
IEKP-KA/2015-16

ANALYSIS SOFTWARE

AND

FULL EVENT INTERPRETATION

FOR THE

BELLE II EXPERIMENT

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Phys. Christian Pulvermacher
aus Remscheid

Tag der mündlichen Prüfung: 6. November 2015
Referent: Prof. Dr. M. Feindt
Korreferent: Prof. Dr. G. Quast

Contents

1. Introduction 1

2. Experimental Setup 5
2.1. KEKB and SuperKEKB . 5
2.2. The Belle Experiment . 7
2.3. The Belle II Experiment . 9

3. The Belle II Analysis Software Framework (BASF2) 15
3.1. Python and Packages . 16
3.2. Modules and Data Exchange . 17
3.3. Path Control Flow . 19
3.4. Input/Output . 21
3.5. Parallel Processing . 22
3.6. Merging Objects . 28
3.7. Event Display . 31
3.8. Summary and Conclusions . 38

4. Analysis Tools 39
4.1. Particle Candidates . 40
4.2. Vertex Fitting . 43
4.3. Monte Carlo Matching . 44
4.4. Multivariate Classification . 48
4.5. Skimming . 50
4.6. Best Candidate Selection . 51
4.7. Saving n-Tuples . 51
4.8. High-Level Reconstruction Tools . 52
4.9. Summary and Conclusions . 53

5. Tag-Side Reconstruction at Belle 55
5.1. Control Variables . 56
5.2. Cut-based Full Reconstruction . 56
5.3. Neural-network-based Full Reconstruction . 57
5.4. Extensions of the Full Reconstruction . 61
5.5. Summary . 63

6. Full Event Interpretation 65
6.1. Software Architecture . 65
6.2. Particle Selection and Combination . 71
6.3. Reducing Combinatorics . 75

iii

Contents

6.4. Classifier Trainings . 79
6.5. Automatic Reporting . 83
6.6. Training Modes . 89
6.7. Distributed FEI Trainings . 95
6.8. Conclusions . 97

7. Estimation of Physics Performance 99
7.1. Monte Carlo Sample . 99
7.2. Training . 100
7.3. Results . 103
7.4. Comparison with Full Reconstruction . 112
7.5. Discussion of Signal Definition . 113
7.6. Summary and Conclusions . 117

8. FEI on Converted Belle Data 119
8.1. Conversion of Belle mDST Data . 119
8.2. Monte Carlo Sample . 121
8.3. Training . 121
8.4. Results . 125
8.5. Summary and Conclusions . 132

9. Conclusions 135

Appendix 137

A. Example FEI Report for a Small Training 139
A.1. Summary . 139
A.2. CPU time per channel . 141
A.3. Particle configuration . 142
A.4. Final state particles . 144
A.5. Particle: D+ . 149
A.6. Particle: B 0 . 154

Bibliography 161

iv

1. Introduction

In a theoretical framework in which most experimental facts of physics can be interpreted,
discovery frequently involves not the entirely unknown, but rather those areas that lie just
beyond the framework’s sphere of influence. One such framework is the standard model of
particle physics (SM), which is able to explain a host of phenomena and allows some of the
most accurate predictions of experimental values to date [1]. With the confirmation of the
Higgs boson in 2012, all particles predicted by the standard model have also been found [2, 3].
The model’s explanatory power is, however, not all-encompassing.

For example, from observations of the rotational velocities of galaxies [4] and other gravit-
ational effects, the presence of an invisible substance, dark matter, can be inferred, which
cannot reasonably be described using standard model particles. Another somewhat central
problem is the observed matter–antimatter asymmetry in the universe. While it is possible to
explain the asymmetry using a combination of baryon number violation, C and C P violation,
and thermal inequalities in the early universe [5], the size of C P violation in the SM is not
sufficient to explain the baryon asymmetry visible around us [6, p. 8f.].

In the standard model, C P symmetry is broken through the Cabibbo–Kobayashi–Maskawa
(CKM) quark mixing mechanism [7, 8], in which it is described by an irreducible phase in
the associated mixing matrix. It was first detected in the form of indirect C P violation in the

neutral kaon system in 1964 by Cronin and Fitch [9], where an asymmetry exists in K 0–K 0

oscillations. In the B meson system, the predicted indirect C P violation was small for B 0–B 0

mixing, but a large direct effect was expected in certain decays of B mesons [10]. The decay

B 0 → J/ψK 0
S , with its charge-conjugate B 0 → J/ψK 0

S , is known as a ‘golden mode’ due to the

relative ease of measuring C P asymmetries between the two decays [11, p. 2]. As a B 0B 0 pair
produced through decay of the Υ(4S) resonance is in an entangled state until one of them

decays, determining the flavour (i.e. B 0 or B 0) of one B also allows inferring the flavour of the
other meson. Using elaborate experimental techniques, the flavour of both B mesons can
thus be determined with good accuracy using the decay products of one meson. The other
meson can decay into a C P eigenstate like J/ψK 0

S in multiple ways, as shown in Figure 1.1. If
C P symmetry is violated, there is a difference in weak phase between these diagrams, which
can cause constructive or destructive interference depending on the decay time. Since this

interference effect is inverted for B 0 when compared to B 0, this results in a time-dependent
difference of the decay rates of both B meson flavours. Detecting this asymmetry requires

B 0B 0 pairs and a way to measure their relative decay time.
To facilitate this type of measurement, two B factories, KEKB in Tsukuba, Japan, and

PEP-II in Stanford, United States, (with the experiments Belle and BaBar, respectively) were
proposed, and both started taking data in 1999. As electron–positron colliders operating
on the Υ(4S) resonance (a bb̄ state), they were designed to produce a large number of B
mesons, with asymmetric beam energies introducing a boost to the center-of-mass system
that enables measuring the decay length of B mesons, and hence their relative lifetime. Since

1

1. Introduction

d
d

Vcb*

Vtd

d b
W

B0

KS

s

J/Ψ
b

c

c

W

W B0B0 W
Vtd

b d
KS

c

c

s

d

J/Ψ

Figure 1.1.: Dominant Feynman diagrams for B 0 → J/ψK 0
S decays, with a direct decay (top)

and a decay with B 0–B 0 mixing (bottom). Taken from [11].

the mass of the Υ(4S) resonance lies just above the threshold for the production of pairs of B
mesons, no further particles are produced. Together with the relatively low energies available
through B meson decays, which are not enough to produce jets of particles, the Υ(4S) events
recorded at B factories are very clean.

The confirmation at Belle and BaBar of a large C P asymmetry, as shown in Figure 1.2,
which was consistent with the CKM quark mixing formalism was recognised in the awarding
of the Nobel prize to Kobayashi and Maskawa in 2008 [13]. Besides C P violation, B factories
were also able to measure other parameters of the CKM matrix with improved resolution, and
could detect a number of very rare B decays [14]. Since certain models of physics beyond the
standard model predict significantly different branching ratios for these decays, this makes
them interesting for actually testing the new physics predictions against those of the standard
model. Additionally, a variety of new states have been found, including charmonium(cc̄)-
and bottomonium(bb̄)-like resonances, some of which may be tetraquark states (qqq̄ q̄) or
molecules [14, p. 85ff.].

Thus, B factories find themselves in a unique position at the frontier of the standard model
to probe its predictions with high precision. To allow further discoveries and improved
measurements using their unique environment, a successor to the Belle experiment and the
KEKB accelerator was suggested in 2004, and the Belle II collaboration formed in 2008 [15,
p. 1]. For the Belle II experiment, the accelerator will be upgraded to achieve an instantaneous
luminosity 40 times higher than that of KEKB [15, p. 20]. The detector itself is also upgraded
to deal with a number of changes in the environment (e.g. beam background) and to be able
to provide competitive measurements. First Υ(4S) events are expected to be recorded in

2

0

0.1

0.2

-8 -6 -4 -2 0 2 4 6 8
Δt (ps)Δt (ps)Δt (ps)Δt (ps)

1/
N

•d
N

/d
(Δ

t)

qξf =+1
qξf =−1

Figure 1.2.: Distribution of ∆t for events with different qξ f measured by Belle, where q is the

flavour tagging output (+1 for B 0, −1 for B 0-like), and ξ f is the C P eigenvalue of
the final state. The difference between the two distributions indicates that C P
symmetry is violated. Taken from [12].

2018 [16]. Both the Belle and Belle II experiments are described in more detail in Chapter 2.

Over the last century, analysis techniques in particle physics have evolved dramatically.
While early discoveries in particle physics, like that of the positron in 1932 [17] and of the
kaon in 1947 in cosmic rays [18], could be confirmed using individual cloud chamber images,
more recent findings are usually based on larger numbers of events. For example, the
1973 discovery of weak neutral currents was based on an analysis of almost 300 000 bubble
chamber images [19], while experiments at the Large Hadron Collider (LHC) have output
data rates of many hundred events per second. Advances in information technology have
shifted most experiments from manual methods to an entirely electronic readout of detectors
and a chain of components that processes the data into something that is useful for analysts.

For Belle II, all these steps are implemented using a single software framework, which
consequently has to deal with both large data rates and very dissimilar use-cases, including
performing a fast online-reconstruction on the high-level trigger, online-monitoring, saving
of detector data in a common file format, reconstruction tasks like track finding, and finally,
physics analyses. As such, the framework is used by a large group of developers with differ-
ent amounts of programming experience and benefits from a consistent and user-friendly
interface. For this thesis, the Belle II Analysis Software framework (BASF2) was made more
user-friendly and reliable, and was extended to make use of the multiple CPU cores present
in modern processors. It was also integrated more tightly with the Python scripting language,
allowing faster prototyping and tests. Both the framework in general and the improvements
to it are discussed in Chapter 3.

The components used for physics analyses are an especially important aspect of the
software, as they define how analyses are performed, and by extension which part of analyses
physicists spend time on. For the Belle II collaboration, a modular approach has been
developed that provides common analysis tasks in an interoperable way, so they can be

3

1. Introduction

combined to support even the most complicated tasks. A crucial point is that all common
analysis steps are already available and do not need to be implemented by each user. This
also allows for significant gains in reliability, since algorithms can be tested thoroughly and in
different circumstances. Many analysis tools were redesigned or improved within the scope
of this thesis. They are described in detail in Chapter 4.

The aforementioned cleanness of Υ(4S) events at B factories also allows the development
of specialised analysis techniques. One such technique uses the fact that such events contain
exactly two B mesons by reconstructing1 one B meson with high efficiency in a number of
possible decays, and combining it with a B meson reconstructed in a user-defined signal de-
cay channel. If both B mesons are reconstructed correctly, this is equivalent to reconstructing
the Υ(4S), and thus the entire event. As a result, the analyst can greatly enhance the purity of
their signal selection by requiring that no tracks remain in the event. Additionally, since the
four-momentum of the Υ(4S) is known, the reconstructed four-momentum of one B meson
also determines that of the other B . Within this thesis, a new, highly automated algorithm
for Belle II is introduced that performs the necessary high-efficiency reconstruction of B
mesons and is based on the analysis tools presented earlier. This algorithm, called Full
Event Interpretation, offers high reconstruction efficiencies, flexibility, and can improve many
analyses. After introducing a similar algorithm and its applications for the Belle experiment
in Chapter 5, the Full Event Interpretation will be discussed in Chapter 6 and the following
chapters.

1 In the context of particle candidates, ‘reconstruction’ refers to the creation of the candidate through combina-
tions of other particles and may include other steps to improve the selection.

4

2. Experimental Setup

As the analysis software of both experiments will be discussed in this thesis, the experimental
setup of both Belle and Belle II, as well as the associated accelerators will be introduced in
this chapter. Only a brief description of the detectors will be given, more detailed information
can be found in references [11] and [20] for the Belle experiment and in reference [15] for
Belle II.

2.1. KEKB and SuperKEKB

The KEKB accelerator providing electron and positron beams for the Belle experiment was
operated from 1999 until 2010. It was installed in the tunnel previously used by the TRISTAN
accelerator, with an improved linear injection accelerator to ensure sufficient positron pro-
duction rates [11, p. 5]. A large instantaneous luminosity could be achieved by using a large
crossing-angle combined with so-called crab-cavities, which reorient the beam bunches so
they collide frontally; this ultimately resulted in a peak luminosity of 2.11×1034cm−2s−1,
twice as high as the design value [11, p. 5]. To create the boost necessary for measuring the
relative decay times of B mesons, the beam energies of the two rings are asymmetric, with a
low-energy positron ring (3.5 GeV) and a high-energy electron ring (8.0 GeV). Over its entire
run time, KEKB was able to accumulate a record integrated luminosity of over 1 000 fb−1,
surpassing PEP-II by a factor of almost two, as can be seen in Figure 2.1.

Alongside the upgrade to the Belle II experiment, the KEKB collider is updated to Super-
KEKB, with its main feature being a greatly increased instantaneous luminosity. A significant
difference to the KEKB accelerator design is the ‘nano-beam scheme’, which involves squeez-
ing the vertical beta functions β∗

y of both beams at the interaction point [15, p. 19]. As can be
seen in Table 2.1, the design values for the vertical beta functions at SuperKEKB are smaller
than those of KEKB by almost a factor twenty. The beam currents I were also increased to
almost twice their previous values. The luminosity of a collider can be expressed as [15, p. 19]

L ∼ γ±
2ere

(
I±ξy±
β∗

y±

)
,

where γ± is the Lorentz factor and ξy± the vertical beam–beam parameter for positrons (+)
and electrons (−), e the elementary charge and re the classical electron radius. The propor-
tionality constant here contains certain reduction factors, e.g. due to the crossing angle. The
changes in β∗

y and I alone thus suggest great increases in luminosity. The design value for

SuperKEKB is 80×1034cm−2s−1, an increase of almost a factor forty compared to KEKB. The
beam parameters and luminosity of both accelerators are compared in Table 2.1.

As these changes to the beam parameters also affect the rates for background processes
occurring through interactions of the beams with themselves or remaining gas atoms, signi-
ficant increases in the amount of background are expected for Belle II. Since the dominant

5

2. Experimental Setup

Figure 2.1.: Integrated luminosity over time at the B factories KEKB (Belle) and PEP-II (BaBar).
Taken from [21], based on [22].

Table 2.1.: Beam parameters at KEKB and SuperKEKB. ξy denotes the vertical beam–beam
parameter, β∗

y the vertical beta function at the IP, and I the beam current. Taken
from [15, p. 20].

background source, the Touschek effect, is proportional to E−3 (with beam energy E), for
SuperKEKB the asymmetry was reduced using energies of 4.0 GeV for positrons and 7.0 GeV
for electrons as mitigation [15, p. 22].

First beams are expected at SuperKEKB in 2016, with a commissioning detector being used
instead of Belle II, followed by collisions at a non-Υ(4S) resonance energy in 2017 with part of
the Belle II detector, and operation at the Υ(4S) energy with the full experiment in 2018 [16].

For the detectors, a standard coordinate system is used, with the x axis being horizontal
(pointing away from the center of the accelerator), y being up, and z being in forward
direction. The conventions for Belle and Belle II differ subtly: At Belle, the z axis is identical
to the low-energy ring at the IP (with positrons flying towards −z), at Belle II it lies halfway
between the low- and high-energy beams [23].

6

2.2. The Belle Experiment

Figure 2.2.: Cross-section of the Belle detector. Adapted from [20].

2.2. The Belle Experiment

The Belle experiment is a 4π detector covering the interaction region of KEKB from 17◦ to
150◦ in the polar angle θ and in 360◦ of the azimuth angle φ [20]. Due to the boost provided
by the accelerator, the detector is arranged somewhat asymmetrically, with more coverage
in the front, i.e. in the direction of the high-energy beam. The inner detectors, consisting of
tracking detectors, particle identification detectors, and the electromagnetic calorimeter, are
contained in a superconducting solenoid producing a 1.5 T magnetic field. A cross-section of
the Belle detector giving an overview of the arrangement of sub-detectors can be found in
Figure 2.2.

2.2.1. Tracking Detectors

The tracking detectors are used to record signals (hits) of the passage of charged particles
and allow the determination of their momentum by measuring the track curvature in the
magnetic field. The innermost detector, called the Silicon Vertex Detector (SVD), was placed
in close proximity to the beam pipe, and thus to the interaction region. Its main goal was to
provide the vertex resolution needed to measure the distance between two B decay vertices
for C P violation measurements.

A first version of the detector, SVD1, was used at the beginning of data-taking operations
in 1999, and already replaced in 2000 due to radiation damage to the readout electronics [11,
p. 26, p. 44]. In 2003, SVD1 was retired entirely and replaced with the greatly improved SVD2,
which was more resilient and allowed great increases to the luminosity of KEKB. This final

7

2. Experimental Setup

version consisted of four layers of double-sided silicon strip detectors (DSSD) installed at
radii between 20 mm and 88 mm [11].

The Central Drift Chamber (CDC) was the larger of the two tracking detectors, and had
inner and outer radii of 80 mm and 880 mm, respectively, though no inner wall was used to
avoid multiple scattering [11, p. 27]. The CDC contained a total of 8 400 drift cells arranged in
50 layers [20]. With the installation of SVD2, the inner three layers were replaced to make
room for the larger silicon detector [11]. In addition to being used for track reconstruction,
energy depositions of particles in the CDC were also used for particle identification using the
specific energy loss dE/dx.

2.2.2. Particle Identification

More powerful particle identification (PID) information came, however, from two detectors
dedicated to this task and positioned outside of the CDC: the Aerogel Cherenkov Counter
(ACC) and the Time-Of-Flight (TOF) detector. The ACC (labelled ‘PID’ in Figure 2.2) consisted
of aerogel blocks of different refractive indices covering an acceptance of 13.6◦ to 127.9◦ in θ
(i.e. in the barrel and forward regions). As a Cherenkov detector, the ACC could only detect
Cherenkov radiation for particles over a certain velocity threshold. Heavier particles with the
same momentum, having a lower velocity, would in many cases not be faster than the local
speed of light (phase velocity) in the aerogel, and would not create a signal. The number of
photons detected for a given track thus was a powerful PID variable.

The time-of-flight detector, on the other hand, was installed in the barrel region only, and
thus had a far smaller acceptance of 33◦ to 121◦ in θ [11, p. 29]. With a design time resolution
of 100 ps, the detector could provide accurate velocity measurements for tracks. When
combined with a momentum measurement from the track reconstruction, the particle’s
estimated mass could be used to distinguish between different kinds of particles. Tracks with
a transverse momentum below 280 MeV could not reach the TOF detector, and needed to be
identified by the ACC (if in forward direction) or the CDC alone.

2.2.3. Electromagnetic Calorimeter

The electromagnetic calorimeter (ECL) encloses both the tracking and PID detectors, and
is responsible for detecting photons as well as measuring the energy deposition associated
with tracks to aid in identifying electrons. The calorimeter consists of 8 736 Tl-doped CsI
scintillator crystals covering a range of 17◦ < θ < 150◦ in the polar angle and weighs a total
of 43 tons [20, p. 59]. At the end of each crystal, a photomultiplier (PMT) detects light
emitted by the scintillator, which can be used to measure the amount of energy deposited.
Clusters of activated crystals in the vicinity of a track are used to identify electrons, which
deposit significantly more energy in the calorimeter. Clusters with no associated track can
be interpreted as photons, though some backgrounds (e.g. from beam interactions) are also
present at lower energies.

2.2.4. Extreme Forward Calorimeter

The Extreme Forward Calorimeter (EFC) extends the acceptance of the ECL in both the
forward and – contrary to the name – in backward region for an improved sensitivity to

8

2.3. The Belle II Experiment

physics processes like B → τν [20, p. 11]. Its 2×160 Bi4Ge3O12 crystals have an acceptance of
6.2◦ < θ < 11.6◦ in the forward, and 163.1◦ < θ < 171.5◦ in the backward region [24, p. 18]. The
EFC was attached to KEKB solenoid magnets near the interaction point and also functioned
as a beam mask to shield the central drift chamber from backgrounds [20].

2.2.5. K 0
L and Muon Detection

The return yoke of the 1.5 T solenoid, covering both the barrel and the forward and backward
endcap regions, consists of iron plates of 4.7 cm thickness, which sandwich resistive plate
counters (RPCs) that can detect passing particles [20, p. 77]. Since this makes it useful for
detecting neutral hadrons (especially K 0

L) and muon identification, it is called the K 0
L and

Muon Detector (KLM). As muons at Belle usually have momenta that make them minimum
ionising particles, they can traverse even iron without great energy loss. Hadrons, on the
other hand, interact strongly with the iron nuclei, loosing energy and creating showers of
secondary particles in the process. These differences allow the KLM to distinguish very well
between charged pions and muons, which are not easy to separate for the other PID detectors
because of their similar mass. Clusters in the KLM not matched with a charged track indicate
detection of a neutral hadron, possibly a K 0

L . Due to the low energies, only few secondary
particles are produced in the hadronic showers, resulting in large statistical fluctuations. An
energy measurement for neutral clusters thus is not possible.

2.3. The Belle II Experiment

With the upgrade to SuperKEKB, many of the previously described detectors were replaced.
In part, this was done out of a desire to improve the performance, in particular of the particle
identification systems, but the changed conditions with a much higher luminosity and a
different setup of focussing magnets and the accelerator itself also drove certain changes.

The Belle and Belle II detectors are, however, fairly similar in overall structure, and com-
ponents have been reused where appropriate. One example is the superconducting solenoid,
which is inherited from Belle, so the same 1.5 T magnetic field will be used. The ECL and
KLM components will also be reused, while Belle’s SVD, CDC, ACC, TOF, and EFC are retired.
A cross-section of the new Belle II detector and its different sub-detectors can be found in
Figure 2.3.

2.3.1. Tracking Detectors

As a result of the decreased boost at SuperKEKB (see Section 2.1), the tracking detectors at
Belle II need to be improved significantly to maintain or exceed the vertex resolution achieved
at Belle. For this reason, a pixel detector was added in close proximity to the interaction point
as a third tracking detector. Additionally, the beam pipe itself decreased in size to a radius of
about 10 mm [15, p. 76].

The PiXel Detector (PXD), consisting of two layers of sensors at radii of 14 and 22 mm, thus
sits very close to the beam line [15, p. 78]. Each sensor contains a large number of DEPleted
Field Effect Transistor (DEPFET) pixels, for a total of eight million pixels. This particular type
of sensor can be made very thin, which reduces multiple scattering in the detector material,

9

2. Experimental Setup

B
a
rre

l K
LM

E
n
d
ca

p
K

LM

E
C

L

E
n
d
ca

p
K

LM

C
D

C
A

R
IC

H
P
X

D
S
V

D

T
O

P

S
o
le

n
o
id

1
2

3
4

 (m
)

0

F
igu

re
2.3.:C

ro
ss-sectio

n
(sid

e
view

)
o

fth
e

B
elle

II
d

etecto
r,u

sin
g

th
e

geo
m

etry
as

im
p

lem
en

ted
in

B
A

SF
2

in
M

ay
2015.

10

2.3. The Belle II Experiment

-200 -100 0 100 200 3000

20

40

60

80

100

120

140

160

+z-z

r

Figure 2.4.: Configuration (side view) of the four SVD layers, with the two PXD layers shown
directly outside the beam pipe. All dimensions in mm. Adapted from [15, p. 142]

and does not need to be continually powered to hold the collected charge, reducing power
consumption. As a result, the PXD can be cooled using CO2 (melting point: −56.6◦C [25])
flowing through channels integrated in the support structure and does not require, e.g., liquid
nitrogen. Due to the large number of channels and its slow readout time of 20µs, the volume
of data generated by the PXD is very large and needs to be reduced before it can be saved
(see also Section 2.3.5).

The PXD is surrounded by four additional layers of silicon strip sensors at radii of 38 to
140 mm, which make up the Silicon Vertex Detector (SVD) [15, p. 142]. The SVD consists of
double-sided silicon strip detector sensors, where one side contains n-doped strips and the
other side p-doped strips approximately perpendicular to the n-strips. This arrangement
provides great position resolution for charged particles passing through it, while requiring
far fewer readout channels than the PXD. Its faster readout time also makes the SVD much
less vulnerable to beam-background hits, and allows performing a stand-alone track finding
using only SVD data [26]. To decrease the amount of silicon needed to cover polar angles
from 17◦ to 150◦, slanted sensors are used in the forward region. The arrangement of the SVD
layers around the PXD is illustrated in Figure 2.4.

The Central Drift Chamber of the Belle experiment is also replaced with an improved
system. As Belle II’s SVD is somewhat larger than at Belle, the inner radius of the CDC
is increased to 160 mm. Since Belle II, however, does no longer contain the voluminous
ACC system, the outer radius is also increased to 1 130 mm [15, p. 202]. The new CDC
contains 14 336 drift cells distributed in 56 layers, which are in turn grouped into superlayers.
Superlayers alternate between axial and stereo wire configurations, meaning that wires in
these layers are oriented either along the z axis, or at an angle to it. This can be used by
tracking algorithms to also extract z information for tracks, which would not be possible using
axial layers alone. With a higher luminosity, the amount of background originating from the
beam is also expected to increase significantly. To compensate for this, the innermost layers
of the CDC contain more cells, reducing the occupancy in the region most strongly affected
by common backgrounds. The wire configuration in the CDC is illustrated in Figure 2.5,
showing both the increased density for the inner layers, and alternating superlayers.

11

2. Experimental Setup

Figure 2.5.: Cross-section of the CDC wire configuration, with axial superlayers in black,
and stereo superlayers in violet and red for positive and negative stereo angles,
respectively. Taken from [21], based on [15, p. 204].

2.3.2. Particle Identification

The particle identification systems at Belle II saw a significant redesign which is expected
to greatly improve their performance. Both TOF and ACC systems were replaced by entirely
new systems: the Aerogel Ring-Imaging CHerenkov (ARICH) detector in forward direction,
and the Time-Of-Propagation (TOP) counter in the barrel region.

While also using Cherenkov radiation like the ACC, the ARICH detector does not rely
on threshold effects, but measures the Cherenkov angle for particles that pass it. Through
cosφ = 1/(nβ) (with Cherenkov angle φ, index of refraction n, and β being the particle
velocity relative to the speed of light in vacuum) this is equivalent to a velocity measurement
and thus allows identification of particles when combined with a momentum measurement.

The time-of-propagation counter replaces Belle’s TOF and consists of 16 quartz radiator
bars with a thickness of 2 cm placed on the outer rim of the CDC. Its principle of operation is
a combination of Cherenkov ring-imaging and time-of-flight measurement [15, p. 220]. A
particle passing through one of the quartz bars with a velocity higher than the phase velocity
of light in the medium produces Cherenkov radiation, which is internally reflected along the
radiator bar until it reaches an array of photomultipliers at the end. The measured values are
the arrival time of the Cherenkov photons (with a very precise time-resolution) and the spatial
coordinates. Figure 2.6 shows an example distribution for two different types of particles
with the same momentum. The structures seen are the result of the reflected Cherenkov cone
photons being detected at a later time, with visible differences between the two distributions
especially for higher values of t .

As was done at Belle, the energy depositions in the CDC are used for dE/dx particle
identification, but the same procedure is also possible in the silicon detectors. Due to
different physical effects for ionisation in silicon and gas, using energy depositions in the SVD
for particle identification promises significant improvements for identifying low-momentum
electrons [21]. As the θ acceptance of ARICH and TOP is limited, charged tracks leaving at the
backward end of the CDC can only be identified using dE/dx (and, for electrons, the ECL).

2.3.3. Electromagnetic Calorimeter

The electromagnetic calorimeter is one of the components that are at least partly inherited
from the Belle experiment. In this case, the crystals 8 736 scintillator crystals are kept, as the
light output was not greatly reduced through radiation damage sustained during the run

12

2.3. The Belle II Experiment

Figure 2.6.: Simulated example x–t distributions for Cherenkov photons generated by a set
of 500 pions (red) and kaons (blue) at 3 GeV and normal incidence, for a slightly
different experimental setup with split quartz bars. A slight difference between
both distributions is visible, in particular for times >35 ns. Taken from [15, p. 241].

time of KEKB. Even for the much higher luminosities and increased radiation dose expected
with SuperKEKB, the crystals remain viable [15, p. 286f.]. The electronics, on the other hand,
will be upgraded to provide a faster readout. For the end-cap, the possibility of switching
to pure CsI crystals, which are much faster but have only 10 % of the light output of CsI(Tl)
crystals, is being researched [27].

The ECL is also used to provide trigger signals for other detectors, and for the detection of
K 0

L mesons (in conjunction with the KLM).

2.3.4. K 0
L and Muon Detection

Like the ECL, the KLM will only receive a partial upgrade. Here, the effects of background are
more strongly felt due to the long dead time of the resistive plate chambers. To compensate
for the increased background rates, the RPCs in high-rate arrays (in the entire end-caps and
the inner two layers of the barrel region) are replaced with plastic scintillators [15, p. 313][28].

2.3.5. Data Acquisition

The data acquisition setup for Belle II makes accommodation for the high data rate of the
PXD, which could not be stored without reduction. For this reason, pixel data is transferred to
a buffer node, which decides which data should be kept through so-called regions of interest
(ROIs) it receives. ROIs can be created by the high-level trigger (HLT), which processes
data from SVD, CDC, and other detectors using the same software also used for offline
reconstruction. After finding tracks using this data, they can then be extrapolated into the
pixel detector, and regions of pixels likely to contain further track hits are sent as ROIs. The
regions can also be generated by an FPGA-based track-finding algorithm running on the data

13

2. Experimental Setup

Buffer Node

Tape
HLT

EVB #2ROIs

ROIs

Outer Detectors

EVB #1CDC

PXD

SVD DatCon

start readout

Low Level Trigger

Figure 2.7.: Data acquisition and event-building procedure for the Belle II experiment. Adap-
ted from [29].

concentrator (DatCon), which only uses SVD data [29]. After selecting regions of interest, the
kept pixel data is sent to a second event-builder that combines PXD data and the output of
the other detectors from the high-level trigger. The data flow of this two-step procedure is
sketched in Figure 2.7.

14

3. The Belle II Analysis Software Framework
(BASF2)

The software framework for a particle physics experiment is responsible for supporting the
development and execution of a variety of data-processing tasks, including event generation,
detector simulation, tracking, physics analyses, monitoring and quality control. While these
tasks might at first seem quite disjunct, they all face similar challenges in increased input/out-
put (I/O) rates and data sizes with newer experiments. A common framework can help solve
these problems, while also encouraging code reuse between different components. This
chapter describes the software framework of the Belle II experiment, which was improved
and extended significantly within the scope of this thesis. In particular, many of the elements
discussed in the following sections were necessary for the development and implementation
of the advanced analysis tools described in later chapters.

For the Belle experiment, the software was called Belle AnalysiS Framework (BASF) and
provided a framework for analysis code written in C, C++ and Fortran [30]. It integrated
central storage of data for communication between modules with a custom I/O format called
Panther tables and also featured runtime configuration via steering files and dynamic linking
of modules [31]. This modularity allowed its use for both offline and online applications:
It managed both physics analyses and applications like data acquisition and high-level-
trigger that receive data from the detector. The software however suffered from duplicate
implementations, poor documentation, usability issues and limitations of the Panther format.

It was originally planned to retain full compatibility with BASF in the Belle II software [15,
p. 438] and a first version of a framework called roobasf was developed, which was based upon
BASF, but replaced Panther tables with an object-oriented ROOT I/O scheme [32]. Reasons
for this incremental approach included a desire to profit from ‘a substantial accumulation
of software experience’ and to ‘avoid reimplementing similar software’ [15, p. 438]. The
volume of necessary modifications however led to the independent parallel development of
a new software framework, BASF2, based on ideas from both its predecessor and other high-
energy physics experiments [33]. After evaluation, it was chosen as the common software
framework over its competitor roobasf. Given the aforementioned issues with the legacy code
base (specifically those making maintenance more difficult), this intentional incompatibility
allows for great improvements to software quality by enforcing higher standards for new
code.

In Belle II, the same software framework is used for Monte Carlo simulation, data acquisi-
tion, online monitoring, high-level trigger, reconstruction, and physics analysis, which allows
us to reuse the components that comprise the overlap of these areas. The software itself
consists of independent modules that process an event in small steps, plus a core framework
that is responsible for configuration, data exchange between modules and a number of fea-
tures that allow using modules in more powerful ways. While this is a standard architecture
for high-energy physics software frameworks, BASF2 also uses modules for central facilities

15

3. The Belle II Analysis Software Framework (BASF2)

like I/O. This provides additional flexibility since I/O modules do not necessarily need to
be placed at the very beginning or end of an execution sequence. The system is written in
C++11, a recent update to the C++ standard, which simplifies common programming tasks,
specifically initialisation and resource management [34]. Besides the framework itself, the
GNU Compiler Collection (GCC) and various libraries are also part of the software. These
libraries provide many features that would otherwise need to be reimplemented, in particular,
boost (a large set of libraries complementing the C++ standard template library) [35], ROOT
(a data analysis framework with a focus on particle physics) [36], Geant4 (which simulates
the interaction of particles through matter) [37], googletest (a unit-testing framework) [38]
and SCons (an advanced build system) [39] are widely used throughout BASF2. This is in
contrast to the Belle software, which in many cases relies on its own implementations of
algorithms/facilities that are already available in common libraries.

3.1. Python and Packages

BASF2 is configured using steering files written in Python, in which the user can create
modules and module paths, which are simple linear collections (chains) of modules that
define their execution order. Modules can be configured via parameters identified by a
unique name and supporting a wide range of types (including lists and tuples). This is
demonstrated in the following listing:

from basf2 import *
main = create_path ()

eventinfosetter = main . add_module (’ EventInfoSetter ’)
eventinfosetter . param (’ evtNumList ’ , [1 5])

main . add_module (’ Progress ’)

process (main)

This example first loads the BASF2 interface, importing it into the global namespace. The
steering file then creates a new path called main and adds the module EventInfoSetter
to it, which is responsible for setting the event, run and experiment numbers that uniquely
identify each event. (Run numbers are usually incremented when detector conditions change
significantly; experiment numbers provide a more coarse-grained grouping.) By setting the
parameter ’evtNumList’, the module will generate a given number of events (in this case 15)
in each run/experiment combination. The values for run and experiment numbers can be
set via other parameters. By not setting them explicitly, they will be set from default values
that can be defined for each parameter. This module is followed by the Progress module,
which prints the number of events already processed to standard output. The last line, calling
process() on the module path, starts the execution of modules in the path.

One can also use the entire spectrum of functionality provided by the Python language
and associated libraries to integrate more complex programs with BASF2. This is for example

16

3.2. Modules and Data Exchange

used to create tests (to execute modules and validate the result) and high-level reconstruction
tools like flavour tagging and the Full Event Interpretation (see Chapter 6).

BASF2 is grouped into different organisational units called packages. Noteworthy examples
include:

framework contains the core libraries used to create, configure, and arrange modules, the
Python interface, as well as database and file I/O functionality. It is discussed in the
following sections. The package also contains the EventInfoSetter and Progress
modules from the previous example.

generators is comprised of Monte Carlo event generators, which form the starting point of
any detector simulation. E.g. the EvtGenInput module is commonly used to create
decays of Υ(4S) mesons with realistic branching ratios.

simulation contains modules to simulate the interaction of a given set of particles with the
detector.

tracking uses simulated or real detector data from PXD, SVD and CDC to find and recon-
struct tracks for charged particles.

mdst defines the data structures that contain necessary information for physics analyses.
mDST is short for mini Data Summary Tables (see Section 3.4).

display provides a graphical user interface (GUI) to visualize detector geometry, simulated
and real detector data and reconstructed objects. It is discussed in Section 3.7.

analysis contains tools for physics analyses which are introduced in Chapter 4.

3.2. Modules and Data Exchange

Modules are usually developed in C++ and are linked into shared libraries that are dynamically
loaded at runtime if requested. In some cases, modules can also be written in Python (even
defined in the steering file itself), which might be useful when ease of development is
more important than runtime performance. In both cases, they inherit from the base class
Module, which defines a common interface, and then implement certain methods that will
get called during event processing. This includes initialize() and terminate(), which are
called at the beginning and end, respectively, of execution and are responsible for allocating
and freeing resources. Most modules perform their tasks inside the event() method, which
is called for each event handed to the module and can access the current event’s data. Finally,
beginRun() and endRun() are called when the run number changes and allow the module
to react to changes in detector conditions by, e.g. updating its internal state accordingly.
Figure 3.1 illustrates the order in which methods are called. The same sequence can also be
interpreted as applying to a single module, where each block equals a single function call, or
to an entire path, where a block represents calling the same method on each module in the
order defined by the path.

As mentioned previously, modules can be configured using parameters. They are defined
in the constructor of the Module-derived class and consist of a string identifier, a description

17

3. The Belle II Analysis Software Framework (BASF2)

initialize() beginRun() event() event() endRun() terminate()event()

1 2 3

Figure 3.1.: Illustration of the execution sequence of module methods for a single run with
three events, with time progressing from left to right.

explaining its function and possible values, a member variable that should be made available
through this interface, and an optional default value. This is handled through a function
that is templated on the member variable type and is able to convert the type to Python, e.g.
list (int) for std::vector<int>. The actual type conversion is handled by Boost.Python, a
library that provides interoperability between the C++ and Python languages. Type-safety, to
some extent, is provided by throwing an exception if a parameter value cannot be converted
to the underlying C++ type.

Communication between modules is handled via the data store, which allows storage and
retrieval of almost arbitrary objects or arrays of objects. This concept defines a data-based
interface between modules, encouraging an abstraction level focused on concrete objects
like detector hits, tracks and particle identification likelihoods.

Many data are the direct product of some input data, and it can be useful to be able to
trace these connections at some later point in time. To this end, any two objects in arrays in
the data store can be linked via relations, which encode a directed relation with an optional
floating-point weight. They are stored separately from the objects they connect, so they
can be added without changes to the existing class structure. Relations are in most cases
used to signify connections specific to the type of objects they connect, e.g. ‘created-a’ for
a MCParticle→SimHit relation, or ‘reconstructed-from’ for MCParticle→Track. Classes
stored in arrays inherit from an interface class that provides an easy way for users to retrieve
objects (and associated weights) related with any given object or create a new relation
between two objects. Accesses through this interface are done via a bi-directional index
structure which provides fast lookups with a runtime of O (logn), where n denotes the number
of relations between two arrays. The bi-directional index also allows looking up relations in
the reverse direction with no performance penalty, which would not easily be possible with
pointers stored inside the object pointed from.

