for s;(M), while a double-
Gaussian function with two different mean values is
employed for so(AFE). The width of the Breit-Wigner
function is fixed to the known intrinsic width of the
%.(2455)*10 [1], while the other parameters of s;(M)
and s9(AFE) are fixed to the values obtained from
fits to the corresponding simulated signal distributions.

The background components bg/)(M ) and bg) (AE) are
modeled by first-order polynomials with free parameters.
The signal PDFs for the sideband events are the same as
those used in the signal region. The peaking backgrounds
are due to inclusive BT0 — %.(2455)%0X decays,

=—,0 .
where X denotes non-=, " final states, and contribute

4

to both signal and M (E;’O) sideband regions. The
number of signal events is denoted by N£i& the number
of peaking background events by NP4 and the number
of combinatorial background events in both distributions
by NEE’de. The yields of background contributions
that peak in one distribution but not in the other
are denoted by Nsbf’de and N, ng’de, corresponding to
events that peak in the M (A 7*) and AF distributions,
respectively. All event yields are free parameters in the
fit, with the signal yields in the Belle and Belle II data
sets constrained according to the expected ratio for a
common branching fraction.

Figure 2 shows the M(Af7*) and AE distributions

for events from the M (E;O) signal region in the
combined Belle and Belle II data. Each distribution
is projected within the other’s signal region, with fit
results overlaid. The signal regions for M(AF7*) and
AE are defined as 2446.0 < M (Af7%) < 2464.0 MeV /c?
and |AE| < 16 MeV, respectively, which retain more
than 95% of the signal. The fitted yields of peaking
backgrounds in the signal region, shown as the cyan
components, are 2.4 £ 3.5 and 2.0 £ 2.2 for the BY
and BY channels, respectively. The corresponding
fit results for events from these sideband regions are
shown in the supplemental material [47]. The fitted

signal yields for the decays BT — X.(2455)*+=_
and B° — 26(2455)0§) are 52.8 + 10.2 and 31.1 £

7.2, respectively, with statistical significances of 7.8¢
and 6.70. These significances are calculated using

—21n(Ly/Lmax), where Lo and L.y are the values
of the likelihoods maximized without and with the
signal component, respectively. To estimate the signal
significances accounting for systematic uncertainties,
several alternative fits are performed: (1) the background
components by (M) and by (AFE) are modeled using either
second-order polynomials or exponential functions; (2)
the fixed signal shapes s1(M) and s3(AFE) are convolved
with Gaussian functions that have floating resolutions;
(3) the fixed width of the X.(2455)T0 is varied by
+1o0 [1]; (4) the sideband regions of M(E;’O) are
shifted by 410 MeV/c®.  Across all fit variations,

the observed signal significances exceed 7.3¢ for the
BT — ¥.(2455)**Z_ decay and 6.20 for the B® —

C

20(2455)()?2 decay. These values are taken as the final
signal significances after incorporating systematic effects.

The branching fractions of the BT — X.(2455)*T=,
and B — 26(2455)(@3 decays are calculated using

N3
 2fo[NRlus) i B) + N2, o) S (e2B:)]

Here, NZi& represents the number of fitted Bt —
¥.(2455)*+=, or B — 26(2455)0§2 signal events in

C

the combined Belle and Belle IT data sets; N?tlb;) denotes

the total number of T (4S5) events in the Belle or Belle 11

B
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FIG. 2: Distributions of (a,c) M(Af7¥) and (b,d) AE for the reconstructed (top) B* — %.(2455)*TE. and (bottom)
B — EC(2455)O§2 candidates, using events from the signal regions of M(Z, ") in the combined Belle and Belle IT data sets.
Points with error bars are the data, the solid blue curves show the total fit results, the solid red curves correspond to the fitted
signal components, and the dashed magenta curves represent the total fitted background components. The shaded cyan regions

show the peaking-background contributions from the inclusive B™° — £.(2455)7 %X decays, where X #Z, .

data sets; f, refers to the fraction of charged (fi_)
or neutral (foo) BB pairs [48]; the term Zi(s?l’w&)
represents the sum over all reconstruction modes (i =
1—4) of the products of reconstruction efficiencies gP1b2

(for Belle or Belle II) and the corresponding seconaary
branching fractions B;. The numerical values of the
above quantities and the calculated branching fractions
are summarized in Table I. The branching fractions
measured separately in Belle and Belle II data are
examined and found to be consistent with the results

from simultaneous fits within 1o.