Any object or array in the data store is uniquely identified by the combination of a name and
a durability. The durability also controls the data’s lifetime, with current options being one
event only (e.g. Tracks), or persistent through the entire execution of BASF2 (e.g. histograms
containing a certain variable distribution cumulated over all events). Users can access
data via templated accessor classes that attach to it and behave similar to a smart pointer
or container class, for objects and arrays, respectively. The following listing shows a brief
example of their use.

18

3.3. Path Control Flow

StoreObjPtr<EventMetaData> eventmetadata ;
i f (eventmetadata)

B2INFO (" Currently in event : " << eventmetadata−>getEvent ()) ;

StoreArray<CDCSimHit> cdcsimhits ;
// loop over a l l CDC simhits
for (const CDCSimHit& hit : cdcsimhits) {

// Use h i t ’ s data here . . .
}

Python implementations of these classes are also provided to make data available to
modules written in Python; their usage is analogous to the C++ case. Actually using objects
in the Data Store from Python (e.g. calling member functions) requires the class definition to
be available to the Python interpreter in some form. In BASF2, this is provided by PyROOT, a
ROOT interface to Python that relies on automatically generated information about classes.
These auto-generated definitions are also used by the I/O system (see Section 3.4). All classes
saved in the data store (and thus being I/O compatible) can in this way also be used from
within Python for, e.g., prototyping or tests.

Modules can also declare their inputs and outputs. (This is optional for inputs, but re-
quired for outputs.) This information can be used by the framework to generate a graph
of the dependencies. Specifying required inputs can also help users to notice problems
within their steering file, since a required input that does not have a matching output in a
previous module will cause the execution to stop with an appropriate message. For each
module, visual representations of these graphs are automatically generated and integrated
into the class documentation. Figure 3.2 shows such a graph for the MdstPID module, re-
sponsible for storing particle identification information from different detectors in an array
of PIDLikelihood objects. These objects are created for each charged track, and are saved
into mDST files for later use by analysis modules. It distinguishes between Tracks, which are
a required input produced by tracking modules, and optional inputs from different detectors
(which may or may not be available). Similar graphs can also be produced for entire steering
files.

3.3. Path Control Flow

3.3.1. Module Conditions

Besides simple linear execution, the framework also supports changing the control flow
on a per-event basis. One possibility is to branch into a different path when a specified
condition is met: setting a condition via, e.g., module.if_value(’<0’, conditionPath) will
cause event processing to continue inside a given path (conditionPath) if the condition is
true; it is checked against an integer-valued return code that can be set in the module. For
convenience, aliases if_true() and if_false() are provided to check for values ≥ 1 and < 1,
respectively.

19

3. The Belle II Analysis Software Framework (BASF2)

MdstPID

PIDLikelihoods

TracksARICHLikelihoods DedxLikelihoods ECLPidLikelihoods Muids TOPLikelihoods

Figure 3.2.: Graph of inputs and outputs of the MdstPID module. Required inputs are shown
in dark blue, optional inputs in light blue and outputs in orange. The dashed red
line denotes an (output) relation between arrays.

After a condition branch is taken, execution usually stops after the condition path for the
current event. Via an optional argument to if_value(), if_true(), etc., this can also be
changed to continuing execution after the module that the condition was set on, i.e. modules
following the condition module are executed regardless of whether the conditional path is
executed or not. This feature is particularly useful for creating skims of larger data samples
or selecting events for quality monitoring purposes. Skim refers to selecting events according
to certain physics criteria and discarding all other events, which can easily be achieved by
adding an output module (see Section 3.4) in the condition path.

3.3.2. Sub-event Iteration

Generally, a module’s event() method is called once per event while any repeated processing
is performed inside this call by e.g. looping over an array of input data. For more complex
tasks, such as modifying the behaviour of a chain of modules according to each entry in
an array, this is no longer sufficient, or would lead to overly convoluted implementations.
To remedy this, the framework supports sub-dividing events for a certain path by using
outerPath.for_each(loopObjectName, arrayName, loopPath) in the steering file. This
has the effect of calling the event() method of modules in loopPath for each entry in the
array identified by arrayName. For each run through loopPath, an object stored under the
name loopObjectName will contain the array entry for this iteration. Modules can modify
stored data to share it with other modules, but objects/arrays of event durability are reset after
each iteration through the path and thus are not visible to following modules in outerPath.

Using the functionality introduced in this section, it becomes possible to perform recon-
struction tasks repeatedly on different parts of the event. Mainly this is performed through
RestOfEvent objects: after reconstructing a signal decay candidate, it is often useful to
look at the event again while excluding all final state particles used for the signal candidate.
This can be done by creating RestOfEvent objects for all signal candidates – these encode
which final state particles have not been used and thus are still available – and then using
for_each() to iterate over them and perform further reconstruction tasks on only these
remaining tracks or clusters.

The following example shows the structure for one of the main use cases: building tag-side
B 0 candidates for a set of existing signal candidates (’B0:signal’).

20

3.4. Input/Output

create signal B0 candidates . . . (omitted)

buildRestOfEvent (’B0 : s ignal ’ , path=path)

roePath = create_path ()
add reconstruction of tag side to roePath . . . (omitted)

path . for_each (’ RestOfEvent ’ , ’ RestOfEvents ’ , roePath)

Using this feature will in most cases also require some way of specifying the loop ob-
ject to the modules and allowing them to act on this information. Inside roePath, the
isInRestOfEvent variable can be used to select final state particles that are part of the
current loop iteration’s RestOfEvent object. (Variables and the high-level reconstruction
tools are introduced in Chapter 4.)

3.4. Input/Output

Data shared via the data store can also be written to file using ROOT’s serialisation function-
ality, by adding input or output modules at the desired position. This allows separating the
module chain between any two modules, to e.g. perform simulation and reconstruction in
separate processes to test certain reconstruction steps on the same input data.

Certain standard sets of data have been defined and are frequently referred to –– the
terminology mostly follows Belle conventions:

DST Data Summary Table files contain the output of reconstruction, including detailed
tracking information and detector hits (about 300 kB / Event)

mDST mini-DST files contain only a subset of objects in DST files and reduce them to
the information necessary to perform most analyses: Tracks, particle identification
likelihoods, calorimeter clusters, Monte Carlo particles and important meta data.
(about 40 kB / Event)

µDST micro-DST files are skimmed mDST files with analysis-level particles added. The
name might appear misleading, given the larger number of objects in this file, but
it reflects only the reduced file size from discarding irrelevant events. (Size depends
strongly on the type of skim, but might be orders of magnitude below mDST size.) See
also Section 4.5.

In many cases, files in these formats will be produced by the responsible group and made
available to collaboration members.

In most cases, functions implementing the serialisation and deserialisation of objects to or
from a byte stream are generated automatically using ROOT’s C/C++ interpreter (currently
rootcint). This frees users from the potentially error-prone task of writing their own (de)se-
rialisation functions and keeping them up-to-date with every change to the data members
of a C++ class. The serialised objects are stored as separate branches in TTree objects [40]

21

3. The Belle II Analysis Software Framework (BASF2)

in a ROOT file, which provides optimized read performance and allows quick navigation
between events or accessing only some parts of the event. It also allows for transparent file
compression (to about 40 % of the uncompressed size) and backward compatibility even in
case of complex changes to class layouts [41].

All ROOT files saved by the output module contain additional metadata in a persistent
FileMetaData object, which provides information on the file’s contents and the environment
used to create it. Among other things, it contains the number of events, information on the
run and experiment numbers contained in the file and the creation time, as well as the
contents of the steering file, the host-name and the random seed used to produce it. The
object also includes a unique identifier (ID) for the file, and a list of the unique IDs of the files
used as input when creating it (called parent files). In conjunction with a database mapping
these IDs to the physical position of a file (e.g. a file name)1, the RootInput module can use
this information to load objects from both an input file and its parent files by setting the
parentLevel parameter to a non-zero value. If the parent files can be assumed to remain
available, this enables saving disk space, e.g. by allowing smaller µDST files which contain
only particles and refer to the parent mDST files for other objects. A different use-case might
be index files, which are files that are practically empty, but serve only to define a certain
sub-set of the parent file contents. Events in the file are uniquely identified by their metadata,
and can be matched efficiently with their counterpart in the parent file through the use of
TTreeIndex [42].

Besides the standard ROOT I/O modules, there are also modules to send and receive data
over the network (for the data acquisition system) or exchange data between processes,
which also rely on ROOT’s serialisation mechanisms. Applications of the inter-process
communication are the topic of the following section.

3.5. Parallel Processing

For over a decade prophets have voiced the contention that the organisation
of a single computer has reached its limits and that truly significant advances
can be made only by interconnection of a multiplicity of computers in such a
manner as to permit cooperative solution. – Gene Amdahl, 1967 [43]

This statement makes it plain that the trend towards parallelisation is certainly not new,
and that the reasons for it have not changed much in fifty years. However, limitations to the
scalability of sequential code have become more obvious recently. While transistor numbers
per integrated circuit continue to follow Moore’s law [44] by doubling roughly every two
years, this does no longer translate directly into more instructions per second. Instead, CPU
clock rates have stagnated due to increased cooling requirements associated with higher
clock rates and manufacturers are focusing on (among other things) improved pipelining
and instruction sets, as well as increasing the number of CPU cores.

Since computational problems in particle physics are embarrassingly parallel [45], i.e.
computation is done on independent collision events, we can make use of this feature by
having each core work on a different event, regardless of the individual actions performed

1Currently an implementation using plain files instead of a database is available.

22

3.5. Parallel Processing

on them.2 While one can separate the input data manually and simply start independent
processes, on a single computer this will not result in optimal resource use. In concrete terms,
independent BASF2 processes would use significantly more memory and repeat common
initialisations needlessly, compared to the parallelised implementation introduced in the
following.

BASF2 provides an implementation of multi-core processing that takes care of the par-
titioning and collection of events and allows for some resource-sharing. It is inspired by a
similar feature in the Belle software framework which also shares a number of implementa-
tion details. To avoid the difficulties associated with ensuring all modules are programmed
in a thread-safe manner, the mechanism uses the POSIX fork() call to create independent
sub-processes after the common initialisation has been performed. Modules responsible
for creating/reading events or writing to files cannot easily be run in parallel. BASF2 thus
separates the module path into three sections: an input path, containing modules at the
beginning of the job that can only be run sequentially, followed by the parallel path with
those modules that set a flag asserting they are compatible with parallel execution (e.g. avoid
writing to files) and the output path with the remaining modules, starting with the first one
that does not set the parallel flag. After initialisation, these three paths are separated, with
one process each for input and output path, and a user-specified number of worker processes
for the parallel section. Communication between processes is performed by serialising the
data store contents of one event using special modules and storing them in a ring buffer
(used as a FIFO queue) in shared memory using System V interprocess communication (IPC)
mechanisms [46]. This is illustrated in Figure 3.3. The data flow between processes is shown
in Figure 3.4. Each buffer keeps track of the number of processes sending data to it, so that
during terminate(), the process also detaches from the ring buffer it sends events to (not
shown for clarity). This allows the subsequent processes to detect when no further events are
available and the event processing should be stopped.

In a simplified model, the performance improvements of a partially parallelized program
when compared with strictly sequential execution (the speedup S) is given by Amdahl’s law

S(N) = 1

(1−P)+P/N
,

where P is the fraction of parallel code and N is the number of worker processes [43]. It is
apparent that the time spent in the sequential part (here: input and output paths) is a lower
limit for the runtime of the parallel version. In practise, the speedup is also influenced by
a number of other factors, including communication overhead between processes. Since
input and output paths are executed in independent processes, a realistic calculation would
also need to take this into account, however as long as the execution time is dominated by
the parallel path, they will mostly be in a blocked state (waiting for buffers) and thus can be
neglected. This assumption can be verified by measuring the speedup of parallel processing
with a single worker process (plus one input and one output process), which should be about
one in this case.

2Note that this approach might not be feasible in all cases. For some of the LHC experiments, for example, the
working set per event may grow to hundreds of megabytes. For advanced parallel architectures with e.g. 50
cores on a PCIe card, this severely restricts scalability. In that case, parallelisation between and/or inside
modules becomes necessary.

23

3. The Belle II Analysis Software Framework (BASF2)

Ring
Buffer

input
mod. Tx

Ring
Buffer

Rx Tx

output
mod.

Rx

Input process Worker processes Output process

Rx Tx

Rx Tx

Rx Tx

Figure 3.3.: Illustration of the parallel processing mechanism with serial sections in the input
and output processes, and distribution of events to worker processes by splitting
the original module path with the Rx and Tx modules. Based on [47].

initialize()

terminate()

Output
process

Worker processes

Input process

fo
rk

()

event() event() terminate()

event()

terminate()event()

event() event() terminate()

Ring buffer

Ring buffer

Figure 3.4.: Illustration of the execution sequence and data flow between processes when
using parallel processing. Orange boxes denote beginRun() and endRun() calls.
Cf. Figure 3.1.

24

3.5. Parallel Processing

Figure 3.5a shows the speedup with parallel processing by number of worker processes
used on a machine with four physical cores; this increases to eight cores with HyperThreading,
a technology that doubles the number of logical cores but not the number of execution
engines or caches, avoiding complete stalls when one logical core is waiting for data. In these
measurements, a larger number of events was generated, simulated and reconstructed using
a standard set of modules.3 The fraction of parallel code P is estimated to be around 97.5%,
which is used to produce an ideal curve according to Amdahl’s law (dashed). Measured
performance remains well below this ideal curve, only reaching a speedup of three for
four worker processes, and saturating at around four when including the additional cores
provided by HyperThreading. This might be caused by limited shared system resources
like CPU caches, or by the additional system load due to the input and output processes.
Using the additional logical cores provided by the CPU seems to be beneficial, and appears
to agree with the 30 % performance improvement through HyperThreading claimed by the
manufacturer [48].

For comparison, Figure 3.5b graphs the speedup for the same task, but on an older system
with 2×4 physical cores (16 with HyperThreading). Here, the measured performance follows
the idealised estimate quite closely up to eight worker processes, even exceeding it in places.
This might be an effect of the separate L3 caches for the two CPUs (8 MB each), compared
to the single CPU from Figure 3.5a where the cache (of same size) is shared by all cores. But
while scalability seems to be better, it should be noted that the absolute performance of the
older processors is about 50 % lower for the same number of processes.

Processing a similar (if slightly different because of different random seeds) workload using
separate BASF2 processes yields very similar speedups for a given number of BASF2 instances
/ worker processes. This suggests that the effects seen in Figure 3.5 can for the most part be
attributed to kernel scheduling algorithms and/or hardware, and that the communication
overhead can be neglected for this particular workload. Due to the increased amount of work
required from the user to manually split their workload into separate jobs and possibly merge
output files at the end, the greater usability of the multi-core solution (which can be enabled
by specifying the desired number of worker processes after the -p flag to basf2) makes it the
preferred option.

One more important advantage of the parallel-processing over starting entirely separate
processes is that it performs expensive initialisation only once. This is particularly important
for those modules where the initialisation may include database accesses, and the geometry
creation, which can take up a significant portion of the process’ memory. Since on Linux
fork() is implemented using copy-on-write pages [49], any memory allocated during initial-
isation will be shared between the processes until written to. Thus, for constant data like
the detector geometry, only one copy needs to be kept in memory. Any memory written to
after the fork() call will be copied into the process’ own (un-shared) address space, so the
processes cannot influence each other directly.

The resulting memory savings can be seen in Figure 3.6a, which shows memory usage over
execution time when generating, simulating and reconstructing a fixed number of events,
either via four independent processes started simultaneously or multi-core BASF2 with four
worker processes. Besides using 2.5 GB less memory, the multi-core version is also faster: The
initialisation is performed in a single process, which decreases load on memory and cache

3Workload was reconstruction/examples/example.py, with a fixed random seed to ensure reproducibility.

25

3. The Belle II Analysis Software Framework (BASF2)

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

#Worker Processes

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

 (
T
0
T
)

/

(a) Benchmark on a Core i7-4770 CPU with 4 cores (plus HyperThreading), using 5000
events.

0 2 4 6 8 10 12 14 16
#Worker Processes

0

2

4

6

8

10

12

14

16

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

ce
 (
T
 0
 T
)

/

(b) Benchmark on 2 Xeon E5520 CPUs à 4 cores (plus HyperThreading), using 2500 events.

Figure 3.5.: Relative performance (speedup) when using parallel processing with different
numbers of worker processes (blue), with ideal performance predicted by Am-
dahl’s law for P = 97.5% (dashed) and P = 100% (dotted). The number of physical
cores is denoted by the vertical red line. The runtime T0 of a true single-core
job is used as reference time. Events were generated using standard simula-
tion+reconstruction, using SVN revision 16967.

26

3.5. Parallel Processing

0 20 40 60 80 100 120
Time / s

0

1000

2000

3000

4000

5000

M
e
m

o
ry

 /
 M

B
4557.44 MB

2086.12 MB

Proportional memory

4 independent single-core jobs
Parallel processing (4 cores) – Total
Fraction of memory for one sub-process

(a) Comparison with four independent single-core jobs.

0 50 100 150 200
Time / s

0

500

1000

1500

2000

2500

M
e
m

o
ry

 /
 M

B

1262.68 MB

2086.12 MB

Proportional memory

Normal execution (single-core)
Parallel processing (4 cores) – Total
Fraction of memory for one sub-process

(b) Comparison with single process.

Figure 3.6.: Proportional memory (PSS) usage over time for BASF2 with parallel processing
(blue, per process in green) vs. four independent single-core jobs ((a), orange)
and a single process ((b), red). 100 events were generated using standard simula-
tion+reconstruction, using SVN revision 16967.

27

3. The Belle II Analysis Software Framework (BASF2)

and might explain the performance improvement compared to independent processes. This
reduced memory footprint can be particularly useful for Grid computing, where the current
2 GB per core limit can easily become problematic.

It is important to note that the memory measurements show the sum of each process’
proportional share of all associated memory segments (PSS), which differs from the resident
memory that process monitoring programs like top usually show. The latter does not take
shared pages into account and will in fact be slightly higher for multi-core jobs because of
the added input and output processes. In particular, this can be a problem in job-scheduling
software, which might forcibly abort multi-core jobs by acting upon strict limits on resident
memory instead of the effective memory consumed. Support from the scheduling software
is thus essential to make proper use of the parallel-processing mode.

Figure 3.6b also compares multi-core processing with an equivalent single-core job. During
the initialisation phase (until t = 40s) memory usage is almost identical, but rises afterwards
by about 200 MB and 1 GB for single- and multi-core jobs, respectively. This indicates that
some standard modules allocate additional memory immediately following initialisation,
which suggests future opportunities for improvement.

Besides the expected dependence on a high fraction of compatible modules (though the
compatibility requirements do not place strong constraints on them), the way a path is split
into parallel and non-parallel sections can limit the performance gains. For example, a single
non-parallel module in between parallel-compatible modules can force the second half into
the (single-core) output process. Additionally, the serialisation necessary to transfer complex
and possibly memory-allocating data structures between processes can become a serious
bottleneck for some applications. This particularly affects physics analysis code, where
tremendous numbers of candidate particles might be produced in each event, which would
then need to be transferred to the output process unless further optimisation is implemented.

3.6. Merging Objects

Some objects whose durability extends beyond a single event contain information accumu-
lated across multiple events. Examples include histograms of, e.g., the invariant mass of
combined particle candidates over a data set and by-module CPU time and memory statistics
(saved in ProcessStatistics objects). For a single process, this does not present a problem,
since there is only a single histogram (or other object) where the appropriate data gets added.

However, when using parallel processing, multiple instances of the object exist. It might
receive new data in any of the parallel and/or input and output processes, but needs to
be in a consistent state again in the output process, where it can be written out. This is
implemented via special handling for classes that implement the Mergeable interface and
define how to merge two objects and how to remove all data. Each event passed to another
process also contains a copy of these long-lived objects which is used to update the state of
the process-local object: upon receiving a mergeable object, a process merges the data into
its existing local object. After an object is transferred to another process, it is cleared to ensure
that data added to the object only exists in one process at any point in time. Otherwise, the
same contents (plus new ones) would be sent in the next event, and added once more. At the
end of execution, the object residing in the output process has seen all data that was stored
and can then be analysed or saved. The data flow is shown in more detail in Figure 3.7.

28

3.6. Merging Objects

a
(Input Process)

b
(Worker Process)

c
(Output Process)

Initialisation

Read a from file (maybe)

Fork processes

Call removeSideEffects() so only
object c belongs to a TFile.

Call clear() so we only have a single copy

Process first event

Add data

Send object a

clear()

merge(a)

Add data

Send object b

clear()

merge(b)

Add data

Repeat for further events

All data now
cumulated in c

Figure 3.7.: Sequence chart showing the flow of Mergeable object data between BASF2 pro-
cesses (in parallel processing mode).

29

3. The Belle II Analysis Software Framework (BASF2)

object fileObject

Add data

Read fileObject

fileObject.merge(object)

Replace object with fileObject

Repeat for further persistent entries

All data now
cumulated in object

Figure 3.8.: Sequence chart showing the flow of Mergeable object data when reading from
a file. The merging step is repeated for each entry of persistent durability in the
input (typically when changing to another input file).

Since differential data is serialised and deserialised in each event, this might lead to
problems for larger objects like multi-dimensional histograms. For TTree objects, however,
incremental transfers might turn out to be an advantage, since the size of data added since
the last event is likely to be significantly smaller than the cumulated size divided by the
number of processes. Additionally, there is also a hard limit on the size of objects serialised
via ROOT without the use of a TTree, which can be avoided this way.

The same system can also be used to merge objects read from files, so that the user can
cumulate results produced in independent job executions, e.g. from processes generating
Monte Carlo data on different computers, or processing different input files. In this case, the
in-memory data is merged into the object read from file and replaced by it. Since the files
were saved before starting the current job, this order ensures that the newer data is added to
the older data (i.e. oldObject.merge(newObject)). This is important for some types of data,
like per-module statistics, and analogous to the parallel-processing case. Figure 3.8 illustrates
how data read from file are merged with existing data. In the Full Event Interpretation
(see Chapter 6) this functionality is used to collect aggregate statistics of CPU time spent in
each channel and module.

A templated implementation is provided to allow merging of ROOT histograms and trees
via RootMergeable<T>. MapMergeable<T> provides the same for std::map instances. The
implementation deals with ownership-related issues that would otherwise arise, while allow-
ing TFile-backed objects in the output process, so that e.g. accumulated data in a TTree
does not need to remain in memory.

An alternative approach that was already available previously does not store objects in the

30

3.7. Event Display

Table 3.1.: Performance comparison between Mergeable objects and the alternative file-
based HistoManager approach when merging histograms of the specified size
over 10 000 events. For object sizes IEC prefixes are used, with Ki = 1024 and
Mi = 10242.

Histogram bins Size Run time (m:s)

Mergeable 1 000 3.9 KiB 0:45
10 000 39 KiB 0:46

100 000 390 KiB 0:60
1 000 000 3.8 MiB 4:17

HistoManager 1 000 3.9 KiB 0:43
1 000 000 3.8 MiB 0:44

data store, but provides a separate interface to add histograms and TTree objects. During
execution the objects in different processes belong to different files, which are merged into a
single file after the job finishes (similar to the hadd tool). This avoids the aforementioned
bandwidth problems with large objects. The merged data are however not available to the job
itself and are necessarily stored in a single file. It is also limited to predefined ROOT classes
and requires a special HistoManager module to be added to the path.

Table 3.1 shows a comparison of run times when filling a histogram over 10 000 events
using multiple processes and merging it using the two approaches. With increasing object
sizes the effect of having to transfer Mergeable objects between processes in each event
becomes more apparent. Performance decreases significantly once object size becomes
comparable to the total event size (around a few 100 KiB in this case). The HistoManager
approach on the other hand only touches the objects once at the end of the job, and incurs
only a limited performance penalty with larger sizes. This makes it the better choice for
histograms with very fine binning or high dimensions, but for histograms of commonly used
sizes, TTrees (where only differences are transferred), or objects that require a user-defined
merging procedure, Mergeable objects have clear advantages.

3.7. Event Display

In most disciplines, visualisation is one of the foremost tools in verifying that some compon-
ent behaves as expected or, if it does not, in understanding how it misbehaves. In particle
physics this often involves aggregated information, e.g. in the form of histograms showing
the distribution of a value in a data set, but often a more fundamental view is also helpful.
The event, i.e. one real or simulated collision, serves as a natural unit for visualisation. Event
displays are also useful to provide illustrations for physics results, even if most results are stat-
istical inferences over aggregated data rather than interpretations of a single event. Moreover,
science outreach also benefits from having otherwise invisible collisions visualised in an
aesthetically pleasing manner.

In BASF2, this visualisation is implemented inside a module, but can also be started using
a stand-alone executable that opens a given file. For its functionality it mainly draws upon

31

3. The Belle II Analysis Software Framework (BASF2)

Figure 3.9.: Screenshot of the Belle II event display in default configuration (with light back-
ground), showing MC particles (thin lines), fitted tracks (thick lines), calorimeter
depositions (red bars), and a simplified version of the Belle II detector geometry.

the Eve toolkit, an event visualisation framework that is part of ROOT, and provides OpenGL-
based three-dimensional rendering of generic shapes as well as high-level interfaces for
particle physics concepts like tracks and calorimeters [50]. It also directly supports geometry
visualisation for TGeo-based geometry definitions, which can be converted from Geant4
geometry data (the native geometry format used in BASF2) automatically using the VGM
(Virtual Geometry Model) library [51].

The application’s main window consists of different elements. The visualisations are
available in a three-dimensional view as well as two-dimensional projections into the r –φ
and ρ–z planes. Each element’s relative size can be adjusted, and it is also possible to ‘undock’
elements into their own separate windows to e.g. show a full screen view. The left side of
the window is taken up by event navigation and configuration, which can be used to jump
to a different event in the file(s) currently opened (if any), and to configure which objects
to visualise. By controlling the RootInput module, the display can navigate to the next or
previous entry in the file, or jump directly to a specific event, run or experiment.

Since the Belle II geometry is quite detailed, visualising it in its entirety is rarely needed and
can be quite taxing on graphics hardware. Because of this, a simplified subset of geometry
components is shown by default that only includes the KLM boundaries, TOP, and the vertex
detectors to provide some reference scale for event-level visualisations (see Figure 3.9). Users
can however enable the full geometry and use its hierarchical organisation to limit the level
of detail according to their requirements.

Event-level objects are organized into three groups:

32

3.7. Event Display

Figure 3.10.: Screenshot of the Belle II event display showing custom visualisations for the
VXD track finder, showing sectors (shades of blue) considered for finding further
hits and cells (lavender) used by a cellular automaton to separate track candid-
ates (thin blue lines) with overlapping sectors. Image provided courtesy of Jakob
Lettenbichler.

Monte Carlo information i.e. generated Monte Carlo particles and simulated detector hits,

raw data and intermediate objects including track candidates and hits in the tracking de-
tectors (which are not used directly in most analyses), and

reconstructed objects i.e. objects that would also be available on data, including fitted
tracks, vertices and calorimeter clusters.

This grouping allows users to easily overlay the true generated information with that re-
constructed to evaluate, e.g. clustering or tracking algorithms. For some use-cases, custom
visualisations are provided for certain objects – an example for this is shown in Figure 3.10,
which shows such visualisations as used by the stand-alone track finder for the vertex detect-
ors [26]. Users can also manually add some simple objects to the visualised scene, e.g. sets of
points, arrows or text labels.

Special consideration has been given to also visualize the connection between objects to
some degree: clicking an object will also highlight all (visualised) objects associated with it
via relations (see Section 3.2). For a given reconstructed track, a user might for example check
whether its trajectory matches that of the Monte Carlo particle which produced it (associated
to the track via a relation). A pop-up shown when hovering the mouse pointer over an object
also shows important physical properties, e.g. the p value and number of hits for track.

33

3. The Belle II Analysis Software Framework (BASF2)

(a) Main view of the data store browser. (b) Detailed view of electron generated by
Monte Carlo in the data store browser,
with custom information, list of related,
and list of member variables.

Figure 3.11.: Screenshots of different data store browser views. Due to the length of the
output, some information is omitted.

3.7.1. Data Store Browser

While the display itself also provides some information on objects that goes beyond pure
visualisation, it also integrates a generic object information panel that can provide details
on any object in the data store. When the display is started, it occupies a portion of the
right-hand side of the main window, and shows a list of all stored arrays and objects in
the current event (see Figure 3.11a). Clicking on an object – top-level or inside an array –
opens a view similar to Figure 3.11b. It consists of the object’s identifier (MCParticles[4]) –
denoting its (unique) position in the data store – a short name (e−), additional information
(e.g. on charge, momentum and production vertex position), as well as a list of all related
objects. Finally, it contains a list of all class member variables, associated documentation if
available, and their values in the current object. It is generated automatically using ROOT’s
introspection mechanism and handles both simple types and nested objects.

Both the short name and the additional information shown for each class can be custom-

34

3.7. Event Display

Figure 3.12.: Example output for a Particle object, showing customized content for both
name and information. The colour-coding used for the covariance matrix imme-
diately conveys its rough structure by showing the largest positive and negative
deviations from zero (in red and cyan, respectively).

ized by its authors by implementing a specified interface in the class. Developers can use
a subset of HTML (HyperText Markup Language) to format text, add colours or structure
contents in tables. Some utility functions are provided to translate objects representing
e.g. vectors or matrices (see Figure 3.12) and to translate HTML into plain text for terminal
output.

Internally, an array or object is addressed via a Uniform Resource Identifier (URI) [52]
which describes the hierarchical structure of its position in the data store. E.g. the URI
event:Particles/6 denotes the object at index 6 of the array named ‘Particles’ of event
durability. This scheme can easily be extended to support additional durabilities, or objects
located elsewhere (e.g. geometry or data base contents). While the data store browser is
intended to complement the display by working within it, it can also be started separately
and can be controlled using Python.

3.7.2. Online Event Display

Considering that the event display itself is also a BASF2 module, input data does not need
to come from ROOT files; it can also be generated in the same process or be received over
the network, simply by replacing the input module. This latter feature is used to provide
an on-line visualisation for detector data, since both the data acquisition (DAQ) and high-
level trigger (HLT) also use the same software framework and can easily make a subset
of events available via network links. As receiving events over the network might incur
longer wait times, an asynchronous version (AsyncDisplay) is available that runs in a
separate process while the main BASF2 process containing all other modules is receiving

35

3. The Belle II Analysis Software Framework (BASF2)

Ring
Buffer

Tx

Rx

 Display

Main Process Display Process

Figure 3.13.: Illustration of decoupling when using AsyncDisplay.

and processing data from the network. This is illustrated in Figure 3.13. The implementation
builds on some components used by the parallel processing feature (see Section 3.5), such
as creating a new process only after initialisation and the shared memory communication
that in this case provides a buffer for received events. This functionality is available using the
AsyncWrapper class that can wrap any given module to decouple it from the main process.
The current fill status of the shared memory buffer can be queried through the interface,
which is used in the display’s user interface to enable UI elements for advancing to the next
event only when this will succeed immediately. To permit continuous monitoring of data,
the user interface can also be used to advance to the next available event after a configurable
time.

This online display was first used successfully during a combined beam test of PXD and
SVD sensors at DESY in early 2014 [53]. Besides testing of the sensors themselves, the readout
chain of both sensors and their combination was also checked for the first time, where strip
data from the four SVD sensors was used to create and fit track candidates, which then
could be extrapolated to the position of the two PXD sensors to select groups of active pixels
(clusters) to save. Visualisation was provided for the geometry, the sensor data (pixels and
strips), track candidates and tracks, as well as the Regions Of Interest (ROI) that define the
likely position of interesting clusters on the pixel sensor planes (see Figure 3.14).

Figure 3.15 shows an event recorded during the test beam run, with a reconstructed track
passing through the six sensor layers under investigation, as well as its position at an equal
number of telescope sensors, which can be used to validate the reconstruction.

36

3.7. Event Display

(a) Simulated hits and particles (b) Hits and track candidates (c) Fitted tracks

Figure 3.14.: Overview of different levels of visualisation using a simplified version of the
DESY test beam geometry with 4 SVD and two 2 PXD sensors. The Monte Carlo
information shown in (a) contains multiple photons and electrons. The hits
reconstructed along the primary electron track are shown in (b), plus a track
candidate with an approximate direction. Part (c) then shows the corresponding
fitted track with accurate momentum information.

Figure 3.15.: Test beam data event with hits in all PXD and SVD sensors and a reconstructed
track extrapolated to the 6 EUDET telescope planes. Adapted from [53].

37

3. The Belle II Analysis Software Framework (BASF2)

3.8. Summary and Conclusions

As described in this chapter, the Belle II Analysis Software Framework was significantly
improved and extended within the scope of this thesis to provide the capabilities necessary
for data taking, Monte Carlo generation and analysis. This included additions to the interface
to allow prototyping of modules in Python and an overhaul of the parallel processing feature
so that it can now be enabled easily to increase resource-utilisation with any steering file. The
I/O modules were also developed further and enhanced with a generic system for merging
objects from different files or processes. Through the creation of the event display, users
are supported in debugging, outreach and other tasks that benefit from visualisation. The
software quality of the framework was increased as well, with unit tests now covering most of
the core features and interfaces that are hard to misuse.

In conclusion, BASF2 provides a stable framework for further development of the software,
and provides features that make it easy to create and use advanced analysis tools for the
Belle II experiment.

38

4. Analysis Tools

Gathering data with a particle physics experiment is not an end in itself, but is done to enable
physics analyses, which measure certain physical parameters like branching fractions that
can be compared to theory predictions. To this end, each analysis needs to have a way
of transforming the reconstructed detector response (like tracks or ECL depositions) into
something that has a physical meaning, like decays or particles, so that measurements can be
extracted. Typically, this involves a number of steps to inclusively or exclusively reconstruct
certain decay channels. This process is based on and supported by the analysis tools (located
in a package of the same name), which will be discussed in this chapter.

The analysis tools take full advantage of BASF2’s modularity by encapsulating each of these
reconstruction steps in a module acting on a common set of objects, and using Python to
define a convenient and intuitive interface around them. The following listing demonstrates
a simple analysis selection chain that is used to reconstruct D0 → K −π+π0 decays with π0

going to two photons (with charge-conjugate decays being implied):

from basf2 import *
from modularAnalysis import *

main = create_path ()
load mDST f i l e using RootInput module (see previous chapter)
inputMdst (’ myfile . root ’ , path=main)

fillParticleList (’K− ’ , ’ Kid > 0.1 ’ , path=main)
fillParticleList (’ pi+ ’ , ’ pi id > 0.1 ’ , path=main)
fillParticleList (’gamma’ , ’ ’ , path=main)

reconstructDecay (’ pi0 −> gamma gamma’ , ’ 0.11 < M < 0.15 ’ , path=main)
fitVertex (’ pi0 ’ , conf_level=0.0 , path=main)

reconstructDecay (’D0 −> K− pi+ pi0 ’ , ’ 1.8 < M < 1.9 ’ , path=main)
fitVertex (’D0 ’ , conf_level=0.0 , path=main)
matchMCTruth (’D0 ’ , path=main)
Use D0 candidates here . . .

process (main)

Even with no knowledge of BASF2 or the analysis tools, the Python code in the example is
quite readable and should be mostly self-explanatory to the target audience, and involves
(among other things) selecting final-state particles with cuts on particle identification outputs,

39

4. Analysis Tools

combinations of particles with invariant-mass cuts and vertex fits performed on the created
candidates. The different functions and features shown, as well as their implementation, will
be discussed in detail in the following sections.

4.1. Particle Candidates

Instances of the Particle class are the pivotal objects acted upon by the different analysis
modules and represent candidate particles of a particular type (e.g. D+, D− or γ). Besides
this type information, a Particle object carries references to its daughters (if any), its three-
momentum and mass, and its position, which is either the point-of-closest-approach (to the
interaction point) for final-state particle candidates or the decay vertex for combined particle
candidates. Additionally, a 7×7 error-matrix describing the error on four-momentum and
position values, and in the case of a vertex or track fit, the p-value extracted from the χ2 fit is
saved.

This fixed information content aside, Particle objects can also store arbitrary floating-
point data called extra-info with an identifying string. Particle candidates are likely to contain
only a certain subset of keys and associated data, so sets of key strings are saved in a central
object. This allows identifying extra-info data based on its position in an std::vector<float>
alone, by mapping keys to positions in each key set. The ID of the used key set is also stored in
the Particle. Storing n floating-point variables in a Particle thus only increases its size by
(n+1)×4Bytes compared to no variables being stored. An unoptimised implementation, with
both strings and values stored in each Particle, would instead consume

∑n
i (4+ li) Bytes,

where li denotes the length of the string identifier. For example, candidates with three
extra-info fields with an average key length of l = 19 Bytes would require an additional
(69−16) = 53 Bytes of space per candidate compared to the space-optimised case.

4.1.1. Lists of Particle Candidates

Since single particle candidates cannot usually be used to extract physical results, but rather
are aggregated with lots of individual candidates of the same type, the ParticleList class
was created to capture this usage. Instances of this class are saved in the data store under a
name of the form ‘particleType:label’ and contain references to Particle objects stored in a
central array (in the form of indices in this array). While the type of the stored candidates,

e.g. ‘D0’ for D0 or ‘anti-D0’ for D0, is required, the ‘:label’ suffix is optional and can be
used to distinguish different lists of candidate particles of the same type. Since in most
cases, users want to automatically include charge-conjugated particles and decays in their
workflow instead of duplicating all steps for both charges, particle lists are automatically
created in pairs (e.g. ‘D0:clean’ and ‘anti-D0:clean’) which reference each other. Iterating over
all particle candidates in a ParticleList thus loops over both particles and anti-particles,
unless specified otherwise.

For some particle candidates, e.g. those combined in the decay D0 → K −K +, no informa-
tion is available that determines their flavour quantum numbers (i.e. the set of quark-type-
associated quantum numbers like strangeness, charm, etc.) of the produced candidates,
so it not defined whether it should go in the particle or anti-particle list. This is solved
by saving this third class of candidates in a separate structure that is duplicated over both

40

4.1. Particle Candidates

ParticleList objects, which is important when combining particle candidates (see Sec-
tion 4.1.4). An iteration over all contents of a particle list will only include them once.

4.1.2. Variables

A common attribute of many reconstruction steps is the need to calculate certain quantities
on Particle objects for a varied set of reasons, including applying cuts or saving n-tuples
with physical quantities. In BASF2 this is handled through a central repository of variables,
which are functions taking Particle objects and returning floating-point values. A key
feature is that these functions are easy to create and register in the repository, as can be seen
from the following listing:

double particleElectronId (const Particle* part)
{

const PIDLikelihood* pid = part−>getRelatedTo<PIDLikelihood> () ;
i f (! pid) return 0 . 5 ;

return pid−>getProbability (Const : : electron , Const : : pion) ;
}

VARIABLE_GROUP ("PID") ;
REGISTER_VARIABLE (" eid " , particleElectronId , " electron (vs . pion) ←-

i d e n t i f i c a t i o n probabi l i ty ") ;

In this example a function to return a particle identification probability is defined and then
registered with the name "eid" in the central repository using the provided REGISTER_←-
VARIABLE preprocessor macro. A large number of these variables (e.g. for kinematics or
PID information) are defined in a few central C++ source files. These are compiled into the
analysis library, so they can then be used by any module that links to this library (see the
following section for an example).

For certain tasks generalised variables are used, which carry additional parameters in their
name that are used to modify their behaviour. One of the most commonly used variables of
this form is "extraInfo(key)", which returns the floating-point value saved in a Particle’s
extra-info field (see Section 4.1), using the provided key string. Similarly, there are also
variables that can perform relatively complex calculations which are guided by the argument,
e.g. "daughterInvariantMass(i, j, ...)", which calculates the invariant mass of a subset of a
candidate’s daughters.

Even though all variables accept a const Particle* argument, some also accept a null
pointer and are meant to return floating-point values that apply to the entire event. This
is used, e.g. for determining the type of event (Monte Carlo or data), the total number of
tracks in an event, or to get flags from the trigger system. As these variables simply ignore
the Particle argument passed to them, they can also be used in conjunction with other
non-event-based variables. For example, a user can save the kinematic information for a list
of particle candidates, while also including the current event number (’evtNum’) or the total
number of tracks in the event (’nTracks’).

41

4. Analysis Tools

Variables are also available in Python, which allows for simplified prototyping, and also
provides an automatic listing of all available variables with the description string document-
ing their purpose. Using the VARIABLE_GROUP macro similar variables are put into visually
separated groups, which simplifies finding a particular variable.

4.1.3. Creating Final-State Particle Candidates

Final-state particle candidates are created directly from outputs of the reconstruction (e.g.
track finding and fitting, or the reconstruction of ECL and KLM outputs) using the fill←-
ParticleList() function (with the associated ParticleLoader module): Candidates for
charged final-state particles like π±,e±,K ±, p±,µ± and d± (deuterons) are produced from
Track objects, which represent fitted tracks found in the tracking detectors (see Chapter 2).
Similarly, clusters detected in the ECL and KLM are reconstructed as photons or K 0

L , respect-
ively, if no charged track has been associated with the cluster. Finally, two tracks forming
a ‘V’ shape at some point away from the interaction region, which are reconstructed into a
V0 object using a special finder, are stored as a K 0

S candidate. This assumes a decay of the
K 0

S into π+π−, which due to the typical flight length of the K 0
S of a few centimeters tends to

happen within or just outside of the silicon detectors.
Since charged tracks themselves offer no clear-cut way of distinguishing between the

different hypotheses, lists of candidate pions, kaons, etc. created this way would all be
created from the same track objects. Using the variables introduced in Section 4.1.2, users
can however improve the selection by applying cuts on the particle candidates created. For
tracks, this typically involves a criterion based on the particle identification detectors, e.g.
using "Kid > 0.1" to preferentially select true kaons using a combined likelihood ratio of
dE/dx, TOP and ARICH (see Chapter 2). This criterion, or multiple criteria connected using
boolean operators (and, or), can be added as an argument to fillParticleList() as shown
in the listing at the beginning of this chapter.

With the exception of fillParticleListFromMC(), which can construct Particle ob-
jects from Monte Carlo particles instead of tracks or clusters, candidates for non-final-state
particles are not usually created directly, but are built from other already existing particle
candidates. The details of making these combinations will be discussed in the following
section.

4.1.4. Combining Particle Candidates

Candidates for non-final state particles, which decay quickly and cannot be detected directly,
are created by combining other particle candidates with each other. Typically this involves
creating all possible combinations for a given set of potential daughters, and applying some
criterion to determine which of the combined mother particle candidates to keep. This
functionality is provided by the reconstructDecay() function (the associated module is
called ParticleCombiner), which, as its first argument, takes a decay string defining both
the particle to be combined and the previously created daughter particle lists that should be
included in the combination. Decay strings start with the particle list name of the mother
particle, followed by a "−>" and a whitespace-separated list of daughter particle lists. A
mother particle list (and associated anti-particle list) of the specified name is then automat-
ically created by the module and used to store the combined particle candidates. E.g. for

42

4.2. Vertex Fitting

combining D0 candidates in the decay D0 → K −π+π0, one could specify "D0:mydecay −>←-
K− pi+ pi0:loose", in this case creating particle lists for D0 and D0 with the label ‘mydecay’.
Daughters are specified using their particle list names, which makes it possible to e.g. use
a specific list with a different selection, as done here for the π0 list. As with other uses of
ParticeList, the charge-conjugated decay is implied and also combined.

As making these combinations is a task that can potentially occur in other places, this func-
tionality is internally provided by the ParticleCombiner library, which provides a generator
that creates unique particle combinations as defined by a given decay string, and allows the
user of the library to decide whether and where to store them. The generator takes care of
both creating all possible combinations and keeping the combinations unique, by checking
whether a combination was already created (e.g. with two π+ daughters switched around), or
whether a candidate uses two daughters that originate from the same reconstruction object
(e.g. a π+ and K + created from the same Track). It also takes care of assigning the produced
candidates to the correct particle list (particle, anti-particle or unknown flavour) by setting
the type information of the Particle correctly.

As with fillParticleList(), cuts using the variables can be given to reconstruct←-
Decay(), which helps reduce the otherwise very large numbers of candidates. Commonly, a
cut on the invariant mass might be added, e.g. "1.8 < M < 1.9" for a D0 decay channel to limit
its mass to values between 1.8 and 1.9 GeV (GeV is the default unit in basf2 for energies and
momenta). It is also possible to add a decay-mode identifier to the reconstructDecay()
call, which is an integer that will be saved in each created Particle object in an extra-info
field with the key ’decayModeID’. When reconstructing a certain type of particle in many
decay modes, this can be useful to quickly identify the decay mode used for each particle
candidate, e.g. to evaluate differences in the kinematics for candidates reconstructed in
different channels.

4.2. Vertex Fitting

Performing a vertex fit on a particle candidate refers to extrapolating the flight path of its
daughters back to a common origin and, if successful, yields information on where the mother
decayed. This can be used for lifetime-measurements, e.g. for C P-violation measurements

of B 0/B 0 mesons, or for rejecting incorrectly combined candidates by adding a cut on the
vertex fit quality. Fits can be performed either as plain vertex fits, which take into account
only the momentum and position information of the daughters, or as kinematic fits with
additional constraints. A widely-used instance of constrained fits is the mass-constrained
fit, which performs a vertex fit but adjusts the daughter kinematics in such a way that the
invariant mass of the fitted particle candidates is constrained to the nominal mass.

In BASF2, fitVertex() performs a vertex fit of a specified type on all candidates in
the given particle list (the default, fitType=’vertex’, performs a vertex fit without mass-
constraint). As the quality of the vertex fit can be judged by the p-value calculated from the
fit χ2 value and the number of degrees of freedom, and since it can be used as an indicator for
whether or not the assumed vertex actually exists, candidates with a p-value below a given
threshold can also be removed. By default, only candidates where the fit did not converge are
discarded. Besides performing a mass-constrained fit, one can also add a Gaussian constraint
that enforces a vertex position near the interaction region (IP-tube constraint). This requires

43

4. Analysis Tools

supplementary information on where the beams actually collide, which may vary during
the operation of the experiment. The nano-beam scheme introduced in Section 2.1 with
its (in the x–y plane) very narrow interaction region, however, makes this a very powerful
constraint.

Two competing vertex-fitting algorithms are available: The KFit kinematic vertex fitter
ported from Belle [54, p. 136] and the RAVE (Reconstruction in an Abstract, Versatile En-
vironment) toolkit [55]. By default, the more powerful RAVE is used; in particular as it has
improved support for constraints other than mass-constraints.

4.3. Monte Carlo Matching

When preparing an analysis, Monte Carlo simulations are a practically indispensable in-
gredient in optimising the selection and making sure the procedure developed can also
be applied on data. This might involve taking the output of the analysis procedure and
checking the amount of signal decays remaining after the selection. Similarly, the Monte
Carlo information might be used to analyse the contribution of certain background decays
and their behaviour. Mostly, simulated data contains the same objects as reconstructed data
recorded by the detector. Monte Carlo samples, however, also contain MCParticle objects,
which are created by either the event generator (e.g. EvtGen [56] for simulating B decays) or
in interactions with the detector (through Geant4). These are often referred to as primary
and secondary Monte Carlo particles, respectively. MCParticle objects are also connected
to reconstruction outputs like Track or ECLCluster objects via relations, which are created
by, e.g. tracking algorithms, to convey that a certain Monte Carlo particle’s detector signals
were used in the reconstruction of the track or cluster. For developing an analysis, this alone
is not sufficient, as the Particle objects acted upon by the analysis modules in many cases
represent unstable particles, i.e. those for which no relation to a reconstructed detector
outputs exists (which would be the case with final-state particle candidates).

The objective of Monte Carlo matching is to provide these missing links by setting relations
between Particle and MCParticle objects, as well as providing an indication of whether
the combination is correct. For final-state particle candidates, creating the relation only
involves copying it from the reconstruction object; the association between candidate and
Monte Carlo particle is correct when their types match (e.g. a π+ Particle is correct if it
is related to an MCParticle that is also a π+). For combined particles the process is more
complicated and will be discussed in the following.

The key concept for setting relations for combined particle candidates is that of gathering
all Monte Carlo particles that are associated with the final-state particle candidates used
in the combination, and searching for the lowest common mother of these particles. In
case of a correct reconstruction, the associated Monte Carlo particle will have the same type
and decay chain as the reconstructed particle candidate. An example of this is shown in
Figure 4.1. This algorithm is implemented in the MCMatching module, which can be used
with the corresponding matchMCTruth() function.

It should be noted, however, that the type will also be identical in case some final-state
particle candidates are switched around, misidentified or not reconstructed at all. In fact,
there are a number of ways a combination can be incorrect that is not directly captured
by only looking at the Monte Carlo particle of a reconstructed candidate. To deal with

44

4.3. Monte Carlo Matching

Particles MCParticles

Figure 4.1.: Particle → Monte Carlo particle relations for a correctly reconstructed D∗+ →
D0(→ K −π+)π+ decay after applying matchMCTruth(): The tree of particle can-
didates is identical to a sub-tree of Monte Carlo particles, and each relation points
to a particle object of the same type.

this problem, the Monte Carlo matching algorithm provides error bit flags through the
’mcErrors’ variable, with flags being cached in an extra-info field in the Particle. As
each analysis user can accept different sets of flags, this allows for a custom definition of
correctness. Table 4.1 lists all flags that can be set for a particle candidate.

An important feature of the flags is that they can be propagated from daughters to mothers,
which ensures that errors in the combination of a candidate are visible in the flags of all its
mothers and grandmothers, and allows the algorithm to avoid expensive reiterations over
their daughters. The flags indicating a missing particle (i.e. a particle daughter present in
Monte Carlo but not used in the combination) are not propagated; instead these flags always
take into account the entire decay chain.

Figure 4.2 exemplifies a possible misreconstruction of a D∗+ decay, where this fact is
already quite clear by looking at the type of the associated Monte Carlo particle (in this
case, a B 0). All candidates on the left-hand side of the tree of reconstructed particles will
get one or more error flags: The π+ has the c_MisID flag, since it was created from a track
produced by a kaon; this flag is also propagated to the D0 candidate, which additionally
receives c_AddedWrongParticle (since the associated Monte Carlo particle has a different
flavour and the reconstructed decay allows its determination) plus c_MissingResonance
and c_MissGamma due to the missing π0 daughter of the D0. It should be noted that the
c_AddedWrongParticle flag is set when a non-final-state particle candidate is related to
a wrong Monte Carlo Particle; this can indicate that there is indeed an additional wrong
daughter, but the flag is also set for other misreconstructions. The D∗+, finally, has all the
flags of the D0, plus c_MissMassiveParticle due to the simulated π− grand-daughter of
the B 0 not being included in the D∗+ candidate’s tree of daughters.

45

4. Analysis Tools

Table 4.1.: List of Monte Carlo matching flags (MCMatching::MCErrorFlags). A Particle
generally has either c_Correct (=0) or the bitwise OR of other flags set.

Flag Description

c_Correct This Particle and all its daughters are perfectly reconstructed.
c_MissFSR A Final-State Radiation (FSR) photon is not reconstructed.

Currently the distinction from c_MissGamma is based only
on the number of other daughters and may not be accurate.
(In the future, information that identifies FSR photons in the
Monte Carlo can be used instead.)

c_MissingResonance The associated MCParticle decay contained additional non-
final-state particles (e.g. a ρ) that were not reconstructed.
This is probably acceptable in most cases.

c_DecayInFlight A Particle was reconstructed from the secondary decay
product of the actual particle. For example, a pion produ-
cing a secondary electron might have been missed, and the
electron (with a possibly very different momentum) used to
create a candidate.

c_MissNeutrino A neutrino is missing (not reconstructed).
c_MissGamma A photon (not FSR) is missing (not reconstructed).
c_MissMassiveParticle A generated massive FSP is missing (not reconstructed).
c_MissKlong A K 0

L is missing (not reconstructed). This flag only occurs in
combination with c_MissMassiveParticle.

c_MisID One of the charged final-state particles is misidentified.
c_AddedWrongParticle A non-FSP Particle does not match its associated MCParticle.

If the reconstruction is almost correct, this means that one of
the daughters (or their daughters) belongs to another Particle;
it is however also likely to just be a random combination of
tracks.

c_InternalError There was an error in MC matching. Not a valid match. Might
indicate fake/background track or cluster.

46

4.3. Monte Carlo Matching

Particles MCParticles

Figure 4.2.: Particle → Monte Carlo particle relations for an incorrectly reconstructed
D∗+ → D0(→ K −π+)π+ decay after applying matchMCTruth(), with relations to a
particle candidate of different type marked in red.

Particle candidates very frequently receive the flags for missing final-state radiation pho-
tons, which are additional low-energetic photons radiated from decays, or missing resonance,
where a non-final-state particle like ρ0, a1 or even K 0 (a flavour-eigenstate precursor to
K 0

S/L that is added by EvtGen) is missing. Since this only rarely constitutes a bad particle
candidate, a variable ’isSignal’ was added that deems a candidate correctly reconstructed if
it has no errors, but which ignores the c_MissFSR and c_MissingResonance flags. When
reconstructing semileptonic decays (where the neutrino cannot be reonstructed), the variable
’isSignalAcceptMissingNeutrino’ provides the same functionality while also ignoring missing
neutrinos.

This implementation of Monte Carlo matching is a significant improvement over the
previous state. The predecessor was also used at Belle to some extent, as one of multiple
independently developed alternatives (see reference [57, p. 50] for a similar approach). The
previous implementation also used relations to the lowest common ancestor, but had a less
physically meaningful set of flags; flags also could not be combined or propagated. The new
implementation contains unit tests for certain important corner cases that previously might
have produced a false positive or negative. Some examples of cases that were not correctly
handled previously (and are now covered by unit tests) include:

• Reconstructing a B+ decay including π0 → γγ, where one of the π0 photons was missed
and replaced with a photon originating directly from B+ was labelled ‘correct’.

• Decays in which all final-state particle candidates were correct and present, but which
decayed over, e.g., a D0 instead of a D+ were labelled ‘correct’. In a worst-case scenario,
the same class of problem would accept an Υ(4S) as correct, even if candidates for
final-state particles from both B mesons were switched around.

47

4. Analysis Tools

• Particles decaying in-flight, e.g. π+ →µ+νµ, and reconstructed from the decay daugh-
ter (e.g. reconstructing π+ from the µ+ track) were not distinguished from a correct
reconstruction. Similarly, candidates could be reconstructed from a track created by a
secondary (which is likely to have very different kinematics) with no warning of this
happening.

A disadvantage of this approach is that it still lacks granularity for some misreconstructions.
For example, in many cases, reconstructing a decay with a low-energetic wrong photon does
not greatly affect the kinematics of the candidate. In particular, the invariant mass of the
candidate is usually not adversely affected by the assignment of a low-energy photon. Since
the resulting candidates are not generally distinguishable from signal in the mass-spectrum,
marking them as incorrect could prove problematic. As this also happens quite frequently,
a modified Monte Carlo matching procedure that ignores photons in the assignment of a
lowest common ancestor is available. The ’energyFromWrongPhotons’ variable can be used
to fine-adjust the total energy of these wrongly-assigned photons that the user is willing to
accept for their signal-definition. In the future, an improved matching procedure that relates
particle candidates to the most similar overlapping decay chain in Monte Carlo could provide
a generalised solution.

4.4. Multivariate Classification

For practically all analyses, optimising the selection of signal entities in a list of candidates
is a central task. In the simplest case, this can be done by applying cuts on one or maybe
a set of variables, e.g. on the invariant mass of a particle. The effect of performing such
a cut is commonly broken down into its purity, which is defined as the relative amount
of signal entities in the sample after the selection, and its efficiency, which is the number
of signal entities after the cut divided by the number of signal entities before the cut. For
large amounts of background, however, the separation gained through rectangular cuts like
these may not yield a purity and efficiency that is high enough to produce a competitive
measurement. Multivariate classifiers, on the other hand, which can consider more than a
single variable at a time, can account for correlations between two or more variables and
thus can provide very powerful separation. This topic is closely related to machine learning,
and in fact in almost all cases, classifiers are trained automatically using mechanisms that
guide the classifier toward its optimal state for the given circumstances.

The multivariate classifiers in BASF2 are provided through its TMVAInterface library. As
hinted at by the name, the classifiers themselves are implemented in TMVA [58], a ROOT-
based toolkit for multivariate data analysis that is widely used in high-energy physics. It
provides a rich set of different multivariate techniques, including artificial neural networks,
Fisher discriminants, and support vector machines, as well as a set of common evaluation
tools to judge the quality of a classifier training. Besides these built-in methods, a plug-in
interface also allows the use of specialised classifiers, as long as they implement a simple
interface.

The user interface based on this library acts upon Particle objects to train or apply a mul-
tivariate classifier on them. Through this integration with the analysis software, performing
a training becomes much easier compared to users writing their own interfaces to the clas-

48

4.4. Multivariate Classification

sification software. The main interface is provided by two functions, trainTMVAMethod()
and applyTMVAMethod(). The most important configuration options for the training are the
particle list used to gather candidates, the list of variables used as input to the classifier, the
target and the classifier configuration itself (consisting of the classifier type and a configur-
ation string passed to TMVA, with sane defaults being provided for both). Since inputs are
filled directly using variables (see Section 4.1.2), users do not usually need to calculate inputs
by themselves, as many important physical quantities are already implemented. If no particle
list is given as input, all inputs are assumed to refer to event-level variables and all classifica-
tion is done on the event itself. Through accumulating data in a RootMergeable<TTree>
object (see Section 3.6), the training module can also be used in conjunction with BASF2’s
parallel-processing functionality. The training itself, however, requires repeated accesses to
all data, and is started in the module’s terminate() function. After the training is complete,
the showTMVAResults command can be used on the training output files to show the control
plots provided by TMVA’s evaluation framework. As the training module also allows multiple
methods to be specified, the plots can also be used to directly compare the separation power
of different types of classifiers, or those with a different configuration. Details on the TMVA
interface and the control plots in particular can be found in reference [59, p. 30].

The real usefulness of the classifier of course stems from applying it, which is perfomed
by applyTMVAMethod(). It again requires a particle list as an argument, as well as the con-
figuration generated by the training and the classification method to use (as the training
might include more than one). After feeding the input variables (which variables are used
is gleaned from the configuration) into the classifier, the output is saved in the current can-
didate as an extra-info field. For event-based trainings, a similar function is filled by the
EventExtraInfo object. Whereas for the raw output of the classifier the interpretation of a
certain value is not strictly defined (except that higher values should be more signal-like), the
output can also be transformed into a probability before saving it in the particle candidate.
This has the advantage of being easier to understand as well as simplifying the mixing of
output from different classifiers. Details of this transformation, which is enabled by default,
are explained in reference [59, p. 33].

Often it is beneficial to separate data accumulation and training from each other, e.g. when
working with large amounts of data. To accommodate this use-case, the TMVA interface
is also able to save its input data in a root file, which, in the case of multiple files created
from different data sets, can be easily merged together. The stand-alone externTeacher
executable then starts the actual training. Since this can be done multiple times with different
method configurations or subsets of input variables, this feature is also useful for studying
and optimising a given classifier training.

Due to performance concerns with the different classification methods shipped with
TMVA, an optimized boosted decision tree (BDT) implementation called FastBDT, geared
specifically to classification problems (as opposed to regression), is included in BASF2 as
a plug-in for TMVA. It follows the description of boosted decision trees in reference [60]
closely, but with CPU caches and pre-fetching in mind. As a result, it is up to fifty times faster
than TMVA’s BDT implementation during training, and up to ten times faster when applying
the training [59, p. 34]. The separation achieved also tends to be better than that of the
built-in methods and is comparable to that of the commercial NeuroBayes neural network
classifier [61], which is also available as a TMVA plug-in. FastBDT is used as the default, if

49

4. Analysis Tools

the classification method is not explicitly changed when using trainTMVAMethod().
While in most cases multivariate classifiers are trained using simulated data, where the

classification target (e.g. whether a candidate is signal or background) is provided by the
Monte Carlo simulation, there are also machine-learning techniques that can train multivari-
ate methods on data. This can be very useful when no simulation is available or it is known
to be insufficiently accurate, but usually needs additional physical insights in how to classify
the data, as well as more care when selecting input variables. One such method is called
sPlot [62], which replaces the binary target available on Monte Carlo with a probabilistic
view on how likely it is that a given candidate is signal. This information is extracted from
a fit to the data in a variable that both can be modelled well and separates between signal
and background. An example might be the invariant mass of a reconstructed candidate,
which can often be modelled by a flat or polynomial background shape plus a peaking signal
component; fitting this model to the data then yields numbers of signal and background, and
their distribution over the variable. For BASF2, this technique has been implemented in the
TMVA interface [63] – trainings independent from Monte Carlo can thus be performed by
specifying discriminating variables and appropriate fit models.

4.5. Skimming

As already hinted at in Section 3.4, the µDST data format contains the high-level recon-
struction objects (e.g. Track and PIDLikelihood objects) present in the mDST format plus
particle candidates reconstructed in certain decays; most of the size reduction implied by the
name stems from discarding events that cannot be used to reconstruct the desired decays.
Given that most of the time these decays are reconstructed in a multi-stage procedure (e.g.
when creating D candidates that are later combined into B mesons), there may however be a
large number of intermediate particle candidates. These are all stored in the central array
of Particle objects in the data store and consume additional memory or disk space. Since
the size of ParticleList is insignificant compared to the actual Particle objects, simply
excluding the particle lists referencing these intermediate objects thus does not significantly
reduce the size of the event.

To remove these additional candidates, a special module to clean up Particle objects
that are not referenced by a given set of particle lists, called RemoveParticlesNotInLists
(with a similarly-named Python function), was created. Due to Particle objects also ref-
erencing each other, having relations (see Section 3.2) from or to other objects and being
referenced by particle lists, this module needs to be aware of these specifics when modifying
the Particle array: First, all particle candidates in the lists to be kept, plus their daugh-
ters, grand-daughters, etc. are collected. The remaining candidates are then removed from
the global Particle array, as well as any relations referencing them. Also, as the indices
of Particle objects are changed due to rearranging of the array, all relations or daughter
references with the kept candidates, as well as all particle lists including them, are corrected.
The module thus leaves a coherent state for output modules or any further reconstruction
steps.

Table 4.2 compares the sizes ofµDST files with and without this reduction step applied, and
also lists the size of the original mDST file for reference. For this example, particle candidates
were created in various B 0 decay channels and, as a first step, all events discarded in which

50

4.6. Best Candidate Selection

Table 4.2.: Comparison of an mDST file with skimmed µDST files containing a set of re-
constructed B 0 decays, showing file sizes and total numbers of events and
Particle objects in each file. For the µDST files, the options of saving all candid-
ates and saving only those involved in the B 0 decays of interest are compared. For
object sizes IEC prefixes are used, with Ki = 1024 and Mi = 10242.

Events Particles File size (MiB)

mDST 1 000 0 6.9
µDST (all candidates) 191 69 521 2.8
µDST (only B0:tag) 191 7 378 1.5

no B 0 candidate passing certain cuts could be found. This reduces the number of events to
19 % of the original number, but because of the large number of Candidates added on top of
the mDST objects the file size is still about 40 %. Adding removeParticlesNotInLists()
before saving the output discards most of these stray particle candidates and reduces the file
size to 22 % of the mDST size, making the µDST a truly lightweight format.

4.6. Best Candidate Selection

The size of the output can be reduced further by also limiting the number of candidates saved,
which is commonly done by ranking them by a quality criterion and keeping only the best
candidates. The reasons for this reduction not only include the size of the output, but also
that often using multiple candidates per event would mean that e.g. the same track would
be used in multiple candidates. As this overlap causes a correlation between the systematic
uncertainties of multiple candidates (which a proper estimation of measurement systematics
would need to include), analysis users may opt to select only one candidate.

The analysis tools provide two functions, rankByHighest() and rankByLowest() (with the
associated module BestCandidateSelection), that define an ordering (highest-to-lowest
and lowest-to-highest, respectively) based on a given variable. The rank for each particle
candidate is saved in an extra-info field unique to the variable; optionally only a certain
number of candidates of a low rank are kept. These functions can be used multiple times with
different variables and the different rankings are saved with each candidate, which allows
users to evaluate different selection methods and choose the optimal one.

4.7. Saving n-Tuples

After the analyst has used the tools presented in the previous sections to create lists of
candidates that they are interested in, saving information on the candidates for further
evaluation with other tools is a likely next step. The variablesToNTuple() function can be
used for this purpose, and allows to create an n-tuple (in the form of a TNtuple object in a
ROOT file) by saving a given list of variables for a given particle list. As with the trees used by
the TMVA interface in Section 4.4, the module is compatible with parallel execution and does

51

4. Analysis Tools

Figure 4.3.: Measured cross section for hadron production in e+e− collisions over the center-
of-mass energy, showing the amount of continuum and resonance events pro-
duced. The dashed line denotes the threshold beyond which B meson pairs can
be produced. Note that the energy range skips regions without resonances. Taken
from [64].

not necessarily become a bottleneck when calculating the variables consumes a significant
amount of CPU power.

As an alternative, the ‘Ntuple tools’ can save n-tuples which contain certain groups of
branches that can be selected by the user (e.g. kinematics, Monte Carlo truth, or vertex
information), and it is also possible to easily save information for certain selected daughter
candidates in the decay chain. These tools are, however, not currently capable of running in
parallel.

4.8. High-Level Reconstruction Tools

The previously described analysis tools provide a set of fundamental functions in a way that
makes them useful as individual steps in an analysis reconstruction. There are however
also tools that perform certain more complex, higher-level tasks for analyses; these will be
discussed in this section. Additionally, the tag-side reconstruction algorithms introduced in
the next chapter could also be included here. The implementation of such an algorithm in
the Belle II software, will be discussed in detail in Chapter 6.

4.8.1. Continuum Suppression

Even when running at energies required for creating pairs of B mesons, e.g. at the Υ(4S)
resonance, B factories also generate a lot of non-BB̄ events, which consist of uū, dd̄ , ss̄, and
cc̄ states and the resulting fragmentation products. These so-called continuum events are
produced at a very wide range of center-of-mass energies and constitute a majority of events
even at the Υ(4S) resonance, which can be seen from Figure 4.3. As, at least for studying the

52

4.9. Summary and Conclusions

physics of B decays, these events only constitute a background, significant effort is invested
to remove them.

As the Υ(4S) resonance lies just above the threshold for BB̄ creation, the produced B
mesons have only low amounts of kinetic energy. In the center-of-mass system, most dir-
ectionality of decay products thus comes from the further decay of the B mesons and their
daughters, resulting in a somewhat uniform angular distribution (or ‘spherical’ events). For
continuum events, on the other hand, the energy difference between the Υ(4S) resonance
and the produced qq̄ state is available as kinetic energy. This results in events with a topology
of two jets produced back-to-back (again in CMS system). These event shapes are commonly
quantified using Fox–Wolfram moments [65].

In BASF2, an implementation of these moments based on the description in reference [11,
p. 114] is available; individual moments are provided to analysts in the form of variables.

4.8.2. Flavour Tagging

For a number of analyses studying B 0/B 0 mixing, e.g. for measuring mixing-induced CP
violation in B 0 → J/ψK 0

S , it is important to know the flavour of both B 0 mesons, i.e. whether

it was a B 0 or B 0. To distinguish between these two states, without exclusively reconstructing
the B meson, is called flavour tagging. The flavour tagging algorithm implemented in BASF2,
which makes use of many of the analysis tools described in this chapter, is described in
reference [66].

4.9. Summary and Conclusions

This chapter described the analysis capabilities of the Belle II software, and the data structures
and tools that provide them. Like other parts of BASF2, it is highly modular, and consists
of a number of modules that act on Particle and ParticleList objects in the analysis
package. These provide generic and tested implementations of all central steps of an analysis,
including combining particle candidates, applying cuts, Monte Carlo matching, or training
of multivariate classifiers. For all central modules of the analysis package, Python interface
functions exists that provide a consistent user experience.

As a result, analysis users do not need to implement and test these error-prone steps
themselves, and can focus on the physics instead. This is in stark contrast to the usage
of analysis software at Belle, where some central utilities were provided, but which still
required users to, e.g., iterate over candidate particles and combine them themselves. In
many cases, users or groups of users ended up developing their own interfaces to be able to
implement features not available in the Belle analysis software. One example of this is the
Full Reconstruction software that is the topic of the next chapter, which substituted its own
implementation for the Belle Particle class [67, p. 100].

Within the scope of this thesis, many of the tools described in this chapter were rewritten,
fixed or extended. In particular, the Particle and ParticleList classes were improved
(see Section 4.1), a generalised framework for variables was created (Section 4.1.2), the
Monte Carlo matching was replaced (Section 4.3), as well as tools for reducing the output
size (Sections 4.5 and 4.6) and for saving tuples suitable for further analysis (Section 4.7)

53

4. Analysis Tools

added. The requirements that motivated these enhancements, as well as the methods used
to uncover problems with the existing implementations, will be discussed in Chapter 6.

54

5. Tag-Side Reconstruction at Belle

The central feature of B factories – as discussed in Chapter 2 – is the production of large
numbers of Υ(4S) mesons, which decay with a branching ratio of almost 100 % into B+B−

and B 0B 0 pairs. Analyses typically focus on measuring the properties of certain decays only,
e.g. measuring the branching fraction of a B decay like B− → τ−ν̄τ, where the remaining
tracks and electromagnetic clusters in the event (i.e. those not used in the measurement) are
not of direct interest. Since the initial state, i.e. the four-momentum of the Υ(4S), is known,
one can gain information and additional constraints by also considering the other B meson.

Through exclusively reconstructing one B meson with the highest possible efficiency
and combining it with the selection of a signal decay of interest, one arrives at a more
complete description of the event. In other words, the user creates Bsig meson candidates
reconstructed in the desired signal decay, and combines them with a set of Btag provided by a
separate tool, yielding – if both B candidates are correct – a completely reconstructed Υ(4S)
event. The additional information can be used to supplement the information available
from the signal selection, and greatly increase its purity. This technique is sometimes called
tag-side reconstruction. There are also complementary approaches that only reconstruct

partial information, e.g. the four-momentum, vertex position, or the flavour (B 0 or B 0) of the
tag-side. These inclusive techniques tend to have much higher efficiency, but the reduced
information content limits their usefulness to specific types of analyses.

Tag-side reconstruction of B mesons has been used extensively at Belle, with many analyses
employing it to enhance the purity of their signal selection.1 This works by requiring that
there are exactly two B mesons in the event: one on the signal-side and one tag-side B meson,
the latter being the output of the tag-side reconstruction. In the simplest case, one can require
that after allocating tracks for both B mesons (i.e. reconstructing Υ(4S)), no further charged
tracks remain in the event. Compared to charged tracks, photons are harder to distinguish
from beam background or detector noise, but it is possible to recognize additional photons in
the event by looking at the energy EECL in the electromagnetic calorimeter that was not used
in the reconstruction of the B mesons. Since EECL is concerned with the additional energy in
the event, it is often referred to as extra energy. This quantity is used in many analyses as a
powerful discriminator between correctly and incorrectly interpreted events, e.g. in B → τν,
or B → h(∗)νν̄ in references [70, 71] and [72], respectively.

If the signal decay contains a single neutrino and the tag-side is entirely hadronic, the
method described also gives full kinematic information for the missing particle (neutrino).
For correctly interpreted events, the invariant mass mmiss (called the missing mass) calculated
from the missing four-momentum should then be equal to the neutrino mass, i.e. zero for
Standard Model neutrinos with the given detector resolution. The missing mass is used in
a number of analyses, e.g. a search for B → lνlγ, where the m2

miss distribution is fitted to

1A Btag reconstruction technique with similar intent and performance but employing a different algorithm was
used by the BaBar experiment to enhance measurements [68, 69]

55

5. Tag-Side Reconstruction at Belle

extract the contribution of signal decays (around m2
miss = 0) [73]. This variable can also be

used for analyses where the signal channel includes multiple neutrinos, but single-neutrino
decays are an important background component. An example is the measurement of the
relative branching fractions of B → D (∗)τντ and B → D (∗)lνl (where l = e,µ), where mmiss

is used to distinguish between decays with a τ lepton (three neutrinos, resulting in a broad
peak in mmiss), a light lepton (one neutrino, i.e. mmiss ≈ 0), and other backgrounds [74].

5.1. Control Variables

To evaluate the efficiency and purity of the tag-side B meson candidates, one frequently
resorts to a set of two variables, mbc and ∆E , that take advantage of the special kinematics at
B factories [11, p. 85]. The beam-constrained mass

mbc =
√

E 2
beam, CMS −~p2

CMS,

is used in place of the more traditional invariant mass. It replaces the reconstructed energy of
the B candidate with the beam energy Ebeam, CMS, which is half of the total energy available
in the center-of-mass system (CMS). ~pCMS is the three-momentum of the B candidate in
the center-of-mass system. Since the candidate energy is replaced with a beam-parameter-
derived quantity, the beam-constrained mass no longer depends on the mass hypotheses of
particles used for reconstructing the B meson. For correctly reconstructed B mesons (and
those where e.g. only a kaon track was misidentified as a pion) mbc will take values around
5.28 GeV, which corresponds to the mass of B 0/B± mesons. Misreconstructed candidates will
usually have a more broad distribution in mbc. The second variable, the energy difference
∆E , is defined as

∆E = EB , CMS −Ebeam, CMS.

Thus, since Υ(4S) → BB is a two-body decay with two daughters of the same mass, correctly
reconstructed B mesons should have an energy equal to half the total energy in the center-
of-mass system, i.e. ∆E should be around zero. For misreconstructed candidates, ∆E will
deviate from zero, e.g. to negative values if a photon is missed in the reconstruction.

Since both variables use different components of the B meson four-momentum, they are
only weakly correlated.

5.2. Cut-based Full Reconstruction

At Belle, two different algorithms for tag-side B reconstruction (called Full Reconstruction)
were used. The first, cut-based approach, reconstructed B mesons in a number of hadronic
decay channels. The algorithm used eight different decay modes for each of B+ and B 0, two

modes for D
∗0

and D∗− each, seven modes for D
0

, six modes for D+, two modes for D+
s , and

one mode for D+
s . The number of candidates after making combinations was reduced by

applying a selection based on the invariant mass or mass difference for D∗
(s) of the candidate.

The applied cuts were fairly wide, e.g. four to five standard deviations for D candidates, but the
exact criteria for these cuts are unknown. In some cases, channels with high combinatorics
were excluded for performance reasons, e.g. if many neutrals (π0 or K 0

S) were used in a decay

56

5.3. Neural-network-based Full Reconstruction

]2[GeV / cbcM
5.24 5.25 5.26 5.27 5.28

2
Ev

en
ts

 p
er

 0
.5

 M
eV

 /
c

0

20

40

60

80

100

120

140
310×

classical
new
Background
Data

(a) B 0 candidates

]2[GeV / cbcM
5.24 5.25 5.26 5.27 5.28

2
Ev

en
ts

 p
er

 0
.5

 M
eV

 /
c

0

20

40

60

80

100

120

140

160

180
310×

(b) B± candidates

Figure 5.1.: Fitted beam-constrained mass (mbc) distributions for B 0/B± candidates on Belle
data. The fit of candidates from the cut-based approach is shown as a solid
red line, or a solid blue line for candidates produced by the neural-network-
based approach. For each coloured line, the corresponding points with error
bars are the fitted data, and the dotted black line is the fitted combinatorial and
continuum background component. Cuts on the network output were chosen to
yield a signal efficiency roughly equal to that of the cut-based algorithm. Adapted
from [75].

mode, it was only combined with other low-multiplicity channels to form B candidates.
Tag-side B mesons were selected using cuts on mbc and∆E . A best-candidate selection based
on ∆E , and D invariant masses (or mass differences) was performed to ensure that at most
one candidate per event is returned. The efficiencies for correctly reconstructing B 0 and B+

mesons were 0.10 % and 0.14 %, respectively [11, p. 93].