We  consider several source of systematic
uncertainties,  including detection-efficiency-related
(DER) uncertainties (opgr), the statistical uncertainty
on the efficiency determined from simulation (ceg), the
uncertainties on the branching fractions of intermediate
states (op,), the uncertainty on the total number
of Y(4S) events (0N, ), the uncertainty on the

fraction of charged or neutral BB events (oy, ), the
possible correlation between the M (A}zT) versus
AFE distributions (oeorr), and uncertainties associated
with the fit models (ogt). Table IT summarizes these
systematic uncertainties, with the total uncertainty
(0total) calculated as the quadratic sum of the
uncertainties from each source.

The DER uncertainties include those from tracking
efficiency, PID efficiency, and the reconstructions of K3
and A candidates, which are estimated using data control
samples.  The uncertainty associated with tracking
efficiency depends on the particle charge, momentum and
polar angle, and ranges from 0.31% to 0.91% (0.38% to
1.07%) for each track at Belle (Belle IT), as determined
from the data control samples described in Ref. [49].
The PID efficiency uncertainties are estimated to be
1.0% (0.8%) for pion, 1.3% (1.0%) for kaon, and 2.4%
(1.8%) for proton at Belle (Belle II) [43, 44]. The K2
reconstruction uncertainty is evaluated to be 1.2% (1.9%)
at Belle (Belle IT), and the A reconstruction uncertainty is
estimated to be 2.3% (2.1%). Both are obtained following
the procedure of Ref. [49]. The individual uncertainties
of the different modes at Belle and Belle II are
summed and weighted by N};t;ﬁg) (5?1’1)281-). Assuming
these uncertainties are independent and adding them in
quadrature, the detection-efficiency-related uncertainties

are evaluated to be 2.6% for BT — ¥.(2455)**Z_ decay
and 2.2% for B® — 25(2455)0§0

. decay. A study of

=0 —
the control samples BT — AFE. and B — AFE_,
which have topologies similar to the signal channels,
indicates that the differences in vertex fit efficiencies for

intermediate particles between data and simulation are



TABLE I: Summary of analysis inputs and fit results. We list only the statistical uncertainties of the signal yields. For the
branching fractions, the first and second uncertainties are statistical and systematic, respectively, while the third originates

from the absolute branching fractions of =, 0 decays [1].

NI Nlas) (10°) Nitus) (10%) £

Yoi(eBi) (107°) 37,(e*Bi) (107°)

B (107%)

BT 52.8+10.2 772 387 0.5113 7.1 9.1 5.74 4+ 1.11 £ 0.421327
B 311472 772 387 0.4861 5.2 6.8 4.83+1.12 £ 03750 2
negligible. convolving the fixed signal shapes s1(M) and s2(AFE)

The statistical wuncertainty of simulation-based
efficiency is at most 1.0%. The relative uncertainties of
the absolute branching fractions of AT — pK 7T,
e A o,
E. — pKtn, E. - E7, . — AKTn,
=" & Art, and K — prt are taken from Ref. [1].
Since the large uncertainties in the branching fractions
of the intermediate decays =,

:C

. = = (44.8%),
— pKTrn~ (48.4%), =
0

S — E'n (18.9%), and
E. — AK*t7~ (19.3%) might be reduced with future
measurements, we treat them separately as a third
source of uncertainty. The branching fraction of each
intermediate state is varied independently by +1 ¢, with
the resulting deviation from the nominal value taken
as the corresponding systematic uncertainty. There are

uncertainties of f;%‘j, ﬂg;’;, and 4.0% associated with

the absolute branching fractions of =, Eg, and other
intermediate states, respectively. The uncertainties of
N}r’ab;) are 1.4% for Belle [50] and 1.5% for Belle II [51],
and are combined into a total uncertainty weighted
by NE;&Q) Zi(a?l’bQBi). The uncertainties of fi_
and foo are 2.1% and 1.7% [48], respectively. The
uncertainty arising from the possible correlation between
the M (A} 7%) and AFE distributions is estimated using a
bootstrap method [52]. A total of 500 bootstrap samples
are constructed from the simulated samples. For each
bootstrap sample, the signal and background yields
are generated by sampling from Poisson distributions
centered at the values obtained from the fit to data. The
deviation between the mean of the ouput signal yield
distribution and the central value used in the generation

is taken as the systematic uncertainty.