5.3. Neural-network-based Full Reconstruction

The second algorithm replaced the rectangular cuts of its predecessor with neural networks
and included additional decay channels. This increased the number of decay modes to fifteen
for B+ and thirteen for B 0, and similarly greatly increased the covered branching fraction
for D mesons. The addition of a multivariate classifier in the form of the NeuroBayes neural
network package [61] allows one to use more information from each particle, and combines
them into a single variable oNB that is more powerful for separating between correctly and
incorrectly reconstructed candidates. Through these changes, this approach yields maximum
efficiencies of 0.18 % and 0.28 % for B 0 and B+, respectively (with a purity of about 10 %),
which is roughly twice that of its cut-based predecessor. Since it also provides a single scalar
output oNB that can – given certain assumptions – be interpreted as a signal probability, users
can make their own selections, increasing the Btag sample purity at the cost of efficiency.

Figure 5.1 shows distributions of the beam-constrained mass for the cut- and neural-
network-based algorithms for roughly equal signal efficiency, showcasing greatly increased
purity of the second algorithm. Since it served as a model for the implementation of a similar
algorithm in Belle II, details of the neural-network-based Full Reconstruction algorithm are
described in the next section.

57

5. Tag-Side Reconstruction at Belle

Tracks
ECL

Clusters
D

e
te

cto
r

D
a
ta

e+ µ+ K+ π+

K0
s

γ

Fin
a
l

S
ta

te
Pa

rticle
s

π0

J/ψ

D∗0 D∗+ D∗
s

In
te

rm
e
d

ia
te

 S
ta

g
e
s

B0 B+

D0 D+ Ds

Figure 5.2.: Illustration of the hierarchical reconstruction from final-state particles to B
mesons. Adapted from [76], based on [75].

For any tag-side reconstruction algorithm that explicitly reconstructs specific decays,
increasing the number of channels also increases the covered B branching fraction and thus
the total selection efficiency. Since particles produced via different decay channels only
differ in their kinematic properties, the decay chain from B meson to final-state particles
(tracks, photons) can be reconstructed in multiple steps, an approach that is shared by both
algorithms. In the case of the neural-network-based algorithm, this allows covering 1104
exclusive B decays using 71 decay channels in multiple stages. Compared with the 25 B
and D decay modes included in the cut-based Full Reconstruction algorithm, a significantly
greater branching ratio is covered by this second approach. The hierarchical reconstruction
in stages is illustrated in Figure 5.2.

Each of these 71 channels has a neural network associated with it that combines inform-
ation from the invariant mass calculated for the candidate, angular information for and
between daughters, (for D∗ mesons) the mass difference between D∗ and D meson, and the
neural network output for each of the daughter particles. The trained neural networks are
able to take existing correlations between these inputs into account and produce a scalar
classification variable that tends to zero for background-like, and towards one for signal-like
candidates. If the distributions (in particular the relative amount) of signal and background
candidates is the same during training and application, NeuroBayes ensures that the network
output can be interpreted as a Bayesian probability. Neural networks are also used to improve
the selection of final-state particles by using information from dE/dx in the drift chamber,
time of flight (TOF) and Cherenkov counter (ACC) detectors as input. For photons, different
variables describing the shape of the shower detected in the electromagnetic calorimeter are

58

5.3. Neural-network-based Full Reconstruction

used.
A major problem is the combinatorics of decay channels that have a relatively high multi-

plicity (i.e. large number of daughter particles). Consider for example an event with twelve
charged tracks, six with negative charge and six with positive charge. Assuming no cuts,
reconstructing D0 → K −π+ (branching ratio ≈ 3.9%) produces(

6

1

)2

= 36

D0 and D
0

candidates each. For D0 → K −π+π−π+ (branching ratio ≈ 8.1%) this increases to(
6

2

)
· 6!

(6−2)!
= 450

candidates for each of the two charge hypotheses.2 This already hints at two main factors that
increase the combinatorics of a channel: the number of daughters that cannot be exchanged
with another daughter without changing the meaning of the reconstruction (as with K − and
π− in the example) and the total number of available candidates in each of these classes of
daughters.

Every one of the hundreds of D0 candidates – if not discarded – would then require further
CPU-intensive processing, e.g. vertex fitting or calculating the inputs of the neural network,
while only a few true D0 could actually exist in one event. For channels that include neutral
particles like π0, the situation deteriorates further due to the high number of electromagnetic
clusters per event (with around 11 true photons on average). In the following D∗ and B
stages that already receive large numbers of candidates from the previous stages, creating
tens of thousands of candidate particles is trivial and would make reconstructing high-
multiplicity channels prohibitively costly. Avoiding this necessitates removing combined
particle candidates before any expensive operations are performed on them. Through a cut
on the product of daughter outputs

oNB, prod =∏
i

oi
NB,

where i runs over all daughter particles, candidates could be rejected quickly (requiring only
the calculation of a product and fetching the network output oi

NB for each daughter). oNB, prod

also uses a large fraction of the available information, including particle identification, mo-
mentum or invariant mass information of the daughters. Implicitly this construction makes
use of the NeuroBayes classifier’s feature that its output can to some degree be interpreted as
probability, as mentioned above.

Only soft cuts were made on the oNB, prod variable to ensure a high efficiency. For a given
particle type, it is useful to optimize the allocation of CPU resources to different decay modes
simultaneously, so that channels resulting in a large number of background candidates
do not monopolize resources that might be more useful in cleaner channels. For the Full

2The calculation here uses two steps: choosing two π+ from the list of six positive tracks (combination, yielding
the binomial

(6
2

)
), and choosing a K− and a π− from an equal number of negative tracks (not neglecting order,

i.e. a permutation, yielding the larger term 6!/(6−2)!).

59

5. Tag-Side Reconstruction at Belle

Figure 5.3.: Number of background candidates over number of signal candidates for different
D0 decay modes. Each coloured line corresponds to the set of cuts on oNB, prod

for a decay mode, with a possible choice of common cut values marked by black
dots. The logarithmic scale of both axes accentuates the differences between
modes, but also distorts the (equal) slope of the curves at the chosen cut values
(see text). Adapted from [75].

Reconstruction, the cuts were determined by requiring that a variation of this cut to increase
the number of signal candidates by a fixed amount yields an identical increase in the number
of background candidates for each decay mode. When graphing the number of background
candidates over the number of signal candidates selected by a cut, this criterion corresponds
to an equal slope at the cut point for each decay mode. The common slope is a free parameter
that determines the hardness of the cuts and was determined heuristically with the additional
restriction of having an average processing time below 0.1 s per event [77, p. 73]. For D0

mesons an example is shown in Figure 5.3. This optimization has the effect of preferably
choosing looser cuts for channels that have a relatively high purity, whereas less pure channels
get a harder cut to limit their influence on the processing time. A tacit assumption in this
scheme is that the required CPU resources per channel depend only on the number of
candidates, which – while not strictly true – takes into account most of the differences in
run-time performance between channels.

At the final stage, B± and B 0 candidates are produced and ranked by their network output
oNB to allow later selection of the best candidate. The B-level network trainings do not
include variables with a high correlation to mbc to avoid influencing this control variable. As
∆E is only weakly correlated to mbc and its separation power is high, it is also included in

60

5.4. Extensions of the Full Reconstruction

these final trainings. The user of the Full Reconstruction can then choose a working point
suitable for their analysis. In some cases, event shape information can also be included in
the network as a form of continuum suppression (see Section 4.8.1) but this is not done
by default to avoid biases this would produce in some analyses. Two different possibilities
for input variables were used: one included Fox–Wolfram moments that characterise the
shape of the event [65], allowing to distinguish between (in center-of-mass system) more
spherical BB̄ events and jet-like qq̄ continuum background; the other included modified (or
super-) Fox–Wolfram moments that treat the tag-side B meson candidate and the remaining
event separately [78]. Purity–efficiency plots for the Full Reconstruction with and without
continuum suppression variables are shown in Figure 5.4.

The tag-side reconstruction efficiency depends strongly on the branching fractions of the
hadronic decays involved in reconstructing Btag candidates. In many cases, no accurate
measurement of these branching ratios exists and the Monte Carlo distributions are known
to deviate significantly from data. Since the number of correctly reconstructed Btag and thus
the reconstruction efficiency is an important input to many analyses, the observed bias can
have a significant effect on physics results. This effect can be corrected by measuring the
actual reconstruction efficiency to produce correction factors for each hadronic decay mode:
hadronic Btag candidates can be combined with a B meson reconstructed in a channel with
well-known branching fraction (e.g. B → Xc l−ν̄l), which allows one to compare the predicted
number of events with that found on data. Averaging over all decay modes, a correction factor
εData/εMC ≈ 0.75 is obtained, i.e. in most modes, the estimated reconstruction efficiency is
too high [79].

5.4. Extensions of the Full Reconstruction

In addition to the hadronic tag-side reconstruction, the implementation was also adapted
to allow reconstruction of semileptonic B meson decays in the modes B 0 → D (∗)−l+νl and

B+ → D
(∗)0

l+νl (with l = e,µ). These eight decay channels alone have a large combined
branching fraction of around 16 % and can greatly increase the total tag-side efficiency. While
the lepton is usually easy to select using particle identification information, the escaping
(not measured) neutrino reduces the amount of kinematic constraints possible on the B
candidates [80, 81]. The semileptonic Full Reconstruction was successfully used to measure
the branching fraction of B+ → τ+ντ decays [71].

An extension to allow the use of the Full Reconstruction at the heavierΥ(5S) resonance was
also developed and used to analyse the ZB resonance [82]. Due to its higher mass, Υ(5S) can
decay in more channels, which besides B± and B 0 include Bs mesons and orbitally excited
B∗

(s) mesons. These additional B mesons are also included in the tag-side reconstruction
since they provide information about the decay mode of the Υ(5S). This, in addition to the
different kinematics, make the event reconstruction more complex. Figure 5.5 shows the
beam-constrained mass for B meson candidates reconstructed on the Υ(5S) resonance. The
left-most peak corresponds to the lighter BB̄ mesons also produced at the Υ(4S) resonance,
while the peaks at higher masses result from different combinations of the heavier mesons.
Besides the two-body decays into two mesons, where both mesons have the same fixed
momentum, decays with more particles are also possible and produce broader structures in
mbc.

61

5. Tag-Side Reconstruction at Belle

0 10 20 30 40 50 60 70 80 90
Purity [%]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ef
fic

ie
nc

y
[%

]

new (no continuum suppression)
new (continuum suppression)
new (continuum suppression SFWM)
old

(a) B 0 candidates

0 10 20 30 40 50 60 70 80 90
Purity [%]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ef
fic

ie
nc

y
[%

]

new (no continuum suppression)
new (continuum suppression)
new (continuum suppression SFWM)
old

(b) B± candidates

Figure 5.4.: Efficiency over purity (Receiver operating characteristic) for different cuts on
oNB for B 0 and B± candidates. Blue markers and lines show the behaviour of
the network-based Full Reconstruction without continuum suppression, red
and green add continuum suppression with and without Super-Fox–Wolfram
Moments (SFWM), respectively. For comparison, the cyan square shows the
working point of the cut-based algorithm. Taken from [75].

62

5.5. Summary

(GeV)Tagof BbcM
5.2 5.25 5.3 5.35 5.4 5.45

Ev
en

ts
 /

(0
.0

02
5

G
eV

)

0

100

200

300

400

500

600 B B
±πB B

B* B

±

π±B* B
B* B*

±πB* B*

±

π* B ±B
γY(4S)

sBsB
*sBsB
s BsB

Figure 5.5.: mbc distribution of correctly reconstructed Btag candidates on simulated data,
with colours denoting different Υ(5S) decay modes (and/or different B mesons).
Note that for increased visibility distributions are not scaled according to their
physical branching ratios. Taken from [82].

5.5. Summary

Though the neural-network-based Full Reconstruction was successfully used in many ana-
lyses, creating a training or modifying the tool was quite difficult. A major factor was the
complexity of the tool, which consisted of a total of 18 221 lines of C++ code and a few hun-
dred lines in bash or Python scripts.3 Also, even though the variants with reconstruction of
semileptonic B decays or those optimised for the Υ(5S) resonance in large parts perform
the same steps, they are not available in a central library and much of the implementation
is copied instead. Decay modes were defined in the source code and manually assigned to
one of the four reconstruction stages; cuts and lists of input variables are also part of the
C++ source file [67, 64]. Performing a training began with the ekpfullrecon module writing
a ROOT file containing the input variables for all decay channels in the current stage. The
neural networks were then trained using executables (created using generated C++ code);
the finished trainings could later be applied by adding generated code to the file containing
the channel definitions and rebuilding it. Cuts on

∏
oNB were evaluated using an external

tool; the resulting cut values needed to be added to the channel definitions by hand after-
wards. Trainings were started manually for each reconstruction stage, which also contained
hard-coded lists of decay channels. A few weeks (real time, not CPU time) were required to
complete the training on the KEK computing system.

This meant that even though the Full Reconstruction was a useful tool used by many
analyses, starting a training or making any changes to the configuration required lots of
manual steps and a somewhat arcane knowledge of the implementation details.

3Lines of code (ignoring comments and blanks) in the repository were measured using ohcount [83]. Generated
code relating to the neural network experts was excluded.

63

6. Full Event Interpretation

For Belle II, we want to improve upon the previous reconstruction efficiency, while at the same
time avoiding some of the technical issues that were present in Belle’s Full Reconstruction
algorithm. This includes being able to configure decay channels, input variables used for the
classifiers, and the classifier’s hyperparameters1 in a user-friendly way. Besides configuration,
the main interaction of users with the system consists of performing a training with a given
configuration and applying the trained algorithm afterwards. To eliminate difficulties with
this process, the training should be automatic to the extent that no user-intervention is
required besides the (initial) configuration and that dependencies between reconstruction
tasks can be determined and resolved automatically. To increase the usefulness of the
automatic training procedure, it should also generate plots and statistics that describe the
different steps performed in the training. These plots should be useful for users wanting to
run their own training by providing information on the achieved efficiency/purity and the
status of each decay channel as well as physics control plots (e.g. of the beam-constrained
mass), without requiring deep knowledge about the implementation details.

These improvements also translate into possible efficiency improvements by making it
inexpensive to change the channel configuration and retrain with optimized settings. In
particular, increasing the covered branching fraction of B decays only requires specifying
additional channels. The algorithm can then decide whether the channel actually meets the
given efficiency and purity criteria, i.e. whether using it will provide a gain that is commensur-
ate with the associated additional costs in CPU time. As the CPU time required by the training
is a very important factor in how easily optimised settings can be studied, enhancement in
the training speed also have a large impact on physics analyses relying on these trainings.
There are other, more far-reaching changes made possible by this simplified and improved
training process, the details of which will be discussed in Section 6.6.

To capture this widened scope – particularly including additional constraints from the
entire Υ(4S) event – the tag-side reconstruction algorithm for Belle II is called Full Event
Interpretation (FEI). Details of its implementation and how it achieves the aforementioned
goals are discussed in the following sections.

6.1. Software Architecture

For analyses, a major improvement of BASF2 over the Belle software is the introduction of
the modular analysis tools presented in Chapter 4: common analysis tasks are implemented
as BASF2 modules that work on high-level data structures like Particle or ParticleList
and a set of Python functions defines an interface that maps quite well to typical analysis
reconstruction steps. When implementing a tag-side reconstruction algorithm (which shares

1 Hyperparameter refers to a parameter of the classification method itself, e.g. the number of trees for boosted
decision trees or the number of neurons for an artificial neural network.

65

6. Full Event Interpretation

many steps with a plain analysis but contains many more decay channels), these existing
tools save us from having to write our own tools for e.g. reconstructing decay channels.
This both simplifies the implementation and makes it more robust, since problems with
the shared tools are likely to be discovered early. Using BASF2’s steering file interface and
the possibility of accessing data using PyROOT, it also becomes possible to profit from the
abstraction provided by Python in the entire tag-side reconstruction framework.

Decay channels and associated multivariate classifiers can then be configured using Py-
thon functions/classes either inside the steering file, or inside a separate Python module
that can be loaded using import module_name when needed. When starting the Full Event
Interpretation, the channels defined in the configuration are converted into reconstruction
tasks, e.g. selection or combination of particles, fitting of a decay vertex, or training of a mul-
tivariate classifier. Each of these tasks has a list of inputs and outputs, which taken together
completely describe the dependencies between tasks. These dependencies are resolved
automatically and tasks executed in a linearised manner. Since some tasks need access to
the entire data set (e.g. a multivariate classifier needs to be trained on a suitably large data
set before it can provide output), not all dependencies can be resolved in a single iteration.
This is similar to the concept of stages in the Full Reconstruction algorithm at Belle, but is a
dynamic consequence of the dependency resolution. Starting the Full Event Interpretation
again will finish the previously blocked tasks (e.g. perform a classifier training) and in that
way advance the algorithm to the next training stage. A complete training (from final-state
particles to B mesons) thus only requires starting the algorithm the requisite number of times
until all dependencies are met. Figure 6.1 illustrates this architecture from the user interface
(configuration) to the compiled analysis modules written in C++ that execute the internally
generated tasks on large data samples.

Details on the implementation of these features and certain core steps are provided in the
following sections.

6.1.1. Channel Configuration

The channel configuration is the main interface for setting down the physical meaning of
the actions performed by the Full Event Interpretation algorithm, by defining the particles
(B±,B 0,D∗0 etc.) to consider, the channels to reconstruct them in, and how each multivariate
classifier is to be created. The algorithm itself thus should not need to know any physical
details on the channels to reconstruct, and more importantly, the interface can be powerful
enough to handle both hadronic and semileptonic B decays, as well as tag-side reconstruction
at the Υ(5S) resonance via changes to the configuration only.

Configuration of the FEI is based on defining a list of particles to reconstruct. A minimal
example including both final-state and combined particles can be found in the following
listing:

! / usr /bin/env python
−*− coding : utf−8 −*−

from fei import *

66

6.1. Software Architecture

C
o
n
fi
g
u

ra
ti

o
n

D
ir

e
ct

e
d
 a

cy
cl

ic
 g

ra
p
h

b
a
sf

2
 M

o
d
u
le

s

Python Compiled code

Figure 6.1.: Architecture of the Full Event Interpretation, showing high-level configuration of
decay channels, automatic dependency resolution between reconstruction tasks
created from the configuration, and the final data-intensive processing being
handled by BASF2 modules. Taken from [76].

example set of variables , many useful ones not included
trackVars = [’ Kid_dEdx ’ , ’Kid_TOP ’ , ’Kid_ARICH ’ , ’p ’ , ’ pt ’ , ’ chiProb ’←-

]
mvaConfig_chargedFSP = MVAConfiguration (variables=trackVars , target= ’←-

i s S i g n a l ’)

particles = []
particles . append (Particle (’ pi+ ’ , mvaConfig_chargedFSP))
particles . append (Particle (’K+ ’ , mvaConfig_chargedFSP))

d e f i n i t i o n of mvaConfig_D , preCutConfig_D omitted

p = Particle (’D0 ’ , mvaConfig_D , preCutConfig_D)
p . addChannel ([’K− ’ , ’ pi+ ’])
p . addChannel ([’K− ’ , ’ pi+ ’ , ’ pi− ’ , ’ pi+ ’])
particles . append (p)

pass p a r t i c l e s to FEI . . .

The example starts by defining a set trackVars of variables (introduced in Section 4.1.2) that
help distinguish different charged track hypotheses from each other. They will be used by
a multivariate classifier configured using the MVAConfiguration object. Besides the input
variables, this requires specifying a target variable, e.g. ’isSignal’, which in this case accesses

67

6. Full Event Interpretation

Monte Carlo truth information to determine whether a track actually originates from a pion
or kaon. Details of the multivariate classifier, including its type, hyperparameters and other
options to pass to TMVA can also be set, but have reasonable defaults that in most cases
should not need to be modified. The classifier configuration is then used to create two types
of final-state particles, ’pi+’ and ’K+’. These names correspond to the ParticleList names
used to identify particle types (as introduced in Section 4.1.1). When creating combined
Particles like ’D0’, one similarly supplies a classifier configuration, but one also includes
details on how intermediate cuts are to be determined (see Section 6.3.2) and adds decay
channels via the addChannel() method. In this example, the two decay modes D0 → K −π+

and D0 → K −π+π−π+ are defined for the D0. Charge-conjugate channels and particles are
included implicitly, so the ’K−’ particle referred to is the charge conjugate of the ’K+’ defined
earlier, which is consistent with normal ParticleList behaviour. After all particles and
decay channels are defined, the list is passed to the Full Event Interpretation algorithm,
where it defines the tasks the algorithm should perform.

The Full Event Interpretation algorithm then uses this configuration to create a set of
tasks that, taken as a whole, reconstruct the given list of particles. For the above example
configuration, the algorithm would generate tasks to create the appropriate ParticleList
objects , train or apply multivariate classifiers using the given parameters, create combined
particles and apply cuts. Depending on its use case, a task may either make use of the
modular analysis functions (see Chapter 4), which add modules to a BASF2 path that is
executed later or immediately perform actions on available information or files, e.g. calculate
quantities from histograms.

6.1.2. Dependency Resolution

An important feature of these tasks is that they are not independent, but have inputs and
outputs that define their relation to one another: any input matches either the output of
another task, or part of the configuration itself. Because of this, the Full Event Interpretation
can determine which tasks can currently be executed, and in which order. Likewise, tasks
whose output is not required for another task will not be executed unless they are explicitly
marked as needed. (This is applied recursively, i.e. tasks only required by unnecessary tasks
are also skipped.)

Going back to the previous example, the tasks responsible for creating kaon and pion
particles (using fillParticleList()) only depend on the configuration itself, and can be
executed immediately. For both lists, this is followed by tasks that deal with the associated
multivariate classifiers. When first starting the algorithm, the classifiers have neither been
trained, nor is the necessary data for starting a training available; thus the first step is to save
an n-tuple of the input and target variables. Since the tuple is only complete after the current
iteration, the task will not provide an output. This blocks execution of all dependent tasks.

In the next iteration (or stage in the terminology of the Belle algorithm), the previously
executed tasks are run again. As the tuple files now exist, the input requirements for the
classifiers can now be met and the training is started using the externTeacher tool. Then
the TMVAExpert modules accessing the finished training are added to the path, completing
reconstruction of the final-state particles. The tasks created for the reconstruction of D0

particles are similar, and include combining the daughter particles previously created (using

68

6.1. Software Architecture

PostCut_pi+:generic

ParticleList_pi+:generic

SignalProbability_pi+:generic

VariablesToNTuple_pi+:genericHumanReadableParticleList_pi+:generic

RawParticleList_pi+:generic

MatchedParticleList_pi+:generic

UserCut_pi+:generic

InverseSamplingRate_pi+:generic

TrainingData_pi+:generic

Distribution_pi+:generic

Nbins_pi+:generic

MVATarget_pi+:generic

TrainedMVC_pi+:generic

PostCutConfig_pi+:generic

Figure 6.2.: Part of the directed acyclic graph responsible for π+ reconstruction, with im-
portant resources highlighted: the raw particle list with only a user-cut applied
(yellow), the signal-probability resource signifying that a trained classifier is avail-
able (orange), and the output particle list which is used in combined particles
(green). Resources with no inward-directed graph edges (zero indegree) are
shown in gray and correspond to the configuration inputs.

reconstructDecay()) while applying cuts, as well as another set of multivariate classifier
trainings. Depending on the input variables, additional tasks to perform vertex fits, and/or
dependencies on the classifier output of daughter particles are added. These actions are
performed independently for each decay mode, afterwards a merged D0 ParticleList is
created.

The dependency structure defined by the inputs and outputs can be conceptualised as
a directed acyclic graph (DAG). In the case of the Full Event Interpretation, this concept
is encapsulated in the DAG and Resource Python classes. Resources represent individual
nodes (tasks) in the graph, and consist of a unique identifier, a list of required inputs and
a way to provide output when executed. In the simplest case, the output of the resource
is taken directly from the configuration and no action is performed. Most tasks contain
a function that produces the desired output using the input data. For this to work, every
resource that was already executed saves its output for later use. The input data are passed
as function arguments, where each argument is filled according to its associated resource
identifier. Resources are managed by the DAG class, which is responsible for actually executing
resources, and doing so in the order that their dependencies are met. It can also cache the
output of resources, so that expensive tasks are not executed unnecessarily. The graph is filled

69

6. Full Event Interpretation

after reading the configuration by creating appropriate Resource objects for each particle
and decay channel. An illustrative example in the form of the sub-graph for reconstructing
π+ can be found in Figure 6.2. It begins with resources that are provided directly by the
configuration and a first selection of particles, continues with a number of tasks related to the
classifier training, and finally provides a particle list that will be used in later stages. Details
of the different tasks shows will be discussed in the following sections.

To ensure changes to the configuration cause re-execution of all dependent tasks, the
SHA-1 [84] hash of all requirements (i.e. the input data) is calculated for each resource.2

If, for a cached resource, the calculated hash of inputs differs from the cached value, the
cached output is discarded and the resource is re-run. Depending on whether the output of
resources changes, re-execution propagates to all dependent tasks. For data stored in files,
like trained multivariate classifiers, or lists of particles stored in the output of BASF2 modules,
dealing with configuration changes poses a separate problem: how does one detect that a
classifier training or particle list matches the current configuration, or if it does not? This
is solved by also including hashes of input data in all file names and ParticleList names.
As a result, each individual set of input variables to a multivariate classifier will result in a
unique file name of the associated training file name, and thus trigger retraining if the file is
missing. Likewise, lists of particles will change when, e.g., the cuts for selection or a classifier
changes. Due to these mechanisms, the Full Event Interpretation is capable of automatically
dealing with configuration changes.

After all tasks of the current iteration have been executed (i.e. no further tasks have re-
quirements that can be satisfied), BASF2 modules corresponding to each task (if any) can
be arranged in a path and used to process data. To make this more efficient on a single
computer, one can use the parallel processing functionality introduced in Section 3.5 to make
use of more than one CPU core. As mentioned before, this is limited to parallel execution
of consecutive compatible modules, e.g. if a chain of modules that can be run in parallel
is interrupted by a single module that can not, only the first half of the chain will be paral-
lelized. To optimize the data-intensive part of the processing, the Full Event Interpretation
reorders the linearised tasks (and the associated BASF2 modules) such, that all non-parallel
modules are moved to the end of the path, as far as permitted by their dependencies. This
maximises the length of the parallel section and thus the possible speedup from multi-core
processing. For larger input data sets, executing the Full Event Interpretation on a single
computer becomes infeasible and a different approach is required. As this does not require
deep integration within the dependency resolution framework, the details of trainings using
distributed computing will be presented in Section 6.7. Using multiple processes on each
nodes however may still have advantages in some cases, as this might entail a significant
decrease in the total number of jobs required, leading to reduction of job scheduling and file
operation overhead.

So far, the description of tasks has been simplified in favour of discussing their interaction.
In the following sections, the different reconstruction tasks will be explained in detail.

2While SHA-1 is no longer deemed safe for cryptographic use, no hash collisions (identical hash values for
different inputs) have been found, and there are no disadvantages to using it for the generation of unique
identifiers. There are also no barriers to using a different hashing algorithm that has a low likelihood of
collisions.

70

6.2. Particle Selection and Combination

6.2. Particle Selection and Combination

As a first step in the reconstruction of each particle, candidates need to be created according
to the criteria specified in the configuration. Final-state particles (π±,K ±,µ±,e±,γ) are cre-
ated directly from Track and ECLCluster objects using the ParticleLoader module (see
Section 4.1.3), and afterwards can be fed into associated multivariate classifiers. For com-
bined particles, more complex actions are required for each decay mode. There, candidates
are first created using the ParticleCombiner module (see Section 4.1.4) with an appropriate
cut to limit the combinatorics (see next section). Before they can be used for either creating or
applying a classifier training, there may however be need for additional reconstruction tasks
to be able to calculate the variables used as input. For this reason, a vertex reconstruction task
is added to the DAG that, when executed, performs a vertex fit using the KFit fitter available
through the vertex fit module introduced in Section 4.2. Whether this task is actually executed
depends on the list of classifier input variables: Only if they contain variables requiring a
vertex fit is a dependency of the classifier actually added. Without this dependency, the vertex
fit task is deemed unnecessary by the dependency resolution, and is skipped. Something
similar happens for the multivariate classifiers themselves: When a higher-level training
includes a variable like daughter(i, extraInfo(SignalProbability)) (and only then), a
dependency on the tasks providing a classifier output for the daughter particles is added.
Thus, classifier trainings are – with the exception of B-level trainings – only performed when
they are a prerequisite of higher-level trainings. To be able to use candidates independent
of their specific decay mode in later stages, candidates from all modes are combined into a
single list for each particle in the configuration.

All of these tasks are dependent on the list of particles and decay modes in the configur-
ation, each of which can contribute to the total reconstruction efficiency. For each decay
mode, different parameters determine the size of its impact on this quantity, like the purity
and efficiency of the associated classifier or the reconstruction efficiency of the daughters.
One of the most important parameters, however, is the branching fraction of each decay

Table 6.1.: Decay modes included in the FEI default configuration, with branching ratios
extracted from EvtGen. Values marked by ‘*’ were missing or differed significantly
from PDG averages, and have been fixed to PDG values [85]. (Table continued on
the following pages.)

(a) Decay modes for π0.

Decay channel Branching ratio

π0 → γ γ 98.82 %

(b) Decay modes for K 0
S .

Decay channel Branching ratio

K 0
S → π+ π− 69.13 %

(c) Decay modes for J/ψ.

Decay channel Branching ratio

J/ψ→ e+ e− 5.94 %
J/ψ→ µ+ µ− 5.93 %
Total 11.87 %

71

6. Full Event Interpretation

(d) Decay modes for D0.

Decay channel Branching ratio

D0 → K − π+ π0 π0 15–20 %*
D0 → K − π+ π0 13.90 %
D0 → K − π+ π+ π− 8.08 %*
D0 → K 0

S π
+ π− π0 5.40 %

D0 → K − π+ π+ π− π0 4.20 %*
D0 → K − π+ 3.89 %
D0 → K 0

S π
+ π− 2.94 %

D0 → π− π+ π0 1.43 %*
D0 → π− π+ π0 π0 0.94 %
D0 → π− π+ π+ π− 0.74 %*
D0 → K − K + K 0

S 0.46 %
D0 → K − K + 0.39 %
D0 → K − K + π0 0.33 %*
D0 → π− π+ 0.14 %
Total 57.85 %

(e) Decay modes for D+.

Decay channel Branching ratio

D+ → K − π+ π+ 9.40 %
D+ → K 0

S π
+ π0 6.90 %

D+ → K − π+ π+ π0 5.99 %*
D+ → K 0

S π
+ π+ π− 3.12 %*

D+ → K 0
S π

+ 1.49 %
D+ → π+ π+ π− π0 1.16 %
D+ → K − K + π+ π0 1.05 %
D+ → K − K + π+ 0.95 %*
D+ → K + K 0

S K 0
S 0.46 %

D+ → π+ π+ π− 0.32 %*
Total 30.85 %

(f) Decay modes for D+∗.

Decay channel Branching ratio

D+∗ → D0 π+ 67.70 %

(g) Decay modes for D0∗.

Decay channel Branching ratio

D0∗ → D0 π0 61.90 %
D0∗ → D0 γ 38.10 %
Total 100.00 %

(h) Decay modes for D+
s .

Decay channel Branching ratio

D+
s → K + K − π+ π0 6.30 %*

D+
s → K + K − π+ 5.39 %*

D+
s → K − K 0

S π
+ π+ 1.64 %

D+
s → K + K 0

S 1.49 %
D+

s → π+ π+ π− 1.08 %
D+

s → K + K 0
S π

+ π− 0.96 %
D+

s → K + K − π+ π+ π− 0.86 %*
D+

s → K + π+ π− 0.65 %*
D+

s → K 0
S π

+ π0 0.50 %
D+

s → K 0
S π

+ 0.12 %
Total 18.99 %

(i) Decay modes for D+∗
s .

Decay channel Branching ratio

D+∗
s → D+

s γ 94.20 %
D+∗

s → D+
s π

0 5.80 %
Total 100.00 %

72

6.2. Particle Selection and Combination

(j) Decay modes for hadronic B+.

Decay channel Branching ratio

B+ → D0 π+ π+ π− π0 2.03 %*

B+ → D0∗ π+ π+ π− π0 1.80 %

B+ → D0 π+ π0 1.34 %*

B+ → D0∗ D0∗ K + 1.12 %*

B+ → D0∗ π+ π+ π− 1.03 %

B+ → D0∗ π+ π0 0.98 %*

B+ → D+
s D0∗ 0.82 %

B+ → D+∗
s D0 0.76 %

B+ → D+
s D0 0.76 %*

B+ → D0 π+ π+ π− 0.68 %

B+ → D0 D0∗ K + 0.63 %*

B+ → D0 π+ π0 π0 0.61 %*

B+ → D0∗ π+ 0.52 %

B+ → D0 π+ 0.48 %

B+ → D0∗ D0 K + 0.23 %*

B+ → D0 D0 K + 0.21 %
B+ → D− π+ π+ π0 0.20 %
B+ → J/ψ K + π+ π− 0.11 %
B+ → D− π+ π+ 0.11 %
B+ → J/ψ K 0

S π
+ 9.40×10−4

B+ → D0∗ π+ π0 π0 5.00×10−4

B+ → D0 D+ 3.80×10−4

B+ → D0 K + 3.68×10−4

B+ → J/ψ K + π0 1.00×10−4

Total 14.64 %

(k) Decay modes for hadronic B 0.

Decay channel Branching ratio

B 0 → D+∗
s D−∗ 1.77 %

B 0 → D−∗ π+ π+ π− π0 1.76 %
B 0 → D−∗ π+ π0 1.50 %*
B 0 → D−∗ D0∗ K + 1.18 %
B 0 → D+

s D−∗ 0.80 %
B 0 → D+∗

s D− 0.74 %
B 0 → D+

s D− 0.72 %
B 0 → D−∗ π+ π+ π− 0.70 %*
B 0 → D− π+ π+ π− 0.64 %*
B 0 → D− D0∗ K + 0.46 %
B 0 → D−∗ D0 K + 0.31 %
B 0 → D−∗ π+ 0.28 %
B 0 → D− π+ 0.27 %
B 0 → D− π+ π+ π− π0 0.25 %*
B 0 → D− D0 K + 0.17 %
B 0 → J/ψ K + π− 0.12 %*
B 0 → J/ψ K 0

S π
+ π− 0.10 %

B 0 → D−∗ π+ π0 π0 0.10 %
B 0 → D− π+ π0 π0 0.10 %

B 0 → D0 π+ π− 8.40×10−4

B 0 → D− π+ π0 7.80×10−4*
B 0 → J/ψ K 0

S 4.36×10−4

Total 12.17 %

(l) Decay modes for semileptonic B+.

Decay channel Branching ratio

B+ → D0∗ µ+ 5.68 %

B+ → D0∗ e+ 5.68 %

B+ → D0 µ+ 2.23 %

B+ → D0 e+ 2.23 %
B+ → D−∗ π+ µ+ 0.61 %
B+ → D−∗ π+ e+ 0.61 %
B+ → D− π+ µ+ 0.21 %*
B+ → D− π+ e+ 0.21 %*
Total 17.46 %

(m) Decay modes for semileptonic B 0.

Decay channel Branching ratio

B 0 → D−∗ µ+ 5.01 %
B 0 → D−∗ e+ 5.01 %
B 0 → D− µ+ 2.17 %
B 0 → D− e+ 2.17 %

B 0 → D0∗ π− µ+ 0.49 %

B 0 → D0∗ π− e+ 0.49 %

B 0 → D0 π− µ+ 0.21 %*

B 0 → D0 π− e+ 0.21 %*
Total 15.77 %

73

6. Full Event Interpretation

Table 6.3.: Comparison of the number of decay modes and covered branching ratios for
each particle in the Full Reconstruction and Full Event Interpretation. Data are
from references [77, p. 66] for hadronic, and [80, p. 24] and [81, p. 56] for the
semileptonic Full Reconstruction.

Particle Full Reconstruction Full Event Interpretation
Nchannels Total BR (%) Nchannels Total BR (%)

J/ψ 2 11.9 2 11.87
D0 10 37.9 14 57.85
D+ 7 29.4 10 30.85
D+∗ 2 98.4 1 67.70
D0∗ 2 100.0 2 100.00
D+

s 8 17.9 10 18.99
D+∗

s 1 94.2 2 100.00
B+ (hadronic) 17 12.0 24 14.64
B 0 (hadronic) 15 10.4 22 12.17
B+ (semileptonic) 4 15.92 8 17.46
B 0 (semileptonic) 4 14.26 8 15.77

mode. Ideally, the list of decay modes for each particle should cover a large fraction of all
decays. Table 6.1 lists the 105 decay modes used by the Full Event Interpretation to recon-
struct each particle (in the default configuration), final-state particles are not listed. When
all possible decay modes are considered, this corresponds to 2 854 exclusive hadronic B+

decay channels, 1 868 for hadronic B 0 decays, and 132 channels each for semileptonic decays
of B+ or B 0. Note that channels that do not provide sufficient statistics to actually train a
multivariate classifier are disabled automatically during the training (see Section 6.3.2). Even
low-branching-fraction decay modes can however be useful if the created candidates are
sufficiently pure.

The number of decay modes for most particles has been increased significantly from the
Full Reconstruction introduced in Section 5.3. This can be seen in Table 6.3, which compares
the number of modes for each particle and the total branching ratio covered between both
algorithms. It should be noted that the branching ratios for some channels present in both
algorithms were listed with different branching ratios in the early publications. Some high-
branching-ratio modes are not currently available in the FEI, like D+∗ → D+π0 (30.7 % BR),
which was removed for technical reasons. They will be added at the nearest opportunity.
Overall, only moderate increases in the covered branching fraction are visible for most
particles, with the exception of lower coverage for D+∗ (due to the removed decay mode)
and higher coverage for D0, where most of the difference originates from the addition of
D0 → K −π+π0π0, which has a very high, but badly measured branching ratio.

Significant improvements in the reconstruction efficiency are thus not likely to come
about by increasing the covered branching ratio, but rather by adding cleaner channels or
improving the selection procedure that candidates are required to pass. These selection steps,
and the problems that necessitated their introduction, are discussed in the following section.

74

6.3. Reducing Combinatorics

6.3. Reducing Combinatorics

As already hinted at in Section 5.3, it is very easy to create tens of thousands of candidates
when combining particles, especially in high-multiplicity channels. Without countermeas-
ures, this would consume a great amount of CPU resources for the combinatorial background,
to the extent that it would make the Full Event Interpretation unsuitable for processing the
billions of collisions (to be) recorded by the experiment. Thus, a central problem of a tag-side
reconstruction algorithm is deciding how to reduce the combinatorics to a reasonable level
while keeping the efficiency high, i.e. how many particle candidates to cut away and in what
way.

Finding appropriate cuts is an optimisation problem, and requires weighing the efficiency
of the selection against the additional CPU time required by including the selected particles.
Due to the complexity of the problem, cuts are applied in three steps to discard candidates
as early as possible: Manual user-cuts are applied first, they are followed by automated pre-
classifier cuts to reduce the number of candidate particles before any expensive actions are
performed on them (e.g. vertex fits). Finally, post-classifier cuts make use of the additional
separation power of the multivariate classifiers to discard additional candidates with high
signal efficiency, thus allowing relaxation of the other types of cuts.

As a large fraction of the total CPU time is spent in relatively few events that have very
large numbers of candidates, a cut limiting the total number of candidates when making
combinations is available as a forth option. This procedure is special in that it is the only cut
used in the Full Event Interpretation that cannot distinguish between signal and background,
and is a purely technical measure to reduce the CPU time. However, as the overwhelming ma-
jority of candidates in the high-combinatorics events in question are incorrect combinations,
the cut will end up reducing the background, and prevent these events from dominating
the multivariate classification trainings. With a reasonable threshold, most events should
not be affected by this limit at all. In the following, this fourth type of cut is not yet applied;
conceptually it should be placed immediately after the pre-classifier cuts.

6.3.1. User-Cuts

As the only manual, free-form cut applied to particle candidates, user-cuts give the op-
portunity to inject physics knowledge into their selection by adding an explicit cut on an
almost arbitrary set of variables to a particle or decay channel. The cut is then applied
when first selecting particles for the decay channels in question, before any other cut. In the
default configuration for hadronic decays of B mesons, only a user-cut of mbc > 5.2GeV and
|∆E | < 0.5GeV is applied on the final list of B candidates to reduce the number of candidates
very unlikely to be correct. Other types of particles (e.g. final-state or intermediate) do not
currently receive a user-cut and rely on the other types of cuts that are the topic of the fol-
lowing sections. This type of cut might also be used to explicitly exclude particles in a region
where there is a known difference between data and Monte Carlo.

User-cuts can be configured separately for each decay channel, whereas the pre- and
post-classifier cuts are set on a per-particle basis.

75

6. Full Event Interpretation

6.3.2. Pre-Classifier Cuts

Pre-classifier cuts are the primary method to reduce combinatoric background in the Full
Event Interpretation algorithm. Since manually choosing appropriate selection criteria for
hundreds of decay channels would neither be very transparent nor help with automating the
training process, the concrete cuts are determined according to decay-channel-independent
criteria, namely the efficiency and purity specified in the configuration.

These requirements alone do not determine the cuts without ambiguity, so an additional
procedure is needed that ideally should take purity differences between decay modes into ac-
count. To this end, the Full Event Interpretation requires the ratio s/b of signal to background
candidates at the cut points to be equal for all decay channels. Note that this does not refer
to the signal-to-background ratio of candidates passing the cut, but rather the differential
s/b ratio, or, in the case of histograms, the s/b ratio in the particular bin corresponding to
the cut value. To some extent this criterion compensates for the wildly different efficiencies
and purities in some channels.

This method for choosing a specific cut is identical to the same-slope criterion used for
the intermediate cuts in the Full Reconstruction at Belle. This can be seen by the following:
Let the constant

c = s

b
= s(x)

b(x)

be the common cut on different decay channels. After rearranging and integrating both sides
of the equation with respect to the cut variable x, we arrive at∫

dxs(x) = c
∫

dxb(x).

This integration over x can be thought of as collecting all candidates which pass a given one-
or two-sided cut on x, but the specific range integrated over is irrelevant for this argument.
We can define the numbers of signal and background events passing the selection (i.e. with
the same integration range) as

S(x) =
∫

dx ′s(x ′), B(x) =
∫

dx ′b(x ′).

Substituting this definition in the previous equation yields S = cB , which allows us to calcu-
late the derivative with respect to the total number of background candidates B :

dS

dB
= c.

This shows that the common cut value c is equal to the slope in a plot of S over B , or the
inverse of the slope in Figure 5.3, which plots B over S. The simpler reformulation of this
principle makes it much easier to implement and interpret. It should be noted that choosing
cuts at a fixed s/b value also easily accommodates two-sided cuts in case the distribution of
s/b in the cut variable is not monotonous. The implementation does not take into account
the possibility of variable distributions with multiple peaks, and would most likely not give
reasonable results. For the pre-cut variables used in the following (invariant mass, released
energy, and product of daughter classifier outputs) this is not the case.

76

6.3. Reducing Combinatorics

(a) D+ →π+π+π−π0 (efficiency: 72.9 %, purity: 0.018 %)

(b) D+ → K −K +K + (efficiency: 95.9 %, purity: 0.24 %)

Figure 6.3.: Distribution of the number of background candidates (left) and s/b (right) over
the invariant mass M for two D+ decay channels with different purity. The chosen
two-sided pre-classifier cuts are shown with vertical lines.

The concrete value for c is then determined simultaneously over all decay channels using
the efficiency and purity values in the pre-cut configuration: First, an s/b cut value that results
in a signal efficiency equal to the required efficiency is determined; if the purity requirement
is not met, the cut is tightened until it is (i.e. configured purity overrides efficiency). If, after
applying the cut, not enough signal candidates remain to perform a reasonable classifier
training, the channel is ignored and the cut-optimisation procedure repeated without the
channel. Currently, at least 1 000 candidates are required for both signal and background.
Finally, the s/b cut is converted into (possibly multi-sided) cuts in the separation variable.
Since more impure channels have lower overall s/b levels, this produces broader cuts in pure
channels, and narrower cuts in impure channels. Very impure channels, where the purity
requirement will result in an extremely narrow cut around the maximum of s/b, are usually
discarded.

Instead of the product of multivariate classifier outputs, we prefer to use the invariant mass
as a separation variable where applicable. Like the product of classifier outputs, the invariant
mass can be calculated quickly while each candidate is being considered, but it also has the
advantage of having an intrinsic physical meaning. This also makes it useful as a crosscheck

77

6. Full Event Interpretation

Figure 6.4.: Distribution of the number of background candidates (left) and s/b (right) over

the product of daughter classifier outputs for B 0 → D0π−e+. The chosen one-
sided pre-classifier cut is shown as a vertical line. (efficiency: 80.1 %, purity:
0.6 %)

to guard against, e.g., systematic shifts in mass, or problems in matching with Monte Carlo
truth. However, the variable used for this type of cut is part of the configuration and can
easily be replaced with something else, e.g. the released energy Q, which has more separation
power than the invariant mass for D∗ → Dπ decays. For B mesons, using the invariant mass
would also be sub-optimal, since it is highly correlated with the beam-constrained mass mbc,
which we intend to use as a control variable. To avoid these correlations, the product of the
classifier outputs of each daughter of the B meson candidate is used as a separation variable
(this is equal to the oNB, prod variable used for all particles at Belle).

An example of this algorithm for two (out of ten) D+ decay modes is shown in Figure 6.3. It
can be seen that choosing a common s/b value as a cut criterion takes into consideration the
different shape of the distribution of signal candidates and, e.g., produces an asymmetric cut
for the broader s/b distribution in Figure 6.3a. Additionally, the purer channel in Figure 6.3b
with a much higher overall s/b ratio receives a broader cut to include more candidates.
Figure 6.4 shows the monotonous s/b distribution when using the product of daughter
classifier outputs (or oNB, prod) for a B meson decay channel. Here it produces one-sided cuts,
and will again discard more background candidates if the separation power of the variable
is higher. One can also see that a custom binning can be used, which helps avoid effects
of almost empty bins with very unequal distributions like shown here, where only very few
candidates have values close to 1.

To apply the cut-determination algorithm described above, the distribution of s/b in
the designated cut variable has to be obtained first; this involves making all combinations
passing the user-cut, calculating the value of the variable for each candidate, determining
whether a candidate is true or false using Monte Carlo information and adding the calculated
value in the appropriate histogram. This is done independently for each decay mode. Since
running the Monte Carlo matching algorithm (see Section 4.3) for each candidate would
be very expensive, this is optimised using the additional knowledge of which decay mode
was reconstructed. First, the Monte Carlo particles are searched for a particle decaying in
the specified decay. For each matching MC particle found, it is checked if all of its daugh-

78

6.4. Classifier Trainings

ters are already reconstructed, and if they exist, they are combined to a signal candidate.
Finally, the Monte Carlo matching is run on this handful of signal candidates and used with
a user-specified target variable (e.g. isSignal or isSignalAcceptMissingNeutrino) to
ensure the signal definition is identical to a normal, slower reconstruction. Thus, running the
relatively expensive Monte Carlo matching is limited to the (rare) case of the decay existing in
Monte Carlo and the candidate already being mostly correct. The entire process is encapsu-
lated in the PreCutHistMaker module, which produces separate histograms for signal and
signal+background given a decay string and variable.

6.3.3. Post-Classifier Cuts

In contrast to the pre-classifier cuts, which reduce the combinatorics before the training
of the multivariate classifier but are rather simple (rectangular) in nature, post-classifier
cuts can make use of the classifier output to improve the selection: After the multivariate
classifiers have been applied, a user-specified cut can be applied on the output probability.
This reduces combinatorics in further stages and makes use of all the classifier input variables
and their correlations. Achieving a similar reduction with pre-classifier cuts alone would be
possible, but would also require significantly harder cuts because less information is available
(i.e. it only involves a single variable).

In the default channel configuration cuts at low classifier output values are included, which
discards mostly background candidates without affecting correctly reconstructed particle
candidates. To the extent that the output can be interpreted as a probability, the selection is
based on the amount of signal and background at that point. Even the manual specification
of a cut value is in this case fairly generic and independent of the specific decay channel. Post-
classifier cuts are thus applied on a per-particle basis, which differs from the decay-channel
specific user- and pre-classifier cuts.

6.4. Classifier Trainings

Multivariate classifiers lie at the heart of the Full Event Interpretation algorithm and serve to
distinguish correct from incorrect candidate particles in a highly automated fashion. This
is useful both for combined and final-state particles, and the output can be used both to
immediately discard some candidates, and as input in later stages. The classifiers used by
the FEI are created through the TMVA interface introduced in Section 4.4, which takes care of
passing the data from BASF2 to the classification method.

Two significant problems when automatically training classifiers as part of the Full Event
Interpretation are the very large number of training events and wildly differing purity between
different channels, e.g. many channels will create hundreds of millions of candidates, with
most candidates being correct for a π± training, but only ten thousand candidates might
be correct for a B-level decay channel. Most of these background candidates will not add
more information about the distribution of the input variables, but each candidate increases
the total sample size and thus the total disk and memory requirements for the training.
Since both of these resources are limited, the FEI limits the number of candidates used
as input data and reweighs the inputs appropriately. Before the training is started, the
total number of candidates in each class (i.e. signal and background) is determined either

79

6. Full Event Interpretation

from the pre-classifier cut histograms or (for final-state particles) in an additional run over
the data. The total number of candidates is then limited to below ten million by skipping
additional candidates (skipped candidates are distributed uniformly across the entire data)
and reweighting the output of the expert using the known signal-to-background ratio. This
process limits the training input file size to below 3 GB per channel, each of which is trained in
a separate process using the externTeacher stand-alone training utility (which also allows
starting multiple trainings in parallel).

Due to its availability and superior performance the FastBDT method is used by default,
but this can be replaced by other algorithms from the configuration if deemed appropriate.
Given an appropriate fit model, it is also possible to use the sPlot formalism to create a
data-driven training. Due to the relatively large effort required to create an optimised fit
model for a single decay channel, this will most likely only be used for channels where there is
a known difference between Monte Carlo and data. Besides the classification method, users
can configure the hyperparameters of the method (with sane defaults being provided) and
the variables used as training input. Finally, the target variable is used to distinguish between
signal and background in the classifier training. For most channels, the isSignal variable
is used, for semileptonic B decays this changes to isSignalAcceptMissingNeutrino. For
final-state particles (charged tracks and photons), the signal definition explicitly excludes sec-
ondary particles, which are particles created through interactions with the detector material.
Since this means that their production is independent of the decay channels reconstructed
by the Full Event Interpretation, reconstructing them is not beneficial; marking them as
background thus increases the purity of certain channels (especially J/ψ and semileptonic B
decays).

The input variables, as the most important factor for the separation power of the classifiers
(for a given classification method), are listed and discussed in the following sections. While
users can choose their own sets of variables, doing so can be tricky and it is advisable to use
the variables of the default configuration described here.

6.4.1. Inputs for Charged Final-State Particles

For charged final-state particles (i.e. π±, K ±, e±, and µ±), the multivariate classifiers serve as
a high-level replacement of and improvement upon the particle identification (PID) facilities
provided by the analysis software. Thus, the input variables consist mostly of PID variables,
plus variables that describe the charged track itself.

PID variables Most of the information originates from the particle identification variables,
where the probability of the track being of one particle hypothesis versus another are
used. In this case, the probabilities for kaon vs. pion, electron vs. pion, muon vs. pion
and proton vs. pion are used; the data from dE/dx, ARICH, TOP, and (for electrons)
ECL are kept separate to give the classifier more information, as the combination
of all detectors using combined likelihoods is not yet performing as expected. The
direct combination is however also used as an input to ensure a certain minimum of
separation.

Track momenta (p, pt , pz) Since the performance of the PID detectors depends strongly
on the momentum of the tracks, the total momentum is included as an input variable;

80

6.4. Classifier Trainings

the transverse and z component of the momentum are also included to describe
acceptance effects.

Track quality The quality of the track might also influence the performance of the PID, e.g.
if the momentum measurement or extrapolation to outer detectors is wildly inaccurate.
To pass information about the quality to the classifier, the χ2 probability of the track
fit is also passed as an input. In the future, this might be improved by adding other
related variables, e.g. hit patterns, which describe where a track was detected in the
silicon detectors and the drift chamber.

Impact parameters (dρ, dz) A primary way to distinguish primary from secondary particles
is through the track impact parameters; in this case the radial and z distances (dρ ,dz) to
the track point closest to the beam line (perigee) are used as input variables. Secondary
particles are usually produced some distance away from the interaction point and thus
should have larger values.

6.4.2. Inputs for Photons

Cluster shape (E9/E25) The shape of clusters is mainly described by the E9/E25 variable,
which is the ratio of total energies in the inner 3×3 crystals to that in the outer 5×5
crystals. Higher values are expected for true photons originating from the interaction
point, compared to beam background or other photons with a different incident angle.

Photon energy and direction Both energy and direction (in the form of pt and pz) are in-
cluded in the input.

Cluster quality The variable goodGamma contains optimised cuts that separate between true
photons and beam background and noise, this quantity is added in two versions for
calibrated and uncalibrated photon energy.

Cluster timing The photomultipliers of the ECL have a fairly good time resolution, so the
detection time of a cluster (clusterTiming variable) can help identify energy depos-
itions created from beam background.

Detector region Because of varying background levels and different crystal geometries in
the barrel and end-cap regions of the ECL, the clusterReg variable is used to include
the position of the current cluster in the three categories forward, backward and barrel.

6.4.3. Inputs forπ0

Invariant mass The invariant mass is the most important variable for this classifier training,
and tends to be within 10 MeV of the π0 mass (135 MeV) for signal.

Daughter classifier output Since correct candidates cannot usually be created from incor-
rectly reconstructed daughter particles, the classifier output of each daughter is used
as an input.

81

6. Full Event Interpretation

Angle between photons Given that both photons are (in the absence of other information)
assumed to originate from the interaction point, the angle between them captures
most of the kinematic information.

Energy and direction Similar to photons or charged final-state particle candidates, the
energy and direction (in the form of E , pt , pz) is included for neutral pions.

6.4.4. Inputs for D (∗)
(s) and J /ψMesons

Released energy The released energy Q is defined as the mass of the D candidate minus the
masses of all daughter particles.

Daughter classifier output Since correct candidates cannot usually be created from incor-
rectly reconstructed daughter particles, the classifier output of each daughter is used
as an input. The product of the output of all daughters is also included (equivalent to
oNB, prod).

Invariant masses of daughters The invariant masses of pairs, triples, etc. of daughters are
also used as an input, which allows the classifier to learn about possible intermediate
states that are not explicitly reconstructed. For example, encountering values close to
the invariant mass of a ρ or a0 meson indicates that the involved daughters are more
likely to share the same mother, thus increasing separation.

It should be noted that the usefulness of the invariant masses depends on the quality
of the Monte Carlo for each of the involved decay channels and resonances. Larger
differences between Monte Carlo and data in these variables might result in undesir-
able MC–data differences in the reconstruction efficiency; further tests are needed to
estimate their size.

Distance to daughter vertices For correctly reconstructed candidates this corresponds to
the flight length of the D0 for D∗ → D0X , or for charged final-state particle daughters
compares the fitted decay vertex to the impact parameters of the daughter track. These
variables are given in the rest frame of the candidate.

Daughter momenta The momentum of each daughter in the candidate rest frame is used
as an input, and can capture some of the kinematics of the decay.

Daughter (vertex) quality Vertex fit quality can vary greatly between different candidates
and is usually described by the χ2 probability. Low values indicate a bad fit, while
negative values are used for cases where the fit did not converge – both cases suggest
that the fitted particles do not originate from the same vertex. For final-state particle
daughters, the meaning of the chiProb variable changes to the χ2 probably of the
track fit.

Vertex quality Like the vertex fit quality of the daughters, the fit quality of the combined
particle itself is also included.

Direction of daughters Using the decayAngle(i) variable, the angle between the momen-
tum vectors of the candidate and its i th daughter is also included.

82

6.5. Automatic Reporting

6.4.5. Inputs for K 0
S Mesons

The input variables for K 0
S mesons are mostly identical to those for D (∗)

(s) or J/ψ mesons, with

the addition of variables for the vertex position – K 0
S have a typical flight length of a few

centimeters – and the candidate energy, which helps relate flight time and flight length.

6.4.6. Inputs for B Mesons

The main difference between B-level trainings and those for D (∗)
(s) mesons is their exceptional

position as final output of the Full Event Interpretation, so most of the variables from the
previous section are retained. The invariant mass variables are removed to avoid a correlation
with the beam-constrained mass mbc that is frequently used as a control variable. In addition
to the variables also used at the D-level, the following inputs are used:

Vertex position In contrast to the D-level classifiers, the decay vertex position is also used
directly here by adding the distance to the interaction point in three dimensions, plus
the total distance divided by one standard deviation assuming a Gaussian distribu-
tion of the error on the vertex (via the significanceOfDistance variable). As the
interaction point is presently not well simulated (B mesons originate from (0, 0, 0) in
official Monte Carlo samples), this may be replaced with variables that do not rely on
the global position of the candidate. One possibility may be to use the flight length of
the D daughters by comparing B and D vertices.

Energy difference As mentioned in Chapter 5, the energy difference ∆E can separate cor-
rectly reconstructed B meson candidates from those with missing or misidentified
particles and thus can significantly improve the classification. It is also only weakly cor-
related to mbc, and most strongly so for background-like candidates that are removed
using the user-cut introduced in Section 6.3.1.

6.5. Automatic Reporting

Given that many central aspects of the Full Event Interpretation algorithm are automated, like
the determination of pre-classifier cuts and by extension the channel selection (since impure
channels can be discarded), it is vital for users to be able to check the results of this process.
For this reason, the FEI also automatically produces a report that contains statistics and plots
for each included particle (typically hundreds of pages) as well as summary information on
the training as a whole.

The following items are included in the report:

Efficiency summary One of the most important sections in the report are the tables of the
efficiencies and purities for each particle included in the channel configuration. Both
efficiencies and purities are listed separately for each type of cut: Starting with the
raw reconstruction efficiency (just combining daughters, with no cuts), it shows the
effect of a user-cut, if present, followed by the pre- and post-classifier cuts. For final-
state particles, the tables are limited to the detector and post-cut efficiencies and the
corresponding purities.

83

6. Full Event Interpretation

Table 6.4.: Example efficiency and purity summary for final-state particles, showing values
before and after the applied post-cuts.

Final-state Efficiency in % Purity in %
particle recon. post-cut recon. post-cut

π+ 78.68 77.94 66.898 85.250
e+ 70.04 63.45 4.866 71.223
µ+ 86.22 52.50 4.489 52.289
K + 79.50 76.68 12.230 74.818
γ 89.02 88.20 53.761 56.645

Table 6.5.: Example per-particle efficiency and purity summary, showing values before and
after the applied user-, pre-classifier- and post-classifier-cuts.

Efficiency in % Purity in %
recon. user-cut pre-cut post-cut recon. user-cut pre-cut post-cut

π0 87.51 67.49 44.79 2.713 6.046 37.817
K 0

S 40.09 38.13 34.32 1.911 5.959 79.285
D0 17.01 15.94 9.47 0.018 0.334 18.099
D+ 10.81 10.15 6.91 0.018 0.337 21.044
D+∗ 3.15 3.00 2.98 1.285 57.333 63.893
D0∗ 5.37 5.36 2.44 0.103 0.127 14.274
D+

s 6.85 6.27 3.30 0.009 0.065 15.777
D+∗

s 2.92 2.87 1.64 0.353 0.533 14.554
J/ψ 9.58 7.95 7.95 0.428 41.315 41.315
B 0

had 0.45 0.45 0.34 0.30 0.009 0.781 1.280 1.324
B 0

sl 1.01 0.92 0.92 0.707 1.767 1.767

84

6.5. Automatic Reporting

Examples can be found in Tables 6.4 and 6.5 for final-state and combined particles,
respectively. In both tables it can be seen that both pre- and post-classifier cuts usually
result in great increases in purity, with only a moderate effect on the efficiency. Only the
aforementioned user-cut of mbc > 5.2GeV and |∆E | < 0.5GeV was applied to hadronic
B meson candidates, gaining a factor > 80 improvement in purity with no significant
change of the efficiency. If final state-particles produced through interactions with the
detector material (i.e. secondary particles, see Section 6.4) were accepted as correct,
the efficiencies in Table 6.4 might rise over a hundred per cent. The training associated

with these two tables was performed on only one million B 0B 0 events, so the efficien-
cies should not be taken to be indicative of the final performance of the Full Event
Interpretation.

As it is possible that a certain decay in the Monte Carlo in reconstructed multiple times,
using the number of correctly reconstructed candidates in the efficiency is not entirely

accurate. An example is the decay B+ → D∗0D+
s (→ K −K +π+), which can have the same

final-state particles as B+ → D∗0D0K + with D0 → K −π+. To avoid including the same
decay more than once in the efficiency, only one correct reconstruction is accepted per
Monte Carlo Particle for B mesons. The same procedure is also applied to the control
plots discussed in the following paragraphs.

Control plots for B mesons Since the FEI aims at producing high-quality Btag candidates
for combination with the signal-side selection, a number of special control plots
are provided for B mesons. This includes the receiver operating characteristic for
the Btag candidates (which is a mixture of candidates from different decay channels
with their own, separate multivariate classifier) and plots of an appropriate control
variable (see Section 5.1) for the given particle. The control plots for hadronic and
semileptonic channels are presented in Figures 6.5a and 6.5b for different cuts on the
classifier output and show both the purity-enhancing effect of the cut and how the
shape changes under their influence (if at all). For hadronic B candidates the beam-
constrained mass mbc is used as a control variable, which shows a clear peak at around
5.28 GeV with an increasingly suppressed background for harder cuts on the classifier
output. For B candidates reconstructed in semileptonic decay channels, not enough
kinematic information is available to yield a reasonable mass resolution, so instead
of mbc the cosine of the angle between the estimated B direction and the D (∗)l (π)
system assuming a single missing neutrino is used as a control variable. Correctly
reconstructed candidates should satisfy |cosθB ,D (∗)l | ≤ 1, whereas background has
a broader distribution [11, p. 106]. The shape is however slightly asymmetric and
contains background processes that also peak in the same region.

One important feature is that the classifier output is not strongly correlated to mbc

or cosθB ,D (∗)l , otherwise cuts would artificially produce a signal-like shape in the
background-only distribution.

Pre-classifier cut histograms For each decay channel, the distributions of the variable used
for the pre-classifier cuts are shown, as in Figures 6.3 and 6.4. This also includes the
exact values used in the cut, as well as its purity and efficiency (which may differ signi-
ficantly from both the per-particle values and the requirements in the configuration).

85

6. Full Event Interpretation

Mbc
5.23 5.24 5.25 5.26 5.27 5.28 5.290

100

200

300

400

500

600

700

800

900

(a) mbc for hadronic B 0 candidates.

cosThetaBetweenParticleAndTrueB
10− 5− 0 5 100

1000

2000

3000

4000

5000

(b) cosθB ,D(∗)l for semileptonic B 0 candidates.

Figure 6.5.: Control plots for hadronic (a) and semileptonic (b) Btag candidates, showing the
effect that different cuts on the classifier output oMVA have on the distribution.
From top to bottom: oMVA > 0.01, oMVA > 0.1, and oMVA > 0.5. Lighter shades
denote signal, darker shades are used for background.

Figure 6.6.: Example MVA control plots for photons, with the receiver operating characteristic
showing moderate separation (left), which is also reflected in the shape of the
overtraining check plot (right). Distributions of test and training samples are
compatible, which can be confirmed visually or by checking the output of the
Kolmogorov–Smirnov test. (Plots contrast-enhanced for better readability.)

86

6.5. Automatic Reporting

Control plots for multivariate classifiers The pre-classifier cut histograms are followed by
detailed information and control plots for the multivariate classifier trained for each
decay channel or final-state particle, consisting of the receiver operating characteristic
(ROC), an overtraining check and a plot of the purity per bin of the classifier output.
Examples of these plots are shown in Figure 6.6. The ROC curve plots the purity
over the signal efficiency for different cuts on the classifier output and provides a
good impression of the overall separation power of the multivariate classifier. The
overtraining check plot shows the distribution of the classifier output for signal and
background candidates for two samples: The training sample used as input to the
classifier training, and the test sample, which is an independent sample not used for
the training. For a good training, the distributions of these two samples should be
identical, while differences indicate overtraining of the classifier, which is equivalent
to worse classifier performance on any sample not used in the training. To quantify the
compatibility of the distributions, a Kolmogorov–Smirnov test is performed on both the
signal and background distributions. The resulting two values lie in the interval [0,1],
with differing distributions (i.e. overtraining) producing low values, and histograms
generated from the same distribution creating values that are uniformly distributed in
[0,1].

A third plot, graphing purity in bins of the classifier output, shows whether the output
for this decay channel can be interpreted as a probability. Depending on the TMVA
method used for classification, this may not be guaranteed; with FastBDT this is
only true to some degree, while for NeuroBayes it usually holds. TMVA can however
also perform a corrective transformation that makes the output more probability-like.
This ‘diagonal plot’ is shown in two places: for each multivariate classifier, where the
uncorrected output (and without applying prior information) is shown, and for each
particle, where the plot shows corrected outputs for all decay channels of the particle
combined. For good trainings, the points in the second plot should lie on the diagonal
(purity = oMVA), while the per-classifier plot should simply show a smooth distribution
without excessive jumps. Examples of both plots are shown in Figure 6.7

Besides the control plots, the input variables used in the classifier are also listed and
ranked by their importance in the training (the meaning of this rank might change
depending on the type of multivariate classifier used). Variables that are deemed
unimportant during the training are also distinguished.

For each particle (i.e. the union of all its decay modes), a plot of the purity in each bin of
the classifier output is shown. This allows evaluation of the probability interpretation
after mixing together particles reconstructed in different decay channels and tends to
be much better than the same plot for individual channels. Strong fluctuations might
hint at problems like insufficient statistics.

CPU usage statistics Also tabulated is the CPU time needed for the reconstruction tasks of
each channel, as shown in Table 6.6. The table contains both absolute and relative
CPU time spent on each channel, the time necessary to reconstruct a single candidate
(distinguishing between any candidate at all and true candidates, specifically) and
a stacked bar chart showing the relative time spent in each module. Since the time
needed for the training or cut determination is not included, the table reflects the CPU

87

6. Full Event Interpretation

Figure 6.7.: Purity per bin plotted over raw classifier output for a B+ decay channel (left), and
purity per bin plotted over the corrected classifier output over the combined set
of all B+ decay channels. For the raw classifier output, the data points are far
from the diagonal, but show a smooth distribution, when errors are considered.
The corrected combined output follows the diagonal quite closely.

time needed to apply a Full Event Interpretation training. This chart is primarily useful
for developers of the analysis software, e.g. it plainly shows that vertex fitting is the
most expensive task in most decay channels, which makes it a target for improvement.
The significantly larger amount of CPU time consumed by ParticleLoader for K +

compared to other charged final-state praticles is an artefact of it being the first particle
created, which results in a number of caches being filled here for the first time.

Since cuts on candidates are chosen in a way (see Section 6.3.2) that stresses the
interchangeability between channels in regard to variations of the cut, the CPU time
spent per channel is not optimised directly. In most cases, the purity set in the channel
configuration should ensure that the CPU time required stays manageable, since it is
proportional to the number of candidates. The proportionality constant, i.e. the time
per candidate, is not known a priori and depends on the channel’s multiplicity, the
types of daughter particles, and details of the vertex fitting algorithm. In extreme cases,
a single channel with high combinatorics might even take up a significant fraction
of the total time. A future optimisation opportunity might be to use the detailed per-
channel information shown in this table in the cut determination, e.g. to optimise cuts
for the time required to create a true candidate.

The tabulated information is available in the ProcessStatistics object, which tracks
the CPU time spent in each module. Since modules are assigned unique names by
the FEI according to the associated particle or decay channel, the CPU time can be
easily extracted and matched with other information like the number of candidates. As
ProcessStatistics objects are mergeable (see Section 3.6), this information is also
available when using BASF2 with multiple processes, and can also be merged when
the execution of the Full Event Interpretation is spread over a computer cluster.

Configuration summary The entire content of the decay channel configuration, including
the detailed settings for cuts, input variables and MVA hyperparameters is also repro-

88

6.6. Training Modes

Table 6.6.: Excerpt of the CPU usage statistics, showing total CPU time spent in event() calls
for each channel. Bars show ParticleLoader, ParticleCombiner, ParticleVertexFitter,
MCMatching, TMVAExpert, and others, in this order.

duced in a more human-readable form. This enables direct comparisons between
trainings using only the corresponding FEI reports and ensures the results can be repro-
duced easily. The summary also contains the decay-mode identifier (see Section 4.1.4),
which can be used to quickly identify in which decay mode each particle candidate
produced by the FEI was created.

Taken together, the plots and statistics contained in the Full Event Interpretation Report
give a comprehensive view of the entire reconstruction chain. This allows users to monitor the
training performance and pinpoint regressions, to optimise certain parts of the configuration
(e.g. the selection of variables or channels), and for cross-checks of both the analysis software
and the input data. These cross-checks in particular have been found to be very useful, and
have been used to discover problems in the Monte Carlo matching, higher-than-expected
CPU usage of individual modules, and systematic shifts in the photon energy.

An example FEI report for a minimal configuration with only three final-state particles,
one D+, and one B 0 decay channel is shown in Appendix A.

6.6. Training Modes

The Full Reconstruction introduced in Section 5.3 was only trained in a single, fixed way:
using generic Monte Carlo, where events with correctly reconstructed Btag mesons always also
contained another B meson decaying generically. This is referred to as generic training in the
following. This section discusses the disadvantages of this approach for many applications
and which alternatives can be pursued to avoid them.

6.6.1. Generic Training

A strong advantage of the generic training was that a single centrally produced Btag sample
could be provided to all users, with manageable costs in CPU time and disk space. When used
in analysis, however, a signal selection would be applied to the remainder of the event after

89

6. Full Event Interpretation

subtracting the Btag, likely discarding a majority of events. The resulting set of events and
the Btag candidates within it may then have properties quite different from the sample used
during the original training. As an illustrative example, consider a signal selection for studying
B− → l−ν̄l : As exactly one lepton track can be found on the signal side, a cut discarding events
with additional tracks (besides the lepton and those used in Btag) greatly increases the purity
of the selection. For the tag-side, on the other hand, this can be problematic. Since the prior
distributions of classifier inputs are changed significantly between the training sample and
the analysis sample that includes the signal selection, this introduces a bias in the classifier
output and violates the assumptions allowing its interpretation as a probability. In particular,
as the signal selection will likely have a different effect on different tag-side decay modes (e.g.

B+ → D0π+ vs. B+ → D0π+π+π−π0), one can no longer assume that the classifier output for
candidates can be interpreted in the same way. Additionally, the overall performance of the
tag-side reconstruction is reduced (when compared to no signal selection), since much effort
is wasted on events that are later discarded.

6.6.2. Analysis-Specific Training

The highly automated training process made possible by the implementation of the FEI,
however, permits an entirely different mode of training: To avoid the performance reduction
of multivariate classifiers and biases the generic training may introduce, the user can create
trainings that are specific to their analysis (and signal channel); the training is thus referred
to as specific. These trainings are optimised for the specific prior distributions in the analysis
and profit from any reduction of combinatorics that the signal-side cuts may introduce. This
also has the potential to permit the use of more channels or softer cuts. As here, finally,
the classifier output can be interpreted as a probability, the particular decay channel used
for a tag-side candidate should not matter too much for an analysis using it. In particular,
the probability also makes hadronic and semileptonic Full Event Interpretation outputs
more comparable, and may allow for an easier combination of both in a single analysis. An
additional benefit of the specific training is that it focuses on events relevant to the analysis.
For example, with a signal selection that includes only few tracks it does not make sense
to look at events that have more tracks than the tag side (plus signal side) can maximally
reconstruct. Instead, events with many tracks (which consume the majority of the CPU time
for any FEI training) can be discarded early, allowing the training to concentrate on and
optimise for low-multiplicity events.

Technically, the chain of analysis modules for an analysis-specific FEI training differs
somewhat from the case of a generic training: As a first step, the user needs to define a BASF2
path containing their signal reconstruction, i.e. create final-state particles, combine them
into Bsig candidates and select those most likely to conform to their signal channel. To benefit
from the effects of discarding inviable events, the selection should also include a cut that
limits the total number of tracks in the event. This path is handed over to the Full Event
Interpretation together with the name of the particle list containing signal candidates. For
each candidate, a RestOfEvent object is created that contains references to all remaining
track or cluster objects not used in the candidate. The object carries a relation back to the
candidate; each signal candidate thus separates the event into objects belonging to the
signal or tag side (i.e. the rest). Using the sub-event iteration functionality introduced in

90

6.6. Training Modes

Section 3.3.2, all actions of the FEI are then performed inside a loop over the RestOfEvent
objects defining possible tag-sides. All final-state particles used in the training are selected
with the condition ’isInRestOfEvent == 1’, which will reject all detector signals not in the tag
side of the current loop iteration. As the iteration using for_each() is entirely transparent to
the modules involved, the remainder of the FEI training continues as described in previous
sections.

The effect of performing an analysis-specific Full Event Interpretation training was already
studied extensively in reference [59], so only an overview will be given in this section. For the
study, a generic training was compared with a specific training with a signal-side selection of
B+ → τ+(→µ+ν̄µντ)ν̄τ decays, which is arguably a selection where the difference between
both approaches is most pronounced.

The signal selection procedure for the specific training uses the standard analysis tools
and is shown in the following listing (from [59, p. 69], updated to reflect software changes):

fillParticleList (’mu+ ’ , ’muid > 0.6 and nTracks <= 12 ’)
reconstructDecay (’ tau+ −> mu+ ’)
reconstructDecay (’B+: s i g −> tau+ ’)
matchMCTruth (’B+: s i g ’)

Besides the cut on nTracks ≤ 12 (reflecting the maximum multiplicity of exclusive channels
that could be reconstructed by the FEI), a user-cut (i.e. a manual cut applied before any other
cut, see Section 6.3.1) was added for Btag candidates that required them to be able to produce
a correct Υ(4S) when combined with the signal selection (i.e. no tracks should remain after
the combination). The Full Event Interpretation was then trained on 40 million events of
Monte Carlo (with generically decaying B+B−/B 0B 0) plus 20 million events of signal Monte
Carlo (B+B− with one B decaying in the signal channel, the other decaying generically). Since
the applied user-cut required a correct signal-side candidate, the signal Monte Carlo was
necessary to ensure reasonable statistics for the B-level classifier trainings; the earlier stages
for D mesons are not affected and can be adequately trained using generic Monte Carlo.

Compared to a generic training on 100 million events (i.e. almost twice as many events),
the specific training required only 7.2 % of the total CPU time for processing particle, and half
the time for classifier trainings [59, p. 69]. This is mostly caused by the aforementioned cuts,
which significantly reduce the combinatorics and thus the effort expended on inviable events.
Thus, even for larger input samples, the reduced CPU requirements of the analysis-specific
mode allow the completion of the training using a moderately powerful computing system.3

As a result of the smaller data sample available for the B-level trainings, only 9 out of 21
hadronic B+ decay channels were used in the training (compared to 19 out of 21 for a generic
training); the semileptonic channels were unaffected [59, p. 69].

Using an independent test sample consisting of one million events each of B+B−, B 0B 0,
uū, dd̄ , ss̄ and cc̄ , as well as one million B+ → τ+ν̄τ signal Monte Carlo events [59, p. 66], the
different characteristics of the generic and specific training on the candidates available to
the analyst were evaluated.4

3As the total CPU time in this example was 585 hours, even a single 8-core machine would complete the
analysis-specific training in three days (assuming perfect scalability and sufficient disk space).