The systematic uncertainties associated with the fit
models arise from the empirical choice of background
PDFs, the mass resolution differences between data and
simulation, the fixed width of ¥.(2455)*"° and the

choice of sideband regions for M(Z,”). To estimate
the uncertainty due to the background parametrization,
the nominal background PDFs by(M) and by(AE)
are replaced with either second-order polynomials or
exponential functions, and the largest deviation from
the nominal fit result is assigned as the systematic
uncertainty. The uncertainty due to mass-resolution
differences between data and simulation is assessed by

with Gaussian functions having free widths, and the
resulting deviation from the nominal fit is taken as
the corresponding uncertainty. The effect of the fixed
width of ¥.(2455)*T0 is evaluated by varying each
width by £1o0 [1], and assigning the largest deviation
as the systematic uncertainty. The sideband regions

of M(Z.") are shifted by +10 MeV/c?, and the
largest resulting deviation is taken as the corresponding
systematic uncertainty. All of these contributions are
summed in quadrature to obtain the total systematic
uncertainty related to the fit models.

TABLE II:
(%).

Summary of fractional systematic uncertainties

ODER Oeff 0B; ONvy(45) 9fs Ocorr Ofit Ototal
Bt 26 1.0 40 1.1 2.1 22 44 7.3
B° 22 1.0 40 1.1 1.7 27 52 7.8

In summary, we report the first observation of the
two-body baryonic decays BT — %.(2455)T+tE, and
B — 26(2455)()?3, using electron-positron data samples
that contain 772 x 10° and 387 x 10° T(4S) events
collected by the Belle and Belle I detectors, respectively.
The branching fractions are measured to be B(BT —

$e(2455) T2 ) = (5.74 £ 1.11 £ 0.42F247) % 1074 and

B(B® — $.(2455)°Z,) = (4.8341.1240.377072) x 104,
where the uncertainties are statistical, systematic, and
from the absolute branching fractions of = or ES decays,
respectively. The observed branching fractions are an
order of magnitude smaller than those predicted by
the QCD sum rule [17], but are consistent with the
expectations of the diquark model [18]. Interestingly,
these branching fractions are larger than those of
their singly-charmed counterparts, BT — 3.(2455)p
and B — X.(2455)"p, by one to two orders of
magnitude [1], although the corresponding combinations
of CKM matrix elements in their amplitudes have nearly
equal magnitudes.
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Supplemental Material for “Observation of the decays Bt — ¥.(2455)"*=, and
B — %,(2455)°=07

M (A7) and AE distributions: Figures 1 and 2 show the M (A} 7%) and AE distributions derived from the sideband

regions of M (A}) and M, for the BT — %.(2455)*+Z_ and B — 26(2455)053 decays, respectively, in the combined
Belle and Belle II data sets.
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FIG. 1: Distributions of (a) M(Af#t) and (b) AE from the sideband regions of (1) M(A}) and (2) My for the Bt —
%.(2455)TTE, decay in the combined Belle and Belle II data sets.

Fit results to the M(AF %) and AE distributions from the sideband regions of M(Ec_’o): Figure 3 shows the fit results

to the M (A} 7*) and AFE distributions from the sideband regions of M (E;’O) in the combined Belle and Belle II data
sets.
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FIG. 2: Distributions of (a)

M(Af7") and (b) AE from the sideband regions of (1)
26(2455)0§8 decay in the combined Belle and Belle II data sets.
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FIG. 3: Distributions of (a,c) M(Af7*) and (b,d) AE for the reconstructed (top) BT — ¥.(2455)*TZ_ and (bottom)

B® — 25(2455)0§2 candidates, using events from the sideband regions of M(E;’D) in the combined Belle and Belle II data
sets. All components are indicated in the legends.
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