4 Compared to what is expected from detector data, this underestimates the amount of continuum background

91

6. Full Event Interpretation

Purity [%]
0 20 40 60 80 100

E
ffi

ci
en

cy
 [%

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Generic FEI
Specific FEI

(a) Υ(4S) ROC curve for hadronic B+
tag.

Purity [%]
0 20 40 60 80 100

E
ffi

ci
en

cy
 [%

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Generic FEI
Specific FEI

(b) Υ(4S) ROC curve for semileptonic B+
tag.

Figure 6.8.: Efficiency and purity of Υ(4S) mesons combined from the signal side and had-
ronic (a) or semileptonic (b) B+

tag candidates for different cuts on the Btag classifier
output. Results for the generic (red) and the specific FEI training (green) are
compared and show better performance for the analysis-specific training. Note
that for the specific training’s hadronic B+

tag decay channels, only nine B+ decay
modes were used due to smaller training inputs (compared to 19 for generic),
resulting in non-ideal performance. Adapted from [59, p. 74].

For both training modes, this involved looking at the efficiency and purity of the Υ(4S)
mesons obtained when combining the signal selection with the produced Btag candidates. As
a result, the efficiencies presented in the following are not pure tag-side values, but include
the selection efficiency of the signal channel of 65 % and the efficiency of the cut removing
events with additional tracks of 87 % and 90 % for hadronic and semileptonic B decay modes,
respectively [59, p. 73].

Figure 6.8 shows ROC curves for the resulting Υ(4S) mesons produced using both had-
ronic and semileptonic Btag decay modes, and compares the selection efficiency and purity
between the generic and specific trainings. In both plots, the analysis-specific FEI training
performs significantly better than the generic training; for the hadronic decay modes the
improvement is not as large, as a majority of decay modes was not included. A training with
a larger signal Monte Carlo data sample is liable to produce even better results.

Perhaps even more interesting than this improvement in efficiency is the difference in the
distribution of the classifier output for Btag candidates. Figures 6.9 (for hadronic) and 6.10 (for
semileptonic channels) clearly show the effect of training the B-level classifiers on a sample
that only includes candidates that would leave no remaining tracks: For the analysis-specific
training (bottom), the separation between true signal from the signal Monte Carlo and the
remaining background components is not only more pronounced, but corresponds to what
one would expect for a probability-like distribution.

Thus, analysis-specific trainings are not only made possible by the greater automation
of the training process, but are actually an order of magnitude faster than a comparable
generic training, while providing significantly better efficiency and purity in conjunction with
a more natural classifier output for the signal mode in question. The addition of the analysis-

(especially cc̄). As the results of the two trainings are, however, meant to be compared to each other, this does
not influence the following results.

92

6.6. Training Modes

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

2

4

6

8

10

12

14

16

18

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(a) Classifier output for generic training.

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

2

4

6

8

10

12

14

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(b) Classifier output for specific training.

Figure 6.9.: Distribution of the Btag classifier output for hadronic decay modes for specific
and generic FEI trainings. Taken from [59, p. 75].

93

6. Full Event Interpretation

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

2

4

6

8

10

12

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(a) Classifier output for generic training.

 Signal Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 C
an

di
da

te
s

pe
r

0.
1

0

1

2

3

4

5

6

7

310×
signal from signal Monte Carlo
background from signal Monte Carlo
background from generic charged Monte Carlo
background from generic mixed Monte Carlo
background from continuum uubar Monte Carlo
background from continuum ddbar Monte Carlo
background from continuum ssbar Monte Carlo
background from continuum ccbar Monte Carlo

(b) Classifier output for specific training.

Figure 6.10.: Distribution of the Btag classifier output for semileptonic decay modes for spe-
cific and generic FEI trainings. Taken from [59, p. 76].

94

6.7. Distributed FEI Trainings

specific mode is also one of the main reasons behind the name ‘Full Event Interpretation’,
as it indeed produces an interpretation of the entire event and makes decisions grounded
in the cleanliness of Υ(4S) decays. Other possible selections that consider the entire event
also contribute to the name, e.g. limits on the total number of tracks per event, including
continuum suppression or using a variable indicating the quality of events.

A disadvantage of the analysis-specific training is that it cannot be used for analyses
measuring inclusive decays, since there is no longer a single signal-side decay and the purity
of the tag-side candidates is used to define the set of remaining tracks and ECL clusters used
for the signal-side. Inclusive analyses thus should be combined with a generic FEI training.
For exclusive analyses that reconstruct multiple signal decays, it may be possible to use a
more inclusive signal selection instead.

6.6.3. Mono-Generic Training

As an approximation of the specific training for signal selections with a low number of tracks,
and with no remaining tracks after combining tag- and signal-side, a mono-generic training
can also be used. This type of FEI training uses a special Monte Carlo sample containing one
generically decaying B meson, and one invisible B . When used as a training input, this is very
similar to the sample obtained after a successful signal selection, i.e. one where all final-state
particles of the signal-side (and only those) are removed. A main difference between a mono-
generic and a specific FEI training thus is the complete absence of background in which final-
state particles from both B mesons in the event are combined. While correctly reconstructed
Btag candidates are not affected, this would still result in different prior distributions for
training and application, and –– since high-multiplicity channels are more likely to receive a
wrong track –– would also have decay-mode-dependent effects. The mono-generic training
however has the advantage of being easy to produce centrally, while introducing less bias
for signal-selections with few tracks than a comparable generic training. The differences
between mono-generic and specific trainings have not been studied in detail, and may be an
opportunity for future work.

This type of training might prove useful to support other high-level reconstruction tools
with its output. These applications might include Flavour Tagging, tag-side vertex recon-
struction, or determining the decay topology of an event.

6.7. Distributed FEI Trainings

Since the Full Event Interpretation needs to be trained in multiple iterations on very large sets
of data, running this training on a single machine is not usually a realistic option, and typically
distributed computing systems with many hundreds of nodes are used instead. To ensure
users can perform their own training, facilities for a distributed training are included in the
FEI; these take care of splitting the input sample, job scheduling and other common tasks
for the KEK computing center (KEKCC). This training approach follows a MapReduce[86]
model: First, the input data (the size of which may be on the order of terabytes) is split into
subsets for the desired number of jobs; then the jobs are run in parallel using KEKCC’s batch
submission system (map() step). After all jobs have been executed, the produced n-tuples
and histograms are merged on a central node for starting the classifier trainings and creating

95

6. Full Event Interpretation

Figure 6.11.: Illustration of the MapReduce model used for training the Full Event Interpreta-
tion on a distributed computing system with two nodes and one master. Note
that, after initialisation, only relatively few data are transferred between master
and nodes; the largest share is taken up by n-tuples used for classifier trainings
(limited to a few gigabytes per training). Adapted from [59].

aggregate statistics (reduce() step). The map() and reduce() steps are then repeated until all
particles are trained. An illustration of this method is shown in Figure 6.11.

An important factor in this model is that only modules are executed on the computing
nodes, while all high-level code (Python) is run on the master node. This is achieved by seri-
alising the path of modules on the master node and executing the path instead of the normal
steering file on computing nodes. This mirrors the separation shown in Figure 6.1, where
the Python part of the Full Event Interpretation deals with the dependency resolution and
tasks that act on extracted information (e.g. to determine cuts), while the event-processing is
performed in C++ modules.

A more in-depth description of the distributed training approach used by the FEI can be
found in [59, p. 40]. The same model can in principle also be applied to large-scale distributed
computing systems like the Belle II grid, though some additional work is necessary to ensure
that cached data is kept locally on nodes and are not copied around needlessly. The scalability

96

6.8. Conclusions

for larger amounts of data is currently limited by the time needed to merge tuples and
histograms from all nodes and for interacting with the job submission system. The bulk of
the processing time for the reduce() step is however taken up by the classifier trainings, which
due to the implemented sampling (see Section 6.4) take almost constant time.

6.8. Conclusions

This chapter introduced the Full Event Interpretation, an advanced tag-side reconstruction
tool for the Belle II experiment that was developed within the scope of this thesis, and
discussed the details of its implementation, as well as some improvements made possible by
it. While the hierarchical reconstruction approach of the FEI is similar to that employed by the
Full Reconstruction at Belle, the algorithm’s implementation differs greatly, with practically
all physically relevant attributes of the reconstruction being contained in the configuration,
the use of the directed acyclic graph framework for dependency resolution, and the high
degree of automation throughout the entire training process.

Another striking difference is the size of the implementation of both algorithms themselves:
For the Full Reconstruction, the bulk of the implementation consisted of 18 221 lines of C++
code, with a few helper and training scripts. The Full Event Interpretation, on the other hand,
is built using only 2 632 lines of Python code, over one thousand lines of which are used for
the automatic reporting functionality (not present in the Full Reconstruction). Mostly this
is achieved through the development and extension of modular tools that perform discrete
analysis steps. Thus, most of the modules described in Chapter 4 were either made more
powerful to work with the FEI, or written from scratch to serve a specific purpose (like the
TMVA interface). They are, however, written in such a way that they are generic and work
easily with other available modules. In particular, other high-level reconstruction tools like
continuum suppression or Flavour Tagging now also make use of the same modules [66]. An
additional few hundred lines of C++ code is taken up by the PreCutHistMaker module and
variables that are only used by the FEI currently. It should also be noted that a significant
number of problems in the analysis tools were found during the development of the FEI, since
it covers a large part of the steps present in an analysis, but in many more decay channels.
The automatic reporting functionality was very helpful in this regard, and many issues were
visible in the plots and tables generated.

As a direct consequence of these technical improvements, concerning in particular the
dependency resolution and training procedure, the usability of the Full Event Interpretation
is greatly increased: The high degree of automation, e.g. when determining necessary cuts,
allows the FEI to be trained without requiring adjustments, and the training can thus be
performed by any user without requiring a large amount of FEI-specific knowledge (given
a reasonable default configuration). This is tremendously useful for the optimisations in-
troduced in Section 6.6, which require information about the signal channel (i.e. the decay
channel(s) of the signal-side B), and thus need to be trained separately for each analysis.

As already shown, the analysis-specific training mode greatly improves the performance of
the Full Event Interpretation, through increasing the reconstruction efficiency and ensuring
the output is probability-like, by optimising the training for the signal selection chosen by
the user. Other factors also lead to possible improvements of the physics capabilities of
analyses, mostly through the generalisation of the reconstruct steps and the ease with which

97

6. Full Event Interpretation

new decay modes can be added. The generalisation of the FEI – with configurable signal
definitions, input variables, and control plots – makes it possible to add particles decaying
through semileptonic modes in the default configuration. Especially when combined with
the analysis-specific training mode, this allows for analyses that combine both hadronic and
semileptonic tag-side reconstruction, where previously these where performed in separate
analyses (e.g. for B+ → τ+ντ decays). Since the reconstruction of e.g. D mesons is not affected
by the exact decay mode of the B mesons, this also allows for savings in CPU time and disk
space. Additionally, since it is easy to replace the configuration, it will also be possible to
reconstruct the heavier Υ(5S) resonance simply by loading an Υ(5S)-specific configuration
file.

Adding new decay modes has become much easier with the Full Event Interpretation,
since only the newly added channels and those dependent on them need to be retrained, and
the necessary adjustments of cuts are performed automatically. Compared to the 71 neural
networks used by Belle’s Full Reconstruction algorithm to reconstruct 1 104 exclusive had-
ronic B decay channels [75], the FEI (with default configuration) trains 110 boosted decision
trees, which are used to reconstruct 4 986 exclusive B decays (264 of those in semileptonic
channels).

The effect these different factors have on the total performance of the Full Event Interpret-
ation, and what analysts can expect in regard to the reconstruction efficiencies and purities
will be discussed in the following chapters.

98

7. Estimation of Physics Performance

After describing the implementation details of the Full Event Interpretation and the – primar-
ily software-related – improvements compared to Belle’s Full Reconstruction in the previous
chapter, this chapter will discuss concrete applications of the FEI. To this end the results
of a large-scale training for Belle II will be presented. Particular focus will be given to the
quantities that primarily effect the performance of analyses relying on the tag-side recon-
struction, i.e. the total reconstruction efficiency of the tag-side reconstruction, and the purity
associated with it.

In the following, only generic trainings of the Full Event Interpretation (as defined in
Section 6.6.1) are evaluated. This makes it easier to compare the results with those of the Full
Reconstruction and thus assess the effect that using the FEI can have on typical analyses.
As by construction an analysis-specific training is optimised for a certain signal decay, the
performance of analyses using this mode can be assumed to be even better.

7.1. Monte Carlo Sample

This study was performed using a Monte Carlo sample generated in a large-scale Monte Carlo
campaign in 2014 (MC 3.5). As the beam background in the electromagnetic calorimeter
(ECL) as simulated in this Monte Carlo generation campaign is significantly overestimated
and cannot be easily suppressed, training of channels including photons would have been
impossible due to exorbitant CPU time requirements. The following study thus uses a sample
without beam background, which results in both better tracking performance and much
fewer wrong hits in the ECL compared to what is expected for real data.

Input for this FEI training were 40 so-called streams of Monte Carlo, consisting of one half

mixed (B 0B 0) and one half charged (B+B−) events, with generically decaying B mesons.1

This corresponds to 80 million events in total, with the mDST data taking up about 543 GB
of disk space. Continuum background was not used in the training, as correctly recon-
structed particle candidates in the continuum sample (which includes the same types of
particles as the BB̄ samples, with the exception of B mesons) have very different kinematics.
Consequently, it is not clear whether to regard them as signal or background: A particle
reconstructed in one of the continuum Monte Carlo components would, even if it matched
perfectly with the Monte Carlo truth, likely have a very different distribution in kinematic
variables and could never be used to create a correct B meson candidate. Regarding them as
background, however, might also have negative effects on the multivariate classifier, since
at least in some cases, their kinematics might be similar to correct candidates in BB̄ Monte

1 At Belle, one stream of Monte Carlo is meant to correspond to the quantity of collisions in real detector data,
with multiple streams per data-taking period being available to provide reasonable statistics for most analyses.
The size convention is not very meaningful for Belle II just yet.

99

7. Estimation of Physics Performance

Table 7.1.: List of decay channels ignored in this training, with associated branching fractions
extracted from EvtGen. Values marked by ‘*’ were missing or differed significantly
from PDG averages, and have been fixed to PDG values [85]. (Cf. Table 6.1)

Decay channel Branching ratio

D0 → K − π+ π0 π0 15–20 %*
D0 → π− π+ π0 π0 0.94 %

B+ → D0 π+ π0 π0 0.61 %*

B+ → D0∗ π+ π0 π0 5.00×10−4

B+ → D0 D+ 3.80×10−4

B 0 → D−∗ π+ π0 π0 0.10 %
B 0 → D− π+ π0 π0 0.10 %

Carlo. As a separate tool for continuum suppression has been developed by others (see
Section 4.8.1), it can be applied independently of the Full Event Interpretation.

7.2. Training

Using this Monte Carlo sample, a generic FEI training (see Section 6.6.1) was performed using
the default configuration. The trainings were started on the KEK Central Computing System
(KEKCC) with the MapReduce approach introduced in Section 6.7 using 2 000 jobs for the
map() step. The jobs were processed by the IBM LSF [87] system, with (depending on system
utilisation) up to three hundred jobs running in parallel.

The training in total took about three days to complete and consumed 2 970 hours of CPU
time on reconstruction tasks, excluding time for training and I/O. To avoid unnecessary
repetition of reconstruction steps, the output of the map() step, including created particles,
was saved to disk as cache. Summed over all jobs, this cache consumed 3.2 TB at the B level,
with peak usage being slightly higher. Due to otherwise limited disk space, both the cache
and all ROOT files created during the training were stored on a tape-based file system (HSM)
with many hundreds of terabytes of free space. While the throughput of the HSM system
is quite high and does not slow down job execution, the latency when accessing a file or
performing other file operations is quite high (many seconds). Using a faster disk-based file
system thus might reduce the training time even further.

In this training, the decay channels listed in Table 7.1 were discarded automatically, in-
cluding all channels with multiple π0 daughters. This occurs regardless of the channel’s
branching ratio; this could be traced back to a software problem related to the vertex fitting.
This problem should be fixed in the near future, likely resulting in improvements of the

reconstruction efficiency. The B+ → D0D+ channel was discarded because only very few
candidates were produced.

The training’s success can be confirmed by looking at the summary section of the auto-
matically generated FEI report, which contains the tables of the efficiency and purity of the
final-state particles, and those of combined particles. The final-state particles have very

100

7.2. Training

Table 7.2.: Per-particle efficiency and purity before and after the applied user-, pre-classifier-
and post-classifier-cuts.

Efficiency in % Purity in %
recon. user-cut pre-cut post-cut recon. user-cut pre-cut post-cut

π0 88.90 68.56 49.96 2.632 5.773 30.639
K 0

S 39.76 37.81 34.82 1.858 6.280 72.572
D0 18.54 17.62 13.52 0.016 0.271 6.907
D+ 11.28 10.72 8.31 0.009 0.182 6.465
D+∗ 4.30 4.08 4.07 0.203 22.514 27.362
D0∗ 8.35 7.61 5.81 0.069 0.266 5.222
D+

s 7.06 6.71 4.85 0.008 0.124 5.227
D+∗

s 4.50 4.44 2.98 0.108 0.226 4.021
J/ψ 9.84 8.29 8.29 1.215 42.980 42.980
B+

had 1.11 1.10 1.04 0.93 0.001 0.069 0.178 0.189
B+

sl 1.32 1.25 1.25 0.333 1.174 1.174
B 0

had 0.63 0.62 0.59 0.51 0.002 0.167 0.584 0.633
B 0

sl 1.45 1.37 1.37 0.172 0.573 0.573

similar efficiencies to those listed in Table 6.4, which were obtained from a training with
almost identical configuration, but on a much smaller Monte Carlo sample. Efficiencies
and purities for combined particles are reproduced in Table 7.2. The most important values
in this table are the post-cut efficiencies for the four categories of B mesons: In hadronic
B decays, efficiencies of 0.93 % (B+) and 0.51 % (B 0) were achieved, for the semileptonic
channels, somewhat higher values of 1.25 % (B+) and 1.37 % (B 0) are reached. These are
already much higher than the corresponding Btag efficiencies for the neural-network based
Full Reconstruction at Belle, which were 0.28 % for hadronic B+ and 0.18 % for hadronic
B 0 candidates (see Section 5.3). The values in this table, however, were computed on the
same Monte Carlo sample used for the training, and do not include cuts that would discard,
e.g., candidates with background-like kinematics. As a result, these values are maximum
efficiencies, and similarly the purities shown are their minimal values. An analysis user will
usually add at least a cut on the classifier output, increasing the purity of the candidates,
while reducing the efficiency below the maximum values given in the table.

When comparing the table with that created on a smaller Monte Carlo sample in Table 6.5,
significant differences in the efficiencies are visible. As for many particles the efficiencies
of the large-scale sample are more than 50 % higher, this suggests that the difference is
mostly caused by the decay modes that were excluded from the smaller training because of
insufficient statistics.

The automatic reporting also provides information on the quality of the multivariate
classifiers created during the training. Figure 7.1 shows the TMVA control plots that were

generated for the B+ → D0π+ decay mode, with an excellent separation between correct
and incorrect candidates being visible. The Kolmogorov–Smirnov test reveals a possible
slight overtraining (p = 0.047) in the signal class, which is however only barely visible in the
second-highest bin of the distribution. As it is, the result of the test should be no cause for

101

7. Estimation of Physics Performance

Figure 7.1.: TMVA control plots for B+ → D0π+, showing purity over efficiency for the clas-
sifier (left) and the distribution of signal and background (for training and test
sample) in the classifier output (right).

Figure 7.2.: TMVA control plots for B+ → D0e+(νe), showing purity over efficiency for the
classifier (left) and the distribution of signal and background (for training and
test sample) in the classifier output (right).

102

7.3. Results

great concern. For comparison, Figure 7.2 shows control plots for the semileptonic decay

B+ → D0e+(νe). Here, the purity–efficiency curve covers a much smaller area, i.e. the classifier
has a worse separation, as in this channel an electron neutrino is not reconstructed, which
decreases the amount of kinematic information available to the classifier. No overtraining is
visible in the overtraining check on the right-hand side.

To illustrate the output of the Full Event Interpretation, two visualisations of events with a
correct Btag candidate produced using the BASF2 event display (see Section 3.7) are shown in
Figure 7.3. Objects corresponding to final-state particles used on the tag-side are highlighted
in green, showcasing the differences between the complex decay chain (seven tracks) in Fig-
ure 7.3a and the somewhat simpler chain (three tracks and two photons) with a semileptonic
B decay in Figure 7.3b. The remaining tracks and clusters after subtracting the highlighted
tag-side objects then belong to either the signal side, or secondary processes of the tag side,
or are caused by background processes or detector noise. ECL clusters that are in the vicinity
of a track are not used for photon candidates but provide particle identification informa-
tion, as exemplified by the large energy deposition for the electron track in the lower left of
Figure 7.3b.

7.3. Results

The FEI training was further evaluated using an independent test sample of ten streams

of Monte Carlo, consisting of ten million B+B− and B 0B 0 events each, plus an amount of
continuum background equivalent to that expected from detector data. For each of the
four final lists of Btag candidates (B+ and B 0 in both semileptonic and hadronic variants)
an n-tuple was produced. For the 82 million events in the sample, applying the Full Event
Interpretation took a total of 1 621 hours of CPU time, which corresponds to 0.07 seconds per
event. Because of the different sample composition, the processing time estimated by the
automatic reporting, in this case 0.13 seconds per event, differs from this value. This suggests
candidates created from continuum events are discarded more quickly. The independent
sample is used for all further results in this section.

As the Full Event Interpretation can produce many Btag candidates for each collision
event, including all of the candidate particles might produce unwanted effects such as an
overestimation of the reconstruction efficiency. To avoid these effects, a best candidate
selection (as introduced in Section 4.6) was applied to the Btag particle lists. In each event,
only the candidate with the highest classifier output in each list was retained.

The output of the multivariate classifier for each hadronic B candidate is presented in
Figure 7.4, showing the signal and the different classes of background candidates as distin-
guished by the type of Monte Carlo they were produced from. Since the amount of events

in the continuum background Monte Carlo is over three times that of the B 0B 0 and B+B−

samples, it also very clearly dominates in the number of candidates. Even though no inform-
ation about continuum background is included in FEI training, the candidates produced on
continuum Monte Carlo are nonetheless shifted to very low values in the classifier output.
Correctly reconstructed candidates, on the other hand, are clustered at high values and
can thus be separated well by cutting on the output. The remaining background classes
are made up of candidates that were created on events containing Υ(4S) → BB , which are
more signal-like and thus harder to separate. It is apparent that for B+ candidates, the back-

103

7. Estimation of Physics Performance

(a) A correctly reconstructed tag-side B+ → D0π+π−π− decay (with D0 → K 0
Sπ

+π−).

(b) A correctly reconstructed tag-side B− → D∗0e−ν̄e decay (with D∗0 → D0π0 and D0 → K −π+). A
low-energetic final-state-radiation photon from the D0 decay was missed.

Figure 7.3.: Visualisation of two events with Btag mesons correctly interpreted by the Full
Event Interpretation. All tracks and clusters used on the tag-side are highlighted in
green; the remaining tracks and calorimeter clusters in blue and red, respectively.

104

7.3. Results

ground component from B+B− events is enlarged, and similarly the B 0B 0 component for B 0

candidates.
For semileptonic B decay modes, the output is shown in Figure 7.5. As a result of the

larger efficiency, the plots show a significantly larger number of candidates than in the
hadronic modes. The separation between the background classes and signal is less clear,
as the multivariate classifiers for semileptonic B decays receive less information than the
hadronic ones (e.g. the separation power of∆E is much less because of the missing neutrino).

The fine binning in these four graphs uncovers some interesting structure in the output
of the multivariate classifier, like the two peaks around oMVA = 0.7 in Figure 7.4 (top figure).
These structures are a side-effect of the transformation applied by the TMVA expert to
transform the output to a probability; even when the classification method itself, in this case
FastBDT, produces an almost probability-like output, this transformation can be beneficial.
However, as it works by shifting candidates in the classifier output, e.g. from a bin at oMVA =
0.5 with a purity of 55 % into the bin at oMVA = 0.55, it can introduce peaks in arbitrary
bins. Nonetheless, the probability interpretation should be more accurate, and cuts on the
classifier output should not produce sudden jumps in the efficiency or purity. It should
also be noted that the distributions cannot be compared to the plots of the classifier output
shown in Section 6.6.2, where both tag- and signal-side B mesons needed to be correctly
reconstructed to count as signal.

The effect of different cuts on the classifier output can be seen in Figures 7.6 and 7.7,
which show the distribution of the control variables mbc and cosθB ,D (∗)l and their change
for increasingly harder cuts. In all cases, the background components are reduced more
strongly than the signal candidates, thus greatly enhancing the signal peak for harder cuts.

The enhanced background from B+B− events in B+ and in B 0B 0 events for B 0 candidates
that was already observed in the classifier output is more pronounced here. Again, this
background component is very signal-like, i.e. it is concentrated around the B mass in mbc

and around 0 for cosθB ,D (∗)l , however, real background components would likely appear
in both of the BB̄ Monte Carlo samples, e.g. also in B+B− events for B 0 candidates. The
difference is caused by candidates that are almost correctly reconstructed, but e.g. contain a
wrong photon and so do not pass the signal definition used here. In the beam-constrained
mass, the peaking background distribution appears to be slightly broader than the true signal
component due to slightly misreconstructed kinematics.

For the hadronic channels in Figure 7.6, the beam-constrained mass mbc exhibits a strong
peak at the B± or B 0 mass of 5.279 or 5.280 GeV, respectively. Below 5.27 GeV, practically
no correctly reconstructed candidates remain. For the semileptonic B decay modes, the
four components are much more similar and have peaks in the same central region. In
contrast to the other components, however, the signal component is mostly constrained to
the physical region of |cosθB ,D (∗)l | ≤ 1. A minority of correctly reconstructed B candidates lie
outside the allowed range as a result of resolution effects for the measured four-momenta.
Practically all signal, however, is contained within |cosθB ,D (∗)l | < 2. These signal regions,
namely mbc > 5.27GeV for hadronic and |cosθB ,D (∗)l | < 2 for semileptonic channels, will be
used for further evaluation in the following.2 The efficiencies for the mbc cut are 98.6 % for
B+ and 98.2 % for B 0; for the cosθB ,D (∗)l cut on semileptonic decay modes somewhat lower

2The |∆E | < 0.5GeV user-cut was also reapplied, as the vertex fitting caused a handful of candidates to be shifted
outside this region.

105

7. Estimation of Physics Performance

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

2000

4000

6000

8000

10000

12000

14000

16000

 hadronic+B hadronic+B

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

1000

2000

3000

4000

5000

6000

7000

 hadronic0B hadronic0B

Figure 7.4.: Distributions of the multivariate classifier output for hadronic B decay channels.
Correctly reconstructed candidates are shown in orange, background from B+B−

events in blue, from B 0B 0 events in green, and continuum background in gray.
Large numbers of background candidates are found at values below 0.15; for
clarity, these are omitted.

106

7.3. Results

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

 semileptonic+B semileptonic+B

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

2000

4000

6000

8000

10000

12000

14000

16000

 semileptonic0B semileptonic0B

Figure 7.5.: Distributions of the multivariate classifier output for semileptonic B decay chan-
nels. Correctly reconstructed candidates are shown in orange, background from

B+B− events in blue, from B 0B 0 events in green, and continuum background in
gray. Large numbers of background candidates are found at values below 0.15;
for clarity, these are omitted.

107

7. Estimation of Physics Performance

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

20

40

60

80

100

310×
 hadronic+B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

5000

10000

15000

20000

25000

 hadronic (Classifier output > 0.01)+B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

2000

4000

6000

8000

10000

 hadronic (Classifier output > 0.1)+B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

500

1000

1500

2000

2500

3000

3500

4000

 hadronic (Classifier output > 0.5)+B

(a) mbc for hadronic B+ candidates.

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

10000

20000

30000

40000

50000

 hadronic0B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

2000

4000

6000

8000

10000

12000

14000

 hadronic (Classifier output > 0.01)0B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

1000

2000

3000

4000

5000

6000

7000

 hadronic (Classifier output > 0.1)0B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

500

1000

1500

2000

2500

3000

 hadronic (Classifier output > 0.5)0B

(b) mbc for hadronic B 0 candidates.

Figure 7.6.: Control plots for hadronic B+ (left) and B 0 candidates (right), for (from top to
bottom) no cut, oMVA > 0.01, 0.1 and 0.5. Correctly reconstructed candidates are

shown in orange, background from B+B− events in blue, from B 0B 0 events in
green, and continuum background in gray.

108

7.3. Results

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

20

40

60

80

100

120

140

160

180

200

220

310×
 semileptonic+B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

20

40

60

80

100

120

140
310×

 semileptonic (Classifier output > 0.01)+B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

5000

10000

15000

20000

25000

30000

35000

40000

 semileptonic (Classifier output > 0.1)+B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

500

1000

1500

2000

2500

3000

3500

 semileptonic (Classifier output > 0.5)+B

(a) cosθB ,D(∗)l for semileptonic B+ candidates.

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

50

100

150

200

250

310×
 semileptonic0B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

 semileptonic (Classifier output > 0.01)0B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

5000

10000

15000

20000

25000

30000

35000

 semileptonic (Classifier output > 0.1)0B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 semileptonic (Classifier output > 0.5)0B

(b) cosθB ,D(∗)l for semileptonic B 0 candidates.

Figure 7.7.: Control plots for semileptonic B+ (left) and B 0 candidates (right), for (from top
to bottom) no cut, oMVA > 0.01, 0.1 and 0.5. Correctly reconstructed candidates

are shown in orange, background from B+B− events in blue, from B 0B 0 events in
green, and continuum background in gray.

109

7. Estimation of Physics Performance

Table 7.3.: The left-hand side shows maximum Btag efficiencies as listed in the automatic re-
port (AR) and the efficiencies of the signal region (SR) and best-candidate selection
(BCS) cuts applied on the candidates. The right-hand side shows the maximum
Btag efficiencies predicted from the values on the left, and as determined on the
independent test sample. All values are given in per cent (%).

Btag efficiency BCS SR AR + cuts Btag efficiency
from AR cut cut on indep. sample

hadronic B+ 0.93 73 98.6 0.67 0.65
hadronic B 0 0.51 82 98.2 0.41 0.40
semileptonic B+ 1.25 81 94.0 0.95 0.91
semileptonic B 0 1.37 61 93.3 0.78 0.78

efficiencies of 94.0 and 93.3 % for B+ and B 0, respectively, are determined.

For a physics analysis, the effect of using Btag candidates created by the Full Event Inter-
pretation can largely be quantified by the reconstruction efficiency, which can be combined
with the signal-side efficiency to estimate the total number of signal entities, and the purity,
which influences the amount of background that the analyst will have to deal with. Efficiency–
purity curves for different cuts on the classifier are shown in Figure 7.8 for hadronic B decay
channels, and in Figure 7.9 for semileptonic channels. The values for purity and efficiency
are determined only on candidates within the previously defined signal region. It can be
seen that the purity can – at the cost of efficiency – be increased to around 95 % for hadronic
and around 70 % for semileptonic channels, with a smooth slope in between. The highest
efficiency reached corresponds to the post-cut efficiency in the automatic reporting and the
total efficiencies given in Chapter 5. It should be noted that the presence of (unsuppressed)
continuum background does not change the efficiency, but rather affects the shape of the
curve and reduces the overall purity of the sample.

When compared with the maximum efficiencies calculated by the automatic reporting,
the highest efficiency that can be reached in the efficiency–purity curves shown is noticeably
lower. Theoretically, this might be caused by classifier overtraining, but from the mostly
successful overtraining checks included in the automatic reporting one can conjecture that
the additional cuts performed on the candidates have a larger effect. This is confirmed by
Table 7.3, which shows that the reported ideal efficiency multiplied with the cut efficiencies
of the best-candidate selection and the signal region cut predicts the final efficiency (on the
independent sample) very well. Only for B+ candidates reconstructed in semileptonic decay
modes is there a slightly larger relative difference of around 4 %, which does not suggest a
strong overtraining. It is apparent that the best-candidate selection has the largest impact
on the final tag-side efficiency, and also differs greatly between lists, going from 82 % for
hadronic B 0 to only 61 % for semileptonic B 0. Even for semileptonic B 0 candidates, however,
94 % of correct candidates occupy the first or second position when ranked by classifier
output, and over 99% within the first five positions. Consequently, these cuts represent
a great optimisation opportunity and – depending on the use-case – might allow higher
efficiencies. Performing a best-candidate selection after the signal region cut is already likely
to be a much better choice for physics analyses.

110

7.3. Results

Purity (%)
0 20 40 60 80 100

E
ffi

ci
en

cy
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.8.: Efficiency–purity curves for Btag candidates reconstructed in hadronic channels.
Values for purity and efficiency were determined in the signal region mbc >
5.27GeV. B+ candidates are shown in red, B 0 candidates in blue.

Purity (%)
0 10 20 30 40 50 60 70 80

E
ffi

ci
en

cy
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7.9.: Efficiency–purity curves for Btag candidates reconstructed in semileptonic chan-
nels. Values for purity and efficiency were determined in the signal region
|cosθB ,D (∗)l | < 2. B+ candidates are shown in red, B 0 candidates in blue.

111

7. Estimation of Physics Performance

Purity (%)
0 20 40 60 80 100

Ef
fic

ie
nc

y
(%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hadronic+B hadronic+B

Purity (%)
0 20 40 60 80 100

Ef
fic

ie
nc

y
(%

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

hadronic0B hadronic0B

Figure 7.10.: Comparison of hadronic Btag reconstruction efficiency and purity for the Full
Event Interpretation on Belle II Monte Carlo (blue), the neural-network-based
Full Reconstruction without continuum suppression (green) and the cut-based
Full Reconstruction (orange) on Belle data. Data for Full Reconstruction extrac-
ted from [75, Fig. 7–8].

7.4. Comparison with Full Reconstruction

The tagging efficiencies and purities can also be compared to those of the Full Reconstruction
algorithm used at Belle. For the semileptonic Full Reconstruction only the maximum effi-
ciency of 0.65 %, averaged over both B mesons (B+ and B 0), is available, which is noticeably
lower than the efficiencies of 0.91 % (B+) and 0.78 % (B 0) reached by the FEI [81, p. 70].3

For hadronic modes, detailed information on efficiencies and purities for different cuts on
the network output is available. Figure 7.10 compares efficiency–purity curves for both the
cut-based and neural-network-based Full Reconstruction (FR) with those for the Full Event
Interpretation. To ensure similar circumstances for the comparison, the signal region for
hadrons is the same (mbc > 5.27GeV) as that used for the FR curves [75, p. 16].4

As the FEI does not include any information on continuum background, it is compared to
the Full Reconstruction variant without continuum suppression. Two FR variants including
continuum suppression exist; if added to the graphs, their efficiency would be increased
slightly for higher purities (Cf. Figure 5.4). They would, however, have no effect on the
maximal reconstruction efficiency (the left-most point). For the FR, the efficiencies were
extracted on data using a fit to mbc , using a Crystal Ball function for the signal, and an ARGUS
function for the background [67, p. 74]. The background shape is largely determined by its
distribution below mbc < 5.27GeV and does not describe a narrow, peaking structure on
top of its usual shape well. Since for the FEI, the efficiencies are studied on Monte Carlo,
the determined values will differ from what would be extracted from a fit: In particular, the
strict signal definition used mis-categorises some signal events as background, and thus
underestimates the efficiency. On the one hand, reconstruction efficiencies estimated on

3 For the Full Reconstruction efficiency, a narrower signal region of |cosθB ,D(∗)l | < 1.075 was used. With this

tighter cut, the efficiencies for the FEI decrease to about 0.82 % (B+) and 0.70 % (B0).
4 In reference [67, p. 75] a pre-selection of |∆E | < 50 MeV was also applied to the candidates in the same type

of plot, which is much harder than the user-cut of |∆E | < 500 MeV applied by the FEI. It is unclear whether
this cut was used for the efficiency–purity curves shown in reference [75]. Using this tighter cut in the FEI
selection, the maximum efficiencies are reduced to about 0.55 % for B+ and 0.34 % for B0.

112

7.5. Discussion of Signal Definition

Monte Carlo may be higher than on real data (as was the case at Belle [79]), but due to the
restrictiveness of the signal definition this comparison is still quite conservative.

The efficiency here is defined as the number of correct candidates (allowing at most one in
each category per event) divided by the total number of Monte Carlo Particles of the same
type. For example, for hadronic B±, 132 432 correct candidates where reconstructed in 10
million B+B− Monte Carlo events. The maximum efficiency is then

εB± = N (B±
correct)

2N (B+B−)
= N (B±

correct)

N (B+B−)+N (B 0B 0)
≈ 0.66%.

This definition is identical to that used for the Full Reconstruction [75, p. 15].5

It is evident from these graphs that the total reconstruction efficiency of the Full Event
Interpretation at Belle II is much higher than that of its predecessor, reaching a factor two
for the maximum efficiency. The performance is similar at the maximum of around 85 %
purity reached by the FR, but significantly higher efficiencies are visible over a large range of
purities.

7.5. Discussion of Signal Definition

As mentioned in the previous sections, the signal definition used to determine which can-
didates were correctly reconstructed has a significant effect on the output of the Full Event
Interpretation. When using the somewhat strict ‘isSignal’ definition (or ‘isSignalAcceptMiss-
ingNeutrino’ for semileptonic channels), a lot of candidates in the mbc signal region where
classified as wrong, resulting in a peaking background component in only one of the Monte
Carlo types.

A modified Monte Carlo (MC) matching procedure was introduced in Section 4.3, which is
able to ignore photons in the assignment of Monte Carlo particles. This allows the creation
of a signal definition that includes candidates with a mis-assigned photon. Whether this is
acceptable depends strongly on the type of analysis to be performed. Inclusive analyses in
particular, or those that rely on the energy EECL of unassigned clusters in the calorimeter for
background rejection, might indeed be adversely effected by including these wrong photons.
For other analyses however, which reconstruct a certain decay channel only, low-energy
photons added by mistake are not likely to adversely affect the quality of the reconstructed B
mesons. To avoid accepting candidates with mis-assigned high-energy photons the variable
‘energyFromWrongPhotons’ can be used to set a limit on the sum of energies of wrongly
assigned photons.

Figure 7.11 shows the distribution of the beam-constrained mass mbc for different back-
ground components when using the strict ‘isSignal’ signal definition. The continuum and

B 0B 0 components are equivalent to those in Figure 7.6, but the remaining background from
B+B− is broken down into its components. The largest signal-like component is ‘other
signal’, which are those candidates which would be associated with a B± if photons are
ignored in the algorithm and the summed energy of photons wrongly assigned to it is below
400 MeV (while the standard MC matching associates them with an Υ(4S) MC particle). It
can be seen that treating ‘other signal’ as signal instead of background would result in a

5 Measurements of Γ(Υ(4S) → B+B−)/Γ(Υ(4S) → B0B0) by Belle and BaBar are compatible with 1.

113

7. Estimation of Physics Performance

Figure 7.11.: mbc plots for hadronic B+ candidates, for (from top to bottom) oMVA > 0.01, 0.1
and 0.5. Here, only candidates deemed incorrect by ‘isSignal’ are shown, broken
down into those from other Monte Carlo components like continuum (udsc)
or B 0B 0 (mixed), those that would pass the alternative signal definition (other
signal), and those in the B+B− sample that would not. This last component is
further divided into those associated withΥ(4S) (Wrong B), and those associated
to a B± Monte Carlo particle but discarded because of certain flags.

114

7.5. Discussion of Signal Definition

/ GeVbcm
5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285

En
er

gy
 fr

om
 w

ro
ng

 p
ho

to
ns

 /
G

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

100

200

300

400

500

600

700

800

Figure 7.12.: Energy from photons originating from (daughters of) the other B meson plotted
over the beam-constrained mass mbc for hadronic B+ candidates. Only candid-
ates which are associated to Υ(4S) and thus marked as incorrect by the standard
MC matching procedure are shown.

more flat, non-peaking background shape. For candidates which are discarded because of
certain Monte Carlo matching flags (see Table 4.1), the most common flags are c_MisID
and c_MissGamma, with the fraction of mis-identified candidates increasing significantly for
harder cuts on the classifier output. The fraction of candidates with missing photons, on the
other hand, is reduced with higher cuts, as this type of misreconstruction produces shifts in
∆E (see Section 5.1), which is an input to the multivariate classifier.

The mbc distribution of candidates that would be accepted in addition to those from
‘isSignal’ for a certain sum of wrong photon energies Ewrong is shown in Figure 7.12. Since
no fully correct candidates are included, energies start at values slightly above zero. Most
candidates with an Ewrong less than 400 MeV in fact have beam-constrained masses close
to the B mass, and only a relatively small tail toward lower values. For more conservative
use-cases, smaller cut values can be used. For example, limiting the wrong energy to values
below 100 MeV results in candidates with significantly less deviation from the B mass while
still retaining about half the candidates a looser cut might include. It is likely possible to
further refine the criteria, e.g. by using the maximum energy of mis-assigned photons instead
of the sum and/or the number of mis-assigned photons. Even with the relatively loose cut
Ewrong < 400 MeV, most candidates in the signal region cannot be distinguished from entirely
correct candidates in either mbc or ∆E , as can be seen in Figure 7.13.

The effect of the alternative signal definition on the efficiency and purity of the produced
candidates can be seen in Figure 7.14. Given that these additional candidates cannot easily
be separated in either ∆E or mbc from entirely correct candidates, efficiencies relevant for
analyses (or obtained from fits to the data) may be significantly higher than shown Figures 7.8

115

7. Estimation of Physics Performance

 E / GeV∆
0.4− 0.2− 0 0.2 0.4

E
nt

rie
s

pe
r

10
 M

eV

0

5000

10000

15000

20000

25000

30000

Figure 7.13.: ∆E distribution for hadronic B+ candidates passing ‘isSignal’ (blue) and for
additional candidates that would be included when using the alternative sig-
nal definition with Ewrong < 400 MeV (red). The additional candidates follow a
slightly broader distribution, but most lie near ∆E = 0 and are not easily identifi-
able. Only candidates fulfilling |∆E | < 0.5 and mbc > 5.27GeV are shown.

Purity (%)
0 20 40 60 80 100

E
ffi

ci
en

cy
 (

%
)

0

0.2

0.4

0.6

0.8

1

(a) Btag candidates from hadronic decays.

Purity (%)
0 10 20 30 40 50 60 70 80 90

E
ffi

ci
en

cy
 (

%
)

0

0.2

0.4

0.6

0.8

1

1.2

(b) Btag candidates from semileptonic decays.

Figure 7.14.: Efficiency–purity curves for Btag candidates using the alternative signal defin-
ition (see text). B+ candidates are shown in red, B 0 candidates in blue. Cf.
Figures 7.8 and 7.9.

116

7.6. Summary and Conclusions

and 7.9, and much closer to those using the alternative signal definition. In practise, the
amount of acceptable candidates will also depend on the signal-side selection and should be
evaluated for each analysis.

7.6. Summary and Conclusions

In this chapter, a large-scale training of the Full Event Interpretation was studied on Monte
Carlo, and performance indicators relevant to its effect on physics analysis compiled in the
form of efficiency–purity curves. The resulting maximal efficiencies greatly surpass those of
the Full Reconstruction algorithm used at Belle, both in hadronic and semileptonic B decay
modes, while also providing a larger range of purities. Since the signal definition used for
these efficiencies is quite conservative, real world applications may see even greater numbers
of candidates.

An analysis relying on the Full Event Interpretation (in generic training mode) to produce
hadronic tag-side B meson candidates thus receives more than twice the number of can-
didates, compared to an estimate using the reconstruction efficiencies of the predecessor
algorithm at Belle. While efficiencies for semileptonic B mesons are only about 30 % higher,
it becomes much easier to use them, as semileptonic B modes are part of the standard
configuration and created alongside the hadronic modes. When creating an analysis-specific
training of the FEI, further gains in efficiency are expected.

A number of opportunities for further improvement have been identified. These include
adding missing high-branching-ratio decay modes to the channel configuration, further
optimisation of the multivariate classifier trainings, and providing a more efficient best-
candidate-selection procedure to users.

117

8. FEI on Converted Belle Data

The previous chapter estimated the effect that using the Full Event Interpretation at Belle II
would have on a physics analysis, by primarily looking at the efficiency and purity of the
reconstruction. Compared to the Full Reconstruction at Belle, a very significant increase in
reconstruction efficiency could be observed, but very different factors may have contributed
to it. Besides algorithmic improvements, these include bias from using Monte Carlo, the
absence of beam background in the simulation, or improvements in the tracking or particle
identification detector or software components. This last aspect, in particular, would be very
difficult to study using Belle II Monte Carlo alone.

However, the recent creation of modules to convert Belle mDST data into the Belle II
format also enables tests of the same algorithm on Belle Monte Carlo and data, which will be
discussed in the following sections.

8.1. Conversion of Belle mDST Data

In an effort to make use of the improved Belle II software to analyse data recorded by the Belle
experiment, a task-force was created to implement an appropriate conversion procedure.
As the necessary input for physics analyses, only the mDST file format was targeted. DST
files, which contain raw data including detector hits, are deeply linked with geometry and
calibration information stored elsewhere and would be much harder to convert than their
processed output. Thus, reprocessing of raw Belle data to, e.g., profit from improved track
reconstruction will not be possible.

As already briefly described in Chapter 3, the Belle software used its own I/O format called
Panther, which differs greatly from the ROOT-based file format used by Belle II. For the
conversion of both the file format and the stored contents (i.e. translating Belle objects to
Belle II objects), multiple options were considered:

• Saving Belle II mDST files from within the Belle software. This would entail integrating
data classes and ROOT I/O into the Belle software framework and keeping it up-to-date.
The conversion also would only be possible for people familiar with the old software.

• Reading Belle mDST files from within BASF2. For this option, the parts responsible
for I/O as well as the Panther table definitions would need to be extracted and made
available to BASF2. This option would allow saving disk space in many cases since
Belle mDST files could be used as input for the Belle II analysis tools, without any
separate conversion step. The possibility of reading Belle data in the new software also
addresses the need for data preservation, since it avoids the need for maintaining the
entirety of the legacy software and ensuring compatibility with modern computing
systems [11, p. 58].

119

8. FEI on Converted Belle Data

• A stand-alone conversion tool that reads Belle mDST and saves their content in Belle II
mDST format.

Given its various advantages, the second option was deemed the most appropriate, and a
b2bii package was created in BASF2 to house the necessary conversion software.

A central module to the conversion software is the B2BIIMdstInput module, which reads
events from Panther files and makes the stored tables available through a set of global
manager objects. As an intermediate step, the B2BIIFixMdst module is used on Monte
Carlo simulations to apply similar filters as are present on recorded detector data. It also
applies a large number of experiment- and run-dependent corrections and calibrations to
various reconstructed objects. The filtering is implemented using a module condition (see
Section 3.3.1).

The B2BIIConvertMdst module then accesses the data and converts them into BASF2
objects, which are added to the data store (see Section 3.2). The conversion itself differs for
each affected class, since the data formats differ significantly between both experiments. For
the following entities a conversion exists:

Tracks Charged tracks are converted from the Mdst_charged table into the corresponding
Belle II objects, Track and TrackFitResult.

Particle identification (partial) For each charged track, the associated particle identifica-
tion information is extracted for the CDC, ACC, and TOF detectors (see Section 2.2.2),
as well as the KLM for muon identification, and stored as separate log-likelihoods in a
PIDLikelihood object. A simple mapping of ACC to ARICH and TOF to TOP is used
to store the log-likelihoods for detectors not present at Belle II in the same object.

ECL clusters Clusters in the electromagnetic calorimeter are converted from Mdst_ecl
table entries into ECLCluster objects, which can be used to reconstruct photons or
be associated with tracks.

Monte Carlo particles Information on the true Monte Carlo decays used to generate the
event are available on simulated data in the Gen_hepevt table. They are converted to
MCParticle objects.

Photons andπ0 At Belle, preselected lists of photons and π0 particles are part of the mDST
in the form of Mdst_gamma and Mdst_pi0 tables. They are converted to Particle
objects and appropriate particle lists created to allow usage in further combinations.

‘V’-shaped tracks Two charged tracks forming a ‘V’ some distance away from the interaction
region are found in the Mdst_vee table and converted to V0 objects.. They can be
used to improve the reconstruction efficiency for decays like K 0

S →π+π− or photons
converting into e+e− pairs before reaching the calorimeter.

Beam parameters The measured beam energies for the low- and high-energy ring, as well
as the angle between both beams are retrieved from a database server and stored in a
BeamParameters objects in the data store. As the z axis definition has been changed
for Belle II (see Section 2.1), this information is also saved. In the analysis tools, these
energies and angles are automatically used for transformations (e.g. into the center-of-
mass system) and dependent variables like mbc and ∆E .

120

8.2. Monte Carlo Sample

Relations (see Section 3.2) between the created objects (e.g. from tracks to Monte Carlo
particles) are created from indices used for that purpose at Belle.

For some tables present in the Belle mDST format, no conversion has been implemented
yet. The most important of these missing items is arguably the electron identification using
the ECL, which regrettably is not provided as an independent set of likelihoods, as is the
case for Belle II. Currently, identification of electrons on Belle mDST thus relies on the
other PID detectors and allows some separation. Clusters in the KLM detector are not
currently converted, but might be useful for forming K 0

L candidates. Data from the EFC (see
Section 2.2.4) is also not converted and would likely require a dedicated class for storage,
as there is no similar subsystem in Belle II. Information on the size and position of the
interaction region, which would be useful for performing constrained vertex-fits, is also
not available yet. A side effect of the conversion is that the produced ROOT files are on
average 55 % smaller than the original Panther mDST files, likely as a result of both improved
compression in TTree and missing or skipped conversion of some objects.

For the Full Event Interpretation, the converted objects currently available should be
enough to create a reasonable training, albeit with a somewhat reduced performance due
to incomplete particle identification information for electrons. In the following sections, a
generic FEI training (see Section 6.6.1) will be performed on converted Belle Monte Carlo.

8.2. Monte Carlo Sample

The study was performed on a Monte Carlo sample of 1.7 million B 0B 0 and 1.7 million B+B−

events of Belle’s experiment 61. In contrast to that used for the Belle II study in the previous
chapter, this sample contains beam background, which for Belle was created by adding the
detector output for randomly triggered events on real data after the detector simulation [11,
p. 50]. As in the previous chapter, no continuum background was included in the training
Monte Carlo sample. The provided lists of photon and π0 candidates, as well as V0 objects
for K 0

s , are not used in the training, and the particles combined manually instead.

8.3. Training

The training itself was similar to the one performed for Belle II, and used the default configur-
ation with practically no adjustments. The PID performance of Belle, however, is significantly
worse than expected for Belle II, which motivates some differences. Performance degradation
is obvious when looking at Figure 8.1, where the separation from other hypotheses for both
electrons and kaons is inferior to that of Belle II. Since for kaons all available likelihoods
are included in the conversion, the differences there can be attributed to the improved
particle identification systems at Belle II. For electrons, the difference is not as large, and is
expected to decrease when information from the electromagnetic calorimeter is added. As
this decreased separation between particle hypotheses would produce significantly more
final-state particle candidates for each hypothesis and subsequently much greater numbers
of candidates for combined particles, the post-classifier cuts (see Section 6.3.3) are tightened
to 0.2 for final-state particles (from 0.1).

121

8. FEI on Converted Belle Data

(a) Belle II electron ID. (b) Belle electron ID.

(c) Belle II kaon ID. (d) Belle kaon ID.

Figure 8.1.: Purity–efficiency plots for electron (top) and kaon (bottom) classification train-
ings, comparing performance on Belle II (left) and Belle Monte Carlo (right). For
electron identification at Belle, no information from the ECL was used.

122

8.3. Training

Figure 8.2.: Event display of a Belle Monte Carlo event, showing multiple semi-circles in the
upper left for a curling track. N.B.: The Belle II geometry is shown here; in Belle
the SVD is smaller and no PXD exists.

Another difference between the two data samples is the tracking performance: For Belle,
charged particles curling inside the central drift chamber – i.e. with insufficient transverse
momentum to reach the outer detectors – were usually not reconstructed once, but as
multiple semi-circles, which can be seen in Figure 8.2. This can artificially increase the
number of candidates for charged tracks in some events in a way that is not expected at
Belle II. For Belle analyses, no established of merging these tracks exists. Instead, these tracks
were commonly discarded by adding cuts on the impact parameters of tracks. Also, the lack
of a standalone track-finding algorithm for the silicon detectors meant lower reconstruction
efficiencies for low-momentum tracks.

This – with 40 GB total input file size relatively small – training was performed on a single
Core i7-4770 CPU with 4 cores (plus HyperThreading) using the parallel processing feature
introduced in Section 3.5 and completed in less than a week. Since no on-disk cache of
intermediate particles was used, the final B level stage consumed 206 hours of CPU time
in total for reconstruction tasks alone, ignoring the time taken up by trainings, I/O, or the
overhead of the interprocess communication.

The efficiencies reported for final-state particles after completion of the training are shown
in Table 8.1. Efficiencies greater than one can be seen for pions and kaons, these are an
artefact of the efficiency employed by the FEI, which includes the duplicated tracks already
seen in Figure 8.2. Since real tracking efficiencies (for primary particles) on Monte Carlo are
around 82 % for electrons, and between 90 and 94 % for pions, kaons and muons, the table
suggests an overestimation of the efficiency of up to 30 %. It is unclear what, e.g., the strong
efficiency reduction for charged kaons through the post-cut means for the actual efficiency.
This increases the number of candidates (and thus the combinatorics) significantly for some
events, and it might be beneficial to combine or reject tracks to reduce this effect. The

123

8. FEI on Converted Belle Data

Table 8.1.: Final-state particle efficiency and purity, showing values before and after the
applied post-cut. Efficiencies greater than 100 % are due to duplicated tracks (see
text).

Final-state Efficiency in % Purity in %
particle recon. post-cut recon. post-cut

π+ 105.41 102.33 49.701 60.145
e+ 89.21 66.68 3.283 66.758
µ+ 97.72 46.55 2.853 77.037
K + 120.15 79.42 12.547 67.361
γ 95.31 83.90 29.125 52.837

Table 8.2.: Per-particle efficiency and purity before and after the applied user-, pre-classifier-
and post-classifier-cuts.

Efficiency in % Purity in %
recon. user-cut pre-cut post-cut recon. user-cut pre-cut post-cut

π0 76.87 63.64 31.91 2.636 5.606 41.744
K 0

S 67.33 56.52 37.91 1.133 2.656 75.449
D0 19.94 15.34 7.89 0.008 0.101 19.955
D+ 14.53 11.15 5.57 0.004 0.097 20.810

D+∗ 4.07 3.83 3.21 0.720 1.158 37.726
D0∗ 3.13 3.10 1.45 0.191 0.338 14.558
D+

s 10.05 6.90 3.01 0.002 0.100 17.819
D+∗

s 2.45 2.41 1.34 0.444 0.795 14.406
J/ψ 9.07 7.46 7.46 1.943 41.737 41.737
B+

had 0.47 0.42 0.34 0.32 0.001 0.084 0.208 0.209
B+

sl 0.64 0.61 0.61 1.142 2.044 2.044
B 0

had 0.37 0.33 0.25 0.25 0.002 0.185 0.529 0.529
B 0

sl 1.07 0.99 0.99 0.900 1.948 1.948

124

8.4. Results

efficiencies and purities can be compared with those in Table 6.4 on page 84, which shows

results for a similar small training on Belle II Monte Carlo (1 million B 0B 0 events, with a
post-classifier cut of 0.1). For charged tracks, some differences in efficiencies and purities
can be seen, but are likely influenced by the aforementioned duplicated tracks; given the
decreased separation power of the associated classifiers, real efficiencies are likely to be lower
than at Belle II. For photons, the post-classifier cut efficiency and purity values do not differ
greatly between both trainings, while the purity at reconstruction level (29 % for Belle vs. 54 %
for Belle II Monte Carlo) shows the effect of added beam background in the Belle sample. The
reasonable purity and efficiency after applying a cut on the classifier output thus indicate
that the background can be suppressed easily and without additional effort.

Similarly, the efficiencies and purities of combined particles can be found in Table 8.2.
Purity values are somewhat similar to those in Table 6.5, but for most particles, efficiencies
are reduced. Since the amount of excluded decay channels in both samples is quite similar,
this is likely caused by a reduced (real) efficiency of final-state particles. As for particles other
than B mesons no correction is performed to exclude candidates reconstructed correctly
multiple times (e.g. through duplicated tracks), the actual values are likely to be lower. The
post-classifier cut efficiencies for B meson candidates reconstructed in hadronic decay
channels are 0.32 % for B+ and 0.25 % for B 0, which suggests a performance similar to the
Full Reconstruction algorithm, and also similar to that of a FEI training with only a small set
of Belle II Monte Carlo.

Many channels, however, have been excluded due to statistics insufficient for training
a multivariate classifier. An overview of the number of included decay modes is given
in Table 8.3, and shows that hadronic modes of B mesons are most strongly affected. In
particular, all channels including D+(∗)

s or J/ψ have been removed, which are quite useful due
to their high purity. Most semileptonic B decay modes, on the other hand, are included. It
should be noted that even for included channels, the remaining number of correct candidates
might be barely above the threshold for inclusion, which at 1 000 candidates might produce
suboptimal classifier trainings.

8.4. Results

The efficiencies and purities for a sample that includes continuum background and makes
use of a more realistic selection are evaluated in the following. When continuum background
in proportion to the number of BB̄ pairs is added, the size of the data sample rises to 12.9
million events (with a total file size of 132 GB). As in Section 7.3, a best-candidate selection
using the classifier output as a ranking variable is performed on each of the four B particle
lists.

Figure 8.3 shows the distribution of the classifier output for hadronic and Figure 8.4 for
semileptonic B meson candidates. Similar to the plots on p. 106f., continuum background
dominates everywhere except for the highest classier outputs. Again, both the combinatorial

background from the B+B− and B 0B 0 Monte Carlo components as well as candidates created
from continuum background are greatly suppressed for higher values. Candidates with a
classifier output below 0.15 are not shown, but again contain large amounts of background,
with hundreds of thousands of candidates, mostly from continuum background. Since the
total number of candidates is much less than for the larger training in the previous chapter,

125

8. FEI on Converted Belle Data

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

200

400

600

800

1000

 hadronic+B hadronic+B

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

100

200

300

400

500

600

700

 hadronic0B hadronic0B

Figure 8.3.: Distributions of the multivariate classifier output for hadronic B decay channels.
Correctly reconstructed candidates are shown in orange, background from B+B−

events in blue, from B 0B 0 events in green, and continuum background in gray.
Large numbers of background candidates are found at values below 0.15; for
clarity, these are omitted.

126

8.4. Results

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

 semileptonic+B semileptonic+B

Classifier output
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

rie
s

pe
r

0.
00

5

0

200

400

600

800

1000

1200

1400

1600

1800

 semileptonic0B semileptonic0B

Figure 8.4.: Distributions of the multivariate classifier output for semileptonic B decay chan-
nels. Correctly reconstructed candidates are shown in orange, background from

B+B− events in blue, from B 0B 0 events in green, and continuum background in
gray. Large numbers of background candidates are found at values below 0.15;
for clarity, these are omitted.

127

8. FEI on Converted Belle Data

Table 8.3.: Number of decay modes used compared to the number of modes present in the
configuration for all types of combined particles in the training.

Particle Used decay channels

π0 1 / 1
K 0

S 1 / 1
J/ψ 2 / 2
D0 12 / 14
D+ 10 / 10
D+∗ 1 / 1
D0∗ 2 / 2
D+

s 8 / 10
D+∗

s 1 / 2
B+

had 7 / 24
B+

sl 8 / 8
B 0

had 7 / 22
B 0

sl 6 / 8

shortcomings of the multivariate classifiers become more apparent. This results in prominent
spikes in the classifier output, which again are the result of the transformation applied on
the raw output to make it more probability-like and which needs to perform more work to
correct the output of low-statistic trainings. Consequently, the size and position of these
features also varies by decay mode, meaning they are less visible when more decay modes
are included.

Figures 8.7 and 8.8 show the distributions in the control variables mbc and cosθB ,D (∗)l for
different cuts on the classifier output. As before, the plots show a great reduction of the
background components when applying the cuts, leading to very pure samples with the
hardest cuts. The plots can be compared to Figures 7.6 and 7.7 on p. 108f. For B meson
candidates created in semileptonic decay modes the suppression of background appears
to be somewhat less than in the Belle II training, which might be caused by the worse per-
formance of the PID, in particular missing electron ID information from the electromagnetic
calorimeter.

The efficiency and purity of candidates for different cut values is shown in Figure 8.7
for hadronic, and in Figure 8.8 for semileptonic B candidates. Only candidates in the sig-
nal region mbc > 5.27 GeV, |∆E | < 0.5 GeV (for hadronic modes) and |cosθB ,D (∗)l | < 2 (for
semileptonic modes) are considered, and the stricter signal definition of ‘isSignal’ or ‘isSig-
nalAcceptMissingNeutrino’ is used (see Section 7.5). When comparing these values with
those shown in Figures 7.8 and 7.9 (p. 111), it is evident that much lower total efficiencies
are reached in this training in all categories. For harder cuts on the classifier output, the
reduced statistics produce significant fluctuations at higher purities. Compared with the
post-cut efficiencies for B mesons listed in Table 8.2, the visible efficiencies are again reduced
significantly because of the best-candidate selection and signal region cut.

The efficiencies shown here also remain below those achieved by the Full Reconstruction
algorithm at Belle (see Figure 5.4), with different factors contributing to the decrease: For

128

8.4. Results

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

1000

2000

3000

4000

5000

6000

7000

 hadronic+B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

200

400

600

800

1000

1200

1400

 hadronic (Classifier output > 0.01)+B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

100

200

300

400

500

600

 hadronic (Classifier output > 0.1)+B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

50

100

150

200

250

 hadronic (Classifier output > 0.5)+B

(a) mbc for hadronic B+ candidates.

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

500

1000

1500

2000

2500

3000

 hadronic0B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

200

400

600

800

1000

 hadronic (Classifier output > 0.01)0B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

100

200

300

400

500

 hadronic (Classifier output > 0.1)0B

 / GeVbcm
5.24 5.245 5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
nt

rie
s

pe
r

0.
00

05
 G

eV

0

20

40

60

80

100

120

140

160

180

 hadronic (Classifier output > 0.5)0B

(b) mbc for hadronic B 0 candidates.

Figure 8.5.: Control plots for hadronic B+ (left) and B 0 candidates (right), for (from top to
bottom) no cut, oMVA > 0.01, 0.1 and 0.5. Correctly reconstructed candidates are

shown in orange, background from B+B− events in blue, from B 0B 0 events in
green, and continuum background in gray.

129

8. FEI on Converted Belle Data

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

2000

4000

6000

8000

10000

12000

14000

16000

 semileptonic+B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

2000

4000

6000

8000

10000

12000

 semileptonic (Classifier output > 0.01)+B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

500

1000

1500

2000

2500

3000

3500

4000

 semileptonic (Classifier output > 0.1)+B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

20

40

60

80

100

120

140

160

 semileptonic (Classifier output > 0.5)+B

(a) cosθB ,D(∗)l for semileptonic B+ candidates.

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 semileptonic0B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

2000

4000

6000

8000

10000

 semileptonic (Classifier output > 0.01)0B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

 semileptonic (Classifier output > 0.1)0B

l
(*)

B,D
θcos

10− 8− 6− 4− 2− 0 2 4 6 8 10

E
nt

rie
s

pe
r

0.
2

0

200

400

600

800

1000

 semileptonic (Classifier output > 0.5)0B

(b) cosθB ,D(∗)l for semileptonic B 0 candidates.

Figure 8.6.: Control plots for semileptonic B+ (left) and B 0 candidates (right), for (from top
to bottom) no cut, oMVA > 0.01, 0.1 and 0.5. Correctly reconstructed candidates

are shown in orange, background from B+B− events in blue, from B 0B 0 events in
green, and continuum background in gray.

130

8.4. Results

Purity (%)
0 20 40 60 80 100

E
ffi

ci
en

cy
 (

%
)

0

0.02
0.04

0.06

0.08

0.1

0.12

0.14

0.16
0.18

0.2

0.22

Figure 8.7.: Efficiency–purity curves for Btag candidates reconstructed in hadronic channels.
Values for purity and efficiency were determined in the signal region mbc >
5.27GeV. B+ candidates are shown in red, B 0 candidates in blue.

Purity (%)
0 10 20 30 40 50 60 70 80 90

E
ffi

ci
en

cy
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

Figure 8.8.: Efficiency–purity curves for Btag candidates reconstructed in semileptonic chan-
nels. Values for purity and efficiency were determined in the signal region
|cosθB ,D (∗)l | < 2. B+ candidates are shown in red, B 0 candidates in blue.

131

8. FEI on Converted Belle Data

hadronic channels, this training used significantly fewer B decay modes than the Full Recon-
struction, as can be seen by comparing Table 6.3 and Table 8.3. While this is not the case
for semileptonic channels (where more decay modes are used), the semileptonic modes
are more strongly affected by low efficiencies for electrons and muons. The relatively low
statistics for B meson trainings do not influence the total efficiency, as no post-classifier cuts
are applied at B level. They do, however, affect the shape of the efficiency–purity curves, and
reduce the maximum possible purity.

8.5. Summary and Conclusions

In this chapter, the conversion of Belle mDST files into the Belle II format was introduced. It
allows users performing an analysis on Belle data to use the more advanced analysis tools
available in the Belle II software, which in turn also enables analysis software developers to
receive feedback and fix shortcomings early. Within the scope of this thesis, the conversion
of PID information and of beam parameters was added, as well as the robustness of reading
Panther tables improved so as to be able to convert larger Monte Carlo samples.

Building on this conversion, a training of the Full Event Interpretation on a – compared to
the sample used in the previous chapter – small set of Belle Monte Carlo was presented. This
demonstrates both the possibility of using the FEI on Monte Carlo and data created by the
predecessor experiment, but also that one can achieve quite reasonable performance with a
training performed on a single 4-core machine. The reconstruction efficiency of this small-
scale training is similar to that of a training of similar size on Belle II Monte Carlo, but remains
below that presented in the previous chapter or that achieved by the Full Reconstruction
algorithm.

Since the Belle Monte Carlo data sample contains beam background, it becomes possible
to estimate the effect that adding this background would have for the training on Belle II
Monte Carlo in the previous chapter. The expected impact is highest for photons, since each
event typically contains a number of calorimeter clusters created through beam background.
This is noticeable in the purity for reconstructed photons, but the post-cut efficiency and
purity confirm that the multivariate classifiers are able to efficiently filter the clusters in
question. The performance of particle identification at Belle is reduced compared to Belle II,
which necessitates harder post-cuts for final-state particles to be able to efficiently reduce
the number of candidates. A Belle-specific problem that became visible was the amount
of duplicated tracks in the sample, which will need to be suppressed separately. These two
issues and the post-classifier cuts currently necessary to mitigate them result in significant
decreases in efficiency.

However, when comparing the resulting efficiencies with those achieved on a training on
a similarly-sized Belle II Monte Carlo sample, efficiencies do not differ greatly. This can be
seen in Table 8.4, which summarises the number of channels and efficiencies for hadronic
B 0 candidates for both FEI and Full Reconstruction trainings. Since for the small Belle II FEI
training, decreased efficiencies can be attributed largely to the large number of excluded
channels, it is likely that a larger input sample also results in similar gains in efficiency for
Belle as seen on Belle II Monte Carlo.

As demonstrated in this chapter, the Full Event Interpretation thus can also be used with
Belle mDST as input, with only minor changes to the configuration. With some optimisation

132

8.5. Summary and Conclusions

Table 8.4.: Comparison of the number of included channels and efficiencies for hadronic B 0

candidates for different trainings. Sample size refers to the number of B 0B 0 events
used for the training, post-cut efficiencies are taken from the automatic reporting.
The exact sample size for the Full Reconstruction training is unknown, but for B
mesons appears to have been at least one stream of exp. 65 [67, p. 71].

sample size channels measured eff. post-cut eff.

Belle II FEI 1 million 6 0.30 %
FEI 40 million 20 0.40 % 0.51 %

Belle FEI 1.7 million 7 0.16 % 0.25 %
FR >20 million 15 0.19 %

and larger input samples, trainings are likely to improve significantly and provide higher
reconstruction efficiencies for hadronic and semileptonic candidates. Additionally, improve-
ments inherent to the new FEI algorithm – like analysis-specific trainings – also become
available to Belle analyses.

133

9. Conclusions

As stated in the introduction, a key point of the Belle II experiment is the expected factor
40 increase in instantaneous luminosity compared to the Belle experiment. Luminosity,
however, is not the only factor influencing the competitiveness of physics analyses; the
robustness of the underlying tools and how much time analysts can spend on optimising
their selection procedure are important factors as well.

Within the scope of this thesis, the software framework BASF2, used at Belle II for applic-
ations ranging from the high-level trigger to physics analyses, was significantly improved.
This includes a more consistent interface for exchanging data with other modules, the ability
to create modules in Python and to utilise multiple cores in BASF2 to harness the features
of modern CPUs while reducing memory requirements. Additionally, an interactive three-
dimensional event display for the experiment was created, which serves both debugging and
outreach applications.

A novel feature of BASF2 is the modularity of the analysis tools, which provide generic
and tested implementations of steps commonly encountered during a physics analysis. As
a consequence, users no longer need to spend time on repeatedly implementing standard
tasks for each analysis, but can rely on the functionality of the provided tools. Using common
tools also has the advantage of making analyses more reproducible, and making bugs in
individual analysis steps much less likely.

Building on these tools and the advanced features added to BASF2, an automated frame-
work for the hierarchical reconstruction of B mesons was developed. This framework, called
Full Event Interpretation, uses a relatively simple configuration to define particles and their
decay modes, creates appropriate reconstruction tasks and resolves dependencies between
them. To ensure that this reconstruction can be performed in a limited time, background-
reducing cuts are applied in multiple levels and without any user interaction. Crucially, a
multivariate classifier is trained for each decay channel to increase the potency of these cuts,
while channels with statistics insufficient for a viable training are discarded. Since it would be
very inefficient to manually evaluate the results produced in these hundreds of steps, the FEI
automatically produces a report listing the efficiencies and purities of the selections applied
and contains control plots both for each decay channel and for the B meson candidates that
are its final output, as well as other useful information. The algorithm is also easy to extend
and maintain, and has a modular code base that is one-seventh the size of its predecessor at
Belle. The FEI makes full use of the capabilities of both the analysis tools and the framework
itself, and has been tremendously helpful in finding – and fixing – a number of issues within
them.

The Full Event Interpretation is expected to have a large impact on physics analyses at
Belle II, with a doubled reconstruction efficiency compared to Belle. The complete automa-
tion of the training procedure also allows users to create a training that is optimised for their
specific signal-side selection, by using the event minus the signal-side as input. Since this

135

9. Conclusions

procedure discards a large number of background candidates, the classifier trainings become
more attuned to the distributions of candidates in this data sample. Consequently, cuts on
the output of these classifiers are less likely to discard correct candidates, resulting in further
significant increases in efficiencies. With an analysis-specific training, the prior distributions
of variables used in the training are also identical or very close to those in the final analysis.
Thus, the classifier output for B meson candidates can be interpreted as a probability for
the candidate to be correct. For a generic (i.e. not analysis-specific) training, this is not the
case and tag-side candidates that cannot be correctly combined with a signal-side selection
may have a higher classifier output. In addition to hadronic B decay channels, the Full Event
Interpretation also includes semileptonic channels, for which reconstruction efficiencies are
much higher. Contrary to the situation at Belle, both types of candidates are provided by the
same configuration.

Recent additions to the software also allow the use of Belle data and Monte Carlo simu-
lations within BASF2. While not all available information is converted yet, the Full Event
Interpretation algorithm thus can also be used for the existing data, while only requiring
minimal modifications to its configuration.

The refined tools presented in this thesis are expected to improve many analyses by
providing a robust basis for physics analyses that allows users to concentrate on physics
instead of programming, which in turn allows for better measurements. Similarly, the Full
Event Interpretation delivers a reconstruction efficiency that is over a factor of two higher
than that of its predecessor at Belle for a similar training. Through the conversion of Belle data
into the BASF2 data format, these improvements – in particular the analysis-specific training
mode of the FEI – are also available to Belle analyses. Accordingly, significant improvements
can be expected in the reconstruction efficiency for certain analyses, half a decade after the
Belle experiment stopped recording data, while at the same time allowing real-world tests of
the Belle II software.

136

Appendix

137

A. Example FEI Report for a Small Training

This report1 contains key performance indicators and control plots of the Full Event Inter-
pretation algorithm, for a training on 4000000 events. The user-, pre-, and post-cuts as well
as trained multivariate selection methods are described. Furthermore the resulting purities
and efficiencies are stated. In 0.20 % of the events the Full Event Interpretation reconstructed
a final particle (B0) correctly.

A.1. Summary

For each final-state particle a multivariate selection method is trained without any previous
cuts on the candidates. Afterwards, a post cut is applied on the signal probability calcu-
lated by the method. This reduces combinatorics in the following stages of the Full Event
Interpretation.

Table A.1.: Final-state particle efficiency and purity before and after the applied post-cut.

Final-state Efficiency in % Purity in %
particle recon. post-cut recon. post-cut

π+ 78.66 78.20 66.894 83.504
e+ 70.02 64.68 4.872 65.700
K + 79.50 77.37 12.220 71.442

For each decay channel of each intermediate particle a multivariate selection method is
trained after applying a fast pre-cut on the candidates. Afterwards, a post-cut is applied on
the signal probability calculated by the method. This reduces combinatorics in the following
stages of the Full Event Interpretation. For some intermediate particles, in particular the final
B mesons, an additional user-cut is applied before all other cuts.

1 The following pages were automatically generated at the end of the training described. Some parts were edited
for visual consistency.

139

A. Example FEI Report for a Small Training

cosThetaBetweenParticleAndTrueB
10− 5− 0 5 10

0

500

1000

1500

2000

2500

3000

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.01}

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.01}

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.01 && !isSignalAcceptMissingNeutrino}

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.1}

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.1 && !isSignalAcceptMissingNeutrino}

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.5}

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.5 && !isSignalAcceptMissingNeutrino}

cosThetaBetweenParticleAndTrueB {abs(cosThetaBetweenParticleAndTrueB) < 10 && extraInfoSignalProbability > 0.01}

Figure A.1.: CosThetaBDL of all final B 0 candidates with different cuts on the signal probabil-
ity. Dashed lines represents only background candidates. Solid lines represent all
candiates.

purity (%)
0 20 40 60 80 100 120

ef
fic

ie
nc

y
(%

)

0

0.02

0.04

0.06

0.08

0.1

Figure A.2.: Purity over efficiency of all final B 0 candidates with different cuts on the signal
probability.

140

A.2. CPU time per channel

Table A.2.: Per-particle efficiency and purity before and after the applied user-, pre- and
post-cut.

Particle Efficiency in % Purity in %
recon. user-cut pre-cut post-cut recon. user-cut pre-cut post-cut

D+ 5.48 5.21 5.00 0.434 4.983 13.600
B 0 0.10 0.10 0.10 2.059 3.504 3.504

A.2. CPU time per channel

Table A.3.: Total CPU time spent in event() calls for each channel. Bars show ParticleLoader,
ParticleCombiner, ParticleVertexFitter, MCMatching, TMVAExpert, Other, in this
order. Does not include I/O, initalisation, training, post-cuts etc.

Decay CPU time by module per (true) candidate Relative time

π+ 29m50s 207µs (207µs) 25.48%

e+ 28m16s 934µs (934µs) 24.15%

K + 27m40s 365µs (365µs) 23.64%

D+ → K − π+ π+ 26m59s 452µs (—) 23.05%

B 0
sl → D− e+ 4m18s 1ms (31ms) 3.68%

Total 1h57m 100.00%

141

A. Example FEI Report for a Small Training

A.3. Particle configuration

pi+:generic
PostCutConfiguration : value=0.1
MVAConfiguration : name=FastBDT , type=Plugin , config=!H : ! V : NTrees=100:Shrinkage=0.10:

RandRatio= 0 . 5 :NCutLevel=8:NTreeLayers=3 , target=isPrimarySignal
Variables : eid , eid_dEdx , eid_TOP , eid_ARICH , eid_ECL , Kid , Kid_dEdx , Kid_TOP ,

Kid_ARICH , prid , prid_dEdx , prid_TOP , prid_ARICH , muid , muid_dEdx ,
muid_TOP , muid_ARICH , muid_KLM , p , pt , pz , dr , dz , chiProb

e+:generic
PostCutConfiguration : value=0.1
MVAConfiguration : name=FastBDT , type=Plugin , config=!H : ! V : NTrees=100:Shrinkage=0.10:

RandRatio= 0 . 5 :NCutLevel=8:NTreeLayers=3 , target=isPrimarySignal
Variables : eid , eid_dEdx , eid_TOP , eid_ARICH , eid_ECL , Kid , Kid_dEdx , Kid_TOP ,

Kid_ARICH , prid , prid_dEdx , prid_TOP , prid_ARICH , muid , muid_dEdx ,
muid_TOP , muid_ARICH , muid_KLM , p , pt , pz , dr , dz , chiProb

K+:generic
PostCutConfiguration : value=0.1
MVAConfiguration : name=FastBDT , type=Plugin , config=!H : ! V : NTrees=100:Shrinkage=0.10:

RandRatio= 0 . 5 :NCutLevel=8:NTreeLayers=3 , target=isPrimarySignal
Variables : eid , eid_dEdx , eid_TOP , eid_ARICH , eid_ECL , Kid , Kid_dEdx , Kid_TOP ,

Kid_ARICH , prid , prid_dEdx , prid_TOP , prid_ARICH , muid , muid_dEdx ,
muid_TOP , muid_ARICH , muid_KLM , p , pt , pz , dr , dz , chiProb

D+:generic
All channels use the same MVA configuration
MVAConfiguration : name=FastBDT , type=Plugin , target=isSignal , config=!H :

! V : NTrees=100:Shrinkage=0.10:RandRatio= 0 . 5 :NCutLevel=8:
NTreeLayers=3

Shared Variables : daughterProductOf (extraInfo (SignalProbability)) , daughter (0 ,
extraInfo (SignalProbability)) , daughter (1 ,extraInfo (SignalProbability
)) , daughter (2 ,extraInfo (SignalProbability)) , chiProb ,
daughter (0 , chiProb) , daughter (1 , chiProb) , daughter (2 ,
chiProb) , useRestFrame (daughter (0 , p)) , useRestFrame (daughter (1 ,
p)) , useRestFrame (daughter (2 , p)) , useRestFrame (daughter (0 ,
distance)) , useRestFrame (daughter (1 , distance)) , useRestFrame (daught

er (2 , distance)) , decayAngle (0) , decayAngle (1) , decayAngle (2) ,
cosAngleBetweenMomentumAndVertexVector , daughterInvariantMass (0 ,

1) , daughterInvariantMass (0 , 2) , daughterInvariantMass (1 ,
2) , daughterInvariantMass (0 , 1 , 2) , Q

PreCutConfiguration : variables=M , efficiency=0.95 , purity=0.001
PreCutConfiguration : binning=(500 , 1 . 7 , 1 .95)
PreCutConfiguration : userCut=
PostCutConfiguration : value=0.01
D+:generic ==> K−:generic pi+:generic pi+:generic (decayModeID : 0)

Individual Variables :

B0 : semileptonic
All channels use the same MVA configuration
MVAConfiguration : name=FastBDT , type=Plugin , target=isSignalAcceptMissingNeutrino ,

config=!H : ! V : NTrees=100:Shrinkage=0.10:RandRatio= 0 . 5 :
NCutLevel=8:NTreeLayers=3

Shared Variables : daughterProductOf (extraInfo (SignalProbability)) , daughter (0 ,
extraInfo (SignalProbability)) , daughter (1 ,extraInfo (SignalProbability
)) , chiProb , daughter (0 , chiProb) , daughter (1 , chiProb) ,
useRestFrame (daughter (0 , p)) , useRestFrame (daughter (1 ,

142

A.3. Particle configuration

p)) , useRestFrame (daughter (0 , distance)) , useRestFrame (daughter (1 ,
distance)) , decayAngle (0) , decayAngle (1) , cosAngleBetweenMomentumAnd

VertexVector , dr , dz , dx , dy , distance , significanceOfDistance ,
deltaE

PreCutConfiguration : variables=daughterProductOf (extraInfo (SignalProbability)) ,
efficiency=0.95 , purity=0.0001

PreCutConfiguration : binning=[0.0004510929897325762 , 0.0006766394845988643 ,
0.0010149592268982965 , 0.0015224388403474447 , 0.00228365826052116

7 , 0.0034254873907817508 , 0.005138231086172626 , 0.0077073466292589
396 , 0.011561019943888409 , 0.017341529915832612 , 0.026012294873748
92 , 0.03901844231062338 , 0.05852766346593507 , 0.0877914951989026 ,

0.13168724279835392 , 0.19753086419753085 , 0.2962962962962963 ,
0.4444444444444444 , 0.6666666666666666 , 1 . 0]

PreCutConfiguration : userCut=
PostCutConfiguration : None
B0 : semileptonic ==> D−:generic e+:generic (decayModeID : 0)

Individual Variables :

143

A. Example FEI Report for a Small Training

A.4. Final state particles

A.4.1. π+

MVA

Table A.4.: List of variables used in the training.

Name Description Rank Importance

muid_dEdx muon identification probability from dEdx
measurement

1 247.90

Kid_dEdx kaon identification probability from dEdx
measurement

2 244.70

Kid_TOP kaon identification probability from TOP 3 243.60
eid_dEdx electron identification probability from dEdx

measurement
4 135.10

eid electron identification probability 5 119.40
dr transverse distance in respect to IP 6 84.99
p momentum magnitude 7 49.45
Kid kaon identification probability 8 45.95
chiProb chiˆ2 probability of the fit 9 44.77
muid muon identification probability 10 40.59
dz z in respect to IP 11 40.14
muid_TOP muon identification probability from TOP 12 11.76
prid proton identification probability 13 9.52
muid_KLM muon identification probability from KLM 14 9.09
muid_ARICH muon identification probability from ARICH 15 4.28
eid_ECL electron identification probability from ECL 16 3.50
prid_dEdx proton identification probability from dEdx

measurement
17 3.14

pt transverse momentum 18 1.34

144

A.4. Final state particles

eid_TOP electron identification probability from TOP 19 0.17
pz momentum component z 20 0.15
eid_ARICH electron identification probability from

ARICH
21 0.15

Kid_ARICH kaon identification probability from ARICH
prid_TOP proton identification probability from TOP
prid_ARICH proton identification probability from

ARICH

TMVA plots for Plugin/FastBDT using the configuration string !H:!V:NTrees=100:Shrinkage=
0.10:RandRatio=0.5:NCutLevel=8:NTreeLayers=3 with target variable isPrimarySignal. The
training used 4421747 signal and 3282554 background samples. 4421747 signal and 3282554
background samples where used for testing.

A.4.2. e+

MVA

Table A.5.: List of variables used in the training.

145

A. Example FEI Report for a Small Training

Name Description Rank Importance

prid_ARICH proton identification probability from
ARICH

1 143.10

pz momentum component z 2 21.83
prid_TOP proton identification probability from TOP 3 21.46
eid_dEdx electron identification probability from dEdx

measurement
4 17.25

Kid_TOP kaon identification probability from TOP 5 14.18
dr transverse distance in respect to IP 6 13.64
Kid_dEdx kaon identification probability from dEdx

measurement
7 12.04

eid_TOP electron identification probability from TOP 8 11.79
prid proton identification probability 9 11.64
pt transverse momentum 10 7.87
dz z in respect to IP 11 5.03
prid_dEdx proton identification probability from dEdx

measurement
12 3.27

muid_KLM muon identification probability from KLM 13 3.15
eid_ECL electron identification probability from ECL 14 2.65
eid_ARICH electron identification probability from

ARICH
15 1.89

eid electron identification probability 16 0.89
chiProb chiˆ2 probability of the fit 17 0.76
muid_dEdx muon identification probability from dEdx

measurement
18 0.48

p momentum magnitude 19 0.05
Kid kaon identification probability 20 0.04
muid muon identification probability 21 0.03
muid_TOP muon identification probability from TOP 22 0.02
Kid_ARICH kaon identification probability from ARICH
muid_ARICH muon identification probability from ARICH

TMVA plots for Plugin/FastBDT using the configuration string !H:!V:NTrees=100:Shrinkage=
0.10:RandRatio=0.5:NCutLevel=8:NTreeLayers=3 with target variable isPrimarySignal. The

146

A.4. Final state particles

training used 966038 signal and 4716078 background samples. 966038 signal and 4716078
background samples where used for testing.

A.4.3. K +

MVA

Table A.6.: List of variables used in the training.

Name Description Rank Importance

eid_TOP electron identification probability from TOP 1 215.40
Kid_dEdx kaon identification probability from dEdx

measurement
2 105.30

pz momentum component z 3 64.12
Kid_TOP kaon identification probability from TOP 4 62.68
prid_TOP proton identification probability from TOP 5 50.01
Kid kaon identification probability 6 49.79
eid_dEdx electron identification probability from dEdx

measurement
7 32.69

muid_dEdx muon identification probability from dEdx
measurement

8 25.85

muid muon identification probability 9 25.82
pt transverse momentum 10 21.31
eid electron identification probability 11 20.75
dz z in respect to IP 12 17.67
prid_dEdx proton identification probability from dEdx

measurement
13 16.81

muid_ARICH muon identification probability from ARICH 14 15.45
muid_KLM muon identification probability from KLM 15 6.04
prid proton identification probability 16 5.05

147

A. Example FEI Report for a Small Training

eid_ARICH electron identification probability from
ARICH

17 4.08

dr transverse distance in respect to IP 18 3.72
eid_ECL electron identification probability from ECL 19 2.73
Kid_ARICH kaon identification probability from ARICH 20 0.12
chiProb chiˆ2 probability of the fit 21 0.06
prid_ARICH proton identification probability from

ARICH
22 0.02

p momentum magnitude 23 0.01
muid_TOP muon identification probability from TOP

TMVA plots for Plugin/FastBDT using the configuration string !H:!V:NTrees=100:Shrinkage=
0.10:RandRatio=0.5:NCutLevel=8:NTreeLayers=3 with target variable isPrimarySignal. The
training used 2423235 signal and 4351778 background samples. 2423235 signal and 4351778
background samples where used for testing.

148

A.5. Particle: D+

A.5. Particle: D+

In the reconstruction of D+ 1 out of 1 possible channels were used.

• D+ → K − π+ π+

This amounts to 218327 signal events and 50088395 background events in total before cuts.
Channel-specific pre-cuts and a particle-specific post cut on the signal probability of the
particle were applied. After all cuts 199137 signal events and 1265127 background events
remained.

A.5.1. Channel: D+ → K − π+ π+

Pre-cut determination

Variable M for combinations of daughter candidates of this channel. The PreCut range
(1.78,1.95) for this channel is marked with vertical lines in the plots above. The PreCuts were
determined on variable M with a desired total signal efficiency of 0.95000. For this channel
only the efficiency is 0.95063 with a purity of 0.04983, corresponding to 207548.0 signal and
3957585.0 background events.

MVA

Table A.7.: List of variables used in the training.

149

A. Example FEI Report for a Small Training

Name Description Rank Importance

daughterInvariant-
Mass(0,1,2)

Returns invariant mass of the given daugh-
ter particles. E.g. daughterInvariantMass(0,
1) returns the invariant mass of the first and
second daughter. daughterInvariantMass(0,
1, 2) returns the invariant mass of the first,
second and third daughter. Useful to identify
intermediate resonances in a decay, which
weren’t reconstructed explicitly. Returns -999
if particle is nullptr or if the given daughter-
index is out of bound (>= amount of daugh-
ters).

1 2.43

daughterInvariant-
Mass(0,1)

Returns invariant mass of the given daugh-
ter particles. E.g. daughterInvariantMass(0,
1) returns the invariant mass of the first and
second daughter. daughterInvariantMass(0,
1, 2) returns the invariant mass of the first,
second and third daughter. Useful to identify
intermediate resonances in a decay, which
weren’t reconstructed explicitly. Returns -999
if particle is nullptr or if the given daughter-
index is out of bound (>= amount of daugh-
ters).

2 1.40

chiProb chiˆ2 probability of the fit 3 1.18
daughter(0,extra-
Info(SignalProba-
bility))

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

4 0.98

daughter(1,
chiProb)

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

5 0.97

decayAngle(2) cosine of the angle between the mother mo-
mentum vector and the direction of the i-th
daughter in the mother’s rest frame

6 0.90

150

A.5. Particle: D+

useRestFrame(
daughter(0, p))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

7 0.88

daughter(2,extra-
Info(SignalProba-
bility))

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

8 0.85

useRestFrame(
daughter(0, dis-
tance))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

9 0.77

decayAngle(0) cosine of the angle between the mother mo-
mentum vector and the direction of the i-th
daughter in the mother’s rest frame

10 0.73

daughter(2,
chiProb)

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

11 0.40

useRestFrame(
daughter(1, dis-
tance))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

12 0.28

Q released energy in decay 13 0.25
useRestFrame(
daughter(1, p))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

14 0.21

151

A. Example FEI Report for a Small Training

daughter(1,extra-
Info(SignalProba-
bility))

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

15 0.19

decayAngle(1) cosine of the angle between the mother mo-
mentum vector and the direction of the i-th
daughter in the mother’s rest frame

16 0.18

useRestFrame(
daughter(2, dis-
tance))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

17 0.15

daughterInvariant-
Mass(1,2)

Returns invariant mass of the given daugh-
ter particles. E.g. daughterInvariantMass(0,
1) returns the invariant mass of the first and
second daughter. daughterInvariantMass(0,
1, 2) returns the invariant mass of the first,
second and third daughter. Useful to identify
intermediate resonances in a decay, which
weren’t reconstructed explicitly. Returns -999
if particle is nullptr or if the given daughter-
index is out of bound (>= amount of daugh-
ters).

18 0.04

daughterProductOf(
extraInfo(Signal-
Probability))

Returns product of a variable over
all daughters. E.g. daughterPro-
ductOf(extraInfo(SignalProbability)) returns
the product of the SignalProbabilitys of all
daughters.

19 0.02

daughterInvariant-
Mass(0,2)

Returns invariant mass of the given daugh-
ter particles. E.g. daughterInvariantMass(0,
1) returns the invariant mass of the first and
second daughter. daughterInvariantMass(0,
1, 2) returns the invariant mass of the first,
second and third daughter. Useful to identify
intermediate resonances in a decay, which
weren’t reconstructed explicitly. Returns -999
if particle is nullptr or if the given daughter-
index is out of bound (>= amount of daugh-
ters).

20 0.01

152

A.5. Particle: D+

daughter(0,
chiProb)

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

21 0.01

cosAngleBetween-
MomentumAnd-
VertexVector

cosine of angle between momentum and ver-
tex vector (vector connecting ip and fitted
vertex) of this particle

22 0.01

useRestFrame(
daughter(2, p))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

23 0.00

TMVA plots for Plugin/FastBDT using the configuration string !H:!V:NTrees=100:Shrinkage=
0.10:RandRatio=0.5:NCutLevel=8:NTreeLayers=3 with target variable isSignal. The training
used 103774 signal and 1978795 background samples. 103774 signal and 1978795 background
samples where used for testing.

153

A. Example FEI Report for a Small Training

A.6. Particle: B 0

In the reconstruction of B 0 1 out of 1 possible channels were used.

• B 0:semileptonic → D− e+

This amounts to 8391 signal events and 399171 background events in total before cuts.
Channel-specific pre-cuts and a particle-specific post cut on the signal probability of the
particle were applied. After all cuts 8166 signal events and 224862 background events re-
mained.

A.6.1. Channel: B 0:semileptonic → D− e+

Pre-cut determination

Variable daughterProductOf(extraInfo(SignalProbability)) for combinations of daughter
candidates of this channel. The PreCut range (0.02,1.00) for this channel is marked with
vertical lines in the plots above. The PreCuts were determined on variable daughterPro-
ductOf(extraInfo(SignalProbability)) with a desired total signal efficiency of 0.95000. For this
channel only the efficiency is 0.97319 with a purity of 0.03504, corresponding to 8166.0 signal
and 224862.0 background events.

MVA

154

A.6. Particle: B 0

Table A.8.: List of variables used in the training.

Name Description Rank Importance

dr transverse distance in respect to IP 1 0.70
useRestFrame(
daughter(0, p))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

2 0.57

distance 3D distance relative to interaction point 3 0.30
significanceOfDis-
tance

significance of distance relative to interac-
tion point (-1 in case of numerical problems)

4 0.25

decayAngle(1) cosine of the angle between the mother mo-
mentum vector and the direction of the i-th
daughter in the mother’s rest frame

5 0.25

decayAngle(0) cosine of the angle between the mother mo-
mentum vector and the direction of the i-th
daughter in the mother’s rest frame

6 0.24

daughter(0,extra-
Info(SignalProba-
bility))

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

7 0.18

daughter(1,extra-
Info(SignalProba-
bility))

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

8 0.17

chiProb chiˆ2 probability of the fit 9 0.14
daughter(1,
chiProb)

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

10 0.11

dz z in respect to IP 11 0.10

155

A. Example FEI Report for a Small Training

cosAngleBetween-
MomentumAnd-
VertexVector

cosine of angle between momentum and ver-
tex vector (vector connecting ip and fitted
vertex) of this particle

12 0.09

useRestFrame(
daughter(1, dis-
tance))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

13 0.09

useRestFrame(
daughter(1, p))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

14 0.06

daughterProductOf(
extraInfo(Signal-
Probability))

Returns product of a variable over
all daughters. E.g. daughterPro-
ductOf(extraInfo(SignalProbability)) returns
the product of the SignalProbabilitys of all
daughters.

15 0.06

dx x in respect to IP 16 0.05
deltaE energy difference 17 0.04
dy y in respect to IP 18 0.02
useRestFrame(
daughter(0, dis-
tance))

Returns the value of the variable using the
rest frame of the given particle as current ref-
erence frame. E.g. useRestFrame(daughter(0,
p)) returns the total momentum of the first
daughter in its mother’s rest-frame

19 0.00

daughter(0,
chiProb)

Returns value of variable for the i-th daugh-
ter.E.g. daughter(0, p) returns the total mo-
mentum of the first daughter. daughter(0,
daughter(1, p) returns the total momentum
of the second daughter of the first daugh-
ter. Returns -999 if particle is nullptr or if
the given daughter-index is out of bound (>=
amount of daughters).

20 0.00

156

A.6. Particle: B 0

TMVA plots for Plugin/FastBDT using the configuration string !H:!V:NTrees=100:Shrinkage=
0.10:RandRatio=0.5:NCutLevel=8:NTreeLayers=3 with target variable isSignalAcceptMissing-
Neutrino. The training used 4083 signal and 112431 background samples. 4083 signal and
112431 background samples where used for testing.

157

Acknowledgements

Coffee: the finest organic suspension
ever devised. It’s got me through the
worst of the last three years. I beat the
Borg with it.

Kathryn Janeway in Star Trek: Voyager

Foremost I would like to thank Prof. Michael Feindt for kindling my interest in B meson
physics and for the opportunity to work in his group. I also thank Prof. Günter Quast for
agreeing to be my co-referee and for the great amount of assistance I received in the past
weeks.

I thank Dr. Martin Heck and Prof. Thomas Kuhr for supervising my work and for their
excellent advice. For many fruitful discussions I am grateful to Dr. Pablo Goldenzweig,
Dr. Thomas Hauth, and Dr. Anže Zupanc.

As co-author of the Full Event Interpretation, Thomas Keck deserves my special thanks.
Doing this without his enthusiasm and resourcefulness would have been a rather bleak
endeavour.

Besides those mentioned above, I further thank Nils Braun and Markus Prim for their
proofreading work. I also extend my thanks to everyone in the institute for the lovely atmo-
sphere and many friendly discussions over coffee.

159

Bibliography

[1] Muon g-2, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic
Moment Measurement at BNL,” Phys. Rev. D73 (2006) 072003,
arXiv:hep-ex/0602035 [hep-ex].

[2] CMS, S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC,” Phys. Lett. B716 (2012) 30–61, arXiv:1207.7235
[hep-ex].

[3] ATLAS, G. Aad et al., “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B716 (2012) 1–29,
arXiv:1207.7214 [hep-ex].

[4] V. C. Rubin and W. K. Ford, Jr., “Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions,” Astrophys. J. 159 (1970) 379–403.

[5] A. D. Sakharov, “Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of
the Universe,” Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35. [Usp. Fiz. Nauk161,61(1991)].

[6] A. Riotto and M. Trodden, “Recent progress in baryogenesis,” Ann. Rev. Nucl. Part. Sci.
49 (1999) 35–75, arXiv:hep-ph/9901362 [hep-ph].

[7] N. Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev. Lett. 10 (1963)
531–533.

[8] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak
Interaction,” Prog. Theor. Phys. 49 (1973) 652–657.

[9] J. Christenson, J. Cronin, V. Fitch, and R. Turlay, “Evidence for the 2π decay of the K 0
2

meson,” Phys. Rev. Lett. 13 no. 4, (1964) 138.

[10] I. I. Y. Bigi and A. I. Sanda, “On B 0 – B 0 Mixing and Violations of CP Symmetry,” Phys.
Rev. D29 (1984) 1393.

[11] Belle, BaBar, A. J. Bevan et al., “The Physics of the B Factories,” Eur. Phys. J. C74 no. 11,
(2014) 3026.

[12] Belle, K. Abe et al., “An Improved measurement of mixing induced CP violation in the
neutral B meson system,” Phys. Rev. D66 (2002) 071102, arXiv:hep-ex/0208025
[hep-ex].

[13] The Royal Swedish Academy of Sciences, “Scientific background on the Nobel Prize in
Physics 2008.” http://www.nobelprize.org/nobel_prizes/physics/
laureates/2008/advanced-physicsprize2008.pdf. (accessed 28 September
2015).

161

https://dx.doi.org/10.1103/PhysRevD.73.072003
http://arxiv.org/abs/hep-ex/0602035
https://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1207.7235
https://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
https://dx.doi.org/10.1086/150317
https://dx.doi.org/10.1070/PU1991v034n05ABEH002497
https://dx.doi.org/10.1146/annurev.nucl.49.1.35
https://dx.doi.org/10.1146/annurev.nucl.49.1.35
http://arxiv.org/abs/hep-ph/9901362
https://dx.doi.org/10.1103/PhysRevLett.10.531
https://dx.doi.org/10.1103/PhysRevLett.10.531
https://dx.doi.org/10.1143/PTP.49.652
https://dx.doi.org/10.1103/PhysRevLett.13.138
https://dx.doi.org/10.1103/PhysRevD.29.1393
https://dx.doi.org/10.1103/PhysRevD.29.1393
https://dx.doi.org/10.1140/epjc/s10052-014-3026-9
https://dx.doi.org/10.1140/epjc/s10052-014-3026-9
https://dx.doi.org/10.1103/PhysRevD.66.071102
http://arxiv.org/abs/hep-ex/0208025
http://arxiv.org/abs/hep-ex/0208025
http://www.nobelprize.org/nobel_prizes/physics/laureates/2008/advanced-physicsprize2008.pdf
http://www.nobelprize.org/nobel_prizes/physics/laureates/2008/advanced-physicsprize2008.pdf

Bibliography

[14] Belle, J. Brodzicka et al., “Physics Achievements from the Belle Experiment,” PTEP 2012
(2012) 04D001, arXiv:1212.5342 [hep-ex].

[15] Belle II, T. Abe et al., “Belle II Technical Design Report,” tech. rep., 2010.
arXiv:1011.0352 [physics.ins-det].

[16] J. Wiechczyński, “The Belle II experiment at the SuperKEKB collider.” (Presented at the
European Physical Society conference on high energy physics), July, 2015.

[17] C. D. Anderson, “The Positive Electron,” Phys. Rev. 43 (1933) 491–494.

[18] G. D. Rochester and C. C. Butler, “Evidence for the Existence of New Unstable
Elementary Particles,” Nature 160 (1947) 855–857.

[19] Gargamelle Neutrino, F. J. Hasert et al., “Observation of Neutrino Like Interactions
Without Muon Or Electron in the Gargamelle Neutrino Experiment,” Phys. Lett. B46
(1973) 138–140.

[20] A. Abashian et al., “The Belle Detector,” Nucl. Instrum. Meth. A479 (2002) 117–232.

[21] C. Pulvermacher, “dE/dx particle identification and pixel detector data reduction for
the Belle II experiment,” Diploma thesis, KIT, 2012.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48263.

[22] “Integrated luminosity of B factories.”
http://belle.kek.jp/bdocs/lumi_belle.png. (accessed 30 September 2015).

[23] T. Hara, T. Kuhr, and Y. Ushiroda, “Belle II Coordinate System and Guideline of Belle II
Numbering Scheme.” Belle II internal note, 2011.

[24] M. Yokoi, “BELLE検出器用CsI電磁カロリメータにおけるトリガーシステムの設計・製作

[Design and production of a trigger system for a CsI electromagnetic calorimeter for use
at the Belle experiment],” Master’s thesis, Nara Women’s University, 1998. (Japanese).

[25] D. R. Lide, CRC Handbook of Chemistry and Physics, 88th Edition. CRC Press, Taylor &
Francis, Boca Raton, 2007–2008.

[26] R. Frühwirth, R. Glattauer, J. Lettenbichler, W. Mitaroff, and M. Nadler, “Track finding in
silicon trackers with a small number of layers,” Nucl. Instrum. Meth. A732 (2013) 95–98.

[27] V. Aulchenko et al., “Electromagnetic calorimeter for Belle II,” Journal of Physics:
Conference Series 587 no. 1, (2015) 012045.

[28] L. Piilonen, “B-KLM Summary Talk.” 11th B2GM, Mar., 2012. http://kds.kek.jp/
contributionDisplay.py?sessionId=29&contribId=17&confId=8895. Belle II
internal.

[29] T. Schlüter, “Vertexing and Tracking Software at Belle II,” PoS Vertex2014 (2014) 039,
arXiv:1411.3485 [physics.ins-det].

162

https://dx.doi.org/10.1093/ptep/pts072
https://dx.doi.org/10.1093/ptep/pts072
http://arxiv.org/abs/1212.5342
http://arxiv.org/abs/1011.0352
https://dx.doi.org/10.1103/PhysRev.43.491
https://dx.doi.org/10.1038/160855a0
https://dx.doi.org/10.1016/0370-2693(73)90499-1
https://dx.doi.org/10.1016/0370-2693(73)90499-1
https://dx.doi.org/10.1016/S0168-9002(01)02013-7
https://ekp-invenio.physik.uni-karlsruhe.de/record/48263
http://belle.kek.jp/bdocs/lumi_belle.png
https://dx.doi.org/10.1016/j.nima.2013.06.035
https://dx.doi.org/10.1088/1742-6596/587/1/012045
https://dx.doi.org/10.1088/1742-6596/587/1/012045
http://kds.kek.jp/contributionDisplay.py?sessionId=29&contribId=17&confId=8895
http://kds.kek.jp/contributionDisplay.py?sessionId=29&contribId=17&confId=8895
http://arxiv.org/abs/1411.3485

Bibliography

[30] R. Itoh, “BASF - BELLE AnalysiS Framework,” Comput.Phys.Commun. 110 (1998) CHEP
1997 (1997) pp.1–263. https://www.ifh.de/CHEP97/paper/244.ps.

[31] I. Adachi, R. Itoh, N. Katayama, T. Tsukamoto, T. Hibino, M. Yokoyama, L. Hinz, and
F. Ronga, “Computing system for the Belle experiment,” eConf C0303241 (2003)
MODT010, arXiv:physics/0306120 [physics].

[32] S. Mineo, R. Itoh, N. Katayama, and S. Lee, “Distributed parallel processing analysis
framework for Belle II and Hyper Suprime-Cam,” PoS (ACAT2010) 026 (2010) .
https://inspirehep.net/record/924965/files/ACAT2010_026.pdf.

[33] A. Moll, “The software framework of the Belle II experiment,” Journal of Physics:
Conference Series (CHEP 2010) 331 (2011) 032024.

[34] B. Stroustrup, “What is C++ 0x,” CVu 21 (2009) 21.
http://www.stroustrup.com/what-is-2009.pdf. (accessed 2 August 2015).

[35] “Boost C++ libraries.” http://www.boost.org.

[36] R. Brun and F. Rademakers, “ROOT – an object oriented data analysis framework,” Nucl.
Instrum. Meth. A389 no. 1, (1997) 81–86.

[37] S. Agostinelli et al., “GEANT4: A Simulation toolkit,” Nucl. Instrum. Meth. A506 (2003)
250–303.

[38] “Google C++ testing framework.” https://code.google.com/p/googletest/.

[39] “SCons – a software construction tool.” http://www.scons.org/.

[40] “ROOT documentation for TTree.”
https://root.cern.ch/root/html/TTree.html. (accessed 30 July 2015).

[41] P. Canal, R. Brun, V. Fine, L. Janyst, J. Lauret, and P. Russo, “Support for significant
evolutions of the user data model in ROOT files,” Journal of Physics: Conference Series
(CHEP 2009) 219 no. 3, (2010) 032004.

[42] “ROOT documentation for TTreeIndex.”
https://root.cern.ch/doc/master/classTTreeIndex.html. (accessed 17
September 2015).

[43] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” Proceedings of the April 18-20, 1967, spring joint computer
conference (AFIPS) (1967) 483–485.

[44] G. E. Moore et al., “Cramming more components onto integrated circuits,” Electronics
38 no. 8, (1965) 114–117. Reprinted in: Proceedings of the IEEE, 86, no. 1, (1998) 82–85.

[45] C. Moler, “Matrix computation on distributed memory multiprocessors,” Hypercube
Multiprocessors (1986) 181–195.
https://books.google.com/books?id=QN8HNVwZEecC&oi=fnd&pg=PA181.

163

https://www.ifh.de/CHEP97/paper/244.ps
http://arxiv.org/abs/physics/0306120
https://inspirehep.net/record/924965/files/ACAT2010_026.pdf
https://dx.doi.org/10.1088/1742-6596/331/3/032024
https://dx.doi.org/10.1088/1742-6596/331/3/032024
http://www.stroustrup.com/what-is-2009.pdf
http://www.boost.org
https://dx.doi.org/10.1016/S0168-9002(97)00048-X
https://dx.doi.org/10.1016/S0168-9002(97)00048-X
https://dx.doi.org/10.1016/S0168-9002(03)01368-8
https://dx.doi.org/10.1016/S0168-9002(03)01368-8
https://code.google.com/p/googletest/
http://www.scons.org/
https://root.cern.ch/root/html/TTree.html
https://dx.doi.org/10.1088/1742-6596/219/3/032004
https://dx.doi.org/10.1088/1742-6596/219/3/032004
https://root.cern.ch/doc/master/classTTreeIndex.html
https://dx.doi.org/10.1145/1465482.1465560
https://dx.doi.org/10.1145/1465482.1465560
https://dx.doi.org/10.1109/jproc.1998.658762
https://books.google.com/books?id=QN8HNVwZEecC&oi=fnd&pg=PA181

Bibliography

[46] S. Lee, R. Itoh, N. Katayama, H. Furusawa, H. Aihara, and S. Mineo, “A common real
time framework for SuperKEKB and Hyper Suprime-Cam at Subaru telescope,” Journal
of Physics: Conference Series 219 (2010) 022012.

[47] R. Itoh, S. Lee, N. Katayama, S. Mineo, A. Moll, T. Kuhr, and M. Heck, “Implementation
of parallel processing in the basf2 framework for Belle II,” Journal of Physics: Conference
Series (CHEP 2012) 396 no. 2, (2012) 022026.

[48] S. Casey, “How to determine the effectiveness of hyper-threading technology with an
application,” 2011.
https://software.intel.com/en-us/articles/how-to-determine-the-
effectiveness-of-hyper-threading-technology-with-an-application/.
(accessed 30 July 2015).

[49] “fork(2) Linux man page,” March, 2013.

[50] M. Tadel, “Overview of EVE – the event visualization environment of ROOT,” Journal of
Physics: Conference Series (CHEP 2009) 219 no. 4, (2010) 042055.

[51] I. Hřivnáčová and B. Viren, “The virtual geometry model,” Journal of Physics: Conference
Series (CHEP 2007) 119 no. 4, (2008) 042016.

[52] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” 2005. https://tools.ietf.org/html/rfc3986. RFC 3986.

[53] “DESY News – milestone for Belle II: Test beam measurements at the vertex detector
successfully completed,” Feb., 2014.
https://www.desy.de/news/@@news-view?id=7201&lang=eng. (accessed 30 July
2015).

[54] J. Tanaka, Precise Measurements of Charm Meson Lifetimes and Search for D0 −D0

Mixing. PhD thesis, University of Tokyo, 2001.
http://belle.kek.jp/belle/theses/doctor/2002/tanaka.pdf.

[55] W. Waltenberger, “RAVE: A detector-independent toolkit to reconstruct vertices,” IEEE
Trans. Nucl. Sci. 58 (2011) 434–444.

[56] D. Lange, “The EvtGen particle decay simulation package,” Nucl. Instrum. Meth. A462
(2001) 152–155.

[57] D. Zander, “Full Reconstruction and Y(4140) Search at Belle,” Diploma thesis, KIT, 2009.
https://ekp-invenio.physik.uni-karlsruhe.de/record/45463.

[58] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, and H. Voss, “TMVA:
Toolkit for Multivariate Data Analysis,” PoS ACAT (2007) 040,
arXiv:physics/0703039.

[59] T. Keck, “The Full Event Interpretation for Belle II,” Master’s thesis, KIT, 2014.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48602.

164

https://dx.doi.org/10.1088/1742-6596/219/2/022012
https://dx.doi.org/10.1088/1742-6596/219/2/022012
https://dx.doi.org/10.1088/1742-6596/396/2/022026
https://dx.doi.org/10.1088/1742-6596/396/2/022026
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application/
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application/
https://dx.doi.org/10.1088/1742-6596/219/4/042055
https://dx.doi.org/10.1088/1742-6596/219/4/042055
https://dx.doi.org/10.1088/1742-6596/119/4/042016
https://dx.doi.org/10.1088/1742-6596/119/4/042016
https://tools.ietf.org/html/rfc3986
https://www.desy.de/news/@@news-view?id=7201&lang=eng
http://belle.kek.jp/belle/theses/doctor/2002/tanaka.pdf
https://dx.doi.org/10.1109/TNS.2011.2119492
https://dx.doi.org/10.1109/TNS.2011.2119492
https://dx.doi.org/10.1016/S0168-9002(01)00089-4
https://dx.doi.org/10.1016/S0168-9002(01)00089-4
https://ekp-invenio.physik.uni-karlsruhe.de/record/45463
http://arxiv.org/abs/physics/0703039
https://ekp-invenio.physik.uni-karlsruhe.de/record/48602

Bibliography

[60] J. H. Friedman, “Stochastic gradient boosting,” Comput. Stat. Data Anal. 38 no. 4, (Feb.,
2002) 367–378.

[61] M. Feindt and U. Kerzel, “The NeuroBayes neural network package,” Nucl. Instrum.
Meth. A559 no. 1, (2006) 190–194.

[62] M. Pivk and F. R. Le Diberder, “SPlot: A Statistical tool to unfold data distributions,”
Nucl. Instrum. Meth. A555 (2005) 356–369, arXiv:physics/0402083
[physics.data-an].

[63] B. Lipp, “sPlot-based Training of Multivariate Classifiers in the Belle II Analysis Software
Framework,” Bachelor thesis, KIT, 2015.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48717.

[64] S. Neubauer, Search for B → K (∗)νν̄ Decays Using a New Probabilistic Full
Reconstruction Method. PhD thesis, 2011.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48215.

[65] G. C. Fox and S. Wolfram, “Observables for the analysis of event shapes in e+e−

annihilation and other processes,” Phys. Rev. Lett. 41 (Dec, 1978) 1581–1585.

[66] M. Gelb, “Neutral B Meson Flavor Tagging for Belle II,” Master’s thesis, KIT, 2015.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48719.

[67] F. Keller, “Improvement of the Full Reconstruction of B Mesons at the Belle Experiment,”
Diploma thesis, KIT, 2011.
https://ekp-invenio.physik.uni-karlsruhe.de/record/45460.

[68] BaBar, B. Aubert et al., “Measurement of the inclusive charmless semileptonic
branching ratio of B mesons and determination of |Vub |,” Phys. Rev. Lett. 92 (2004)
071802, arXiv:hep-ex/0307062 [hep-ex].

[69] BaBar, B. Aubert et al., “Observation of the semileptonic decays B → D∗τ−ν̄τ and
evidence for B → Dτ−ν̄τ,” Phys. Rev. Lett. 100 (2008) 021801, arXiv:0709.1698
[hep-ex].

[70] Belle, K. Hara et al., “Evidence for B− → τ−ν̄τ with a Hadronic Tagging Method Using
the Full Data Sample of Belle,” Phys. Rev. Lett. 110 no. 13, (2013) 131801,
arXiv:1208.4678 [hep-ex].

[71] Belle, B. Kronenbitter et al., “Measurement of the branching fraction of B+ → τ+ντ
decays with the semileptonic tagging method,” Phys. Rev. D92 no. 5, (2015) 051102,
arXiv:1503.05613 [hep-ex].

[72] Belle, O. Lutz et al., “Search for B → h(∗)νν̄ with the full Belle Υ(4S) data sample,”
Phys.Rev. D87 no. 11, (2013) 111103, arXiv:1303.3719 [hep-ex].

[73] Belle, A. Heller et al., “Search for B+ → l+νlγ decays with hadronic tagging using the
full Belle data sample,” Phys. Rev. D91 no. 11, (2015) 112009, arXiv:1504.05831
[hep-ex].

165

https://dx.doi.org/10.1016/S0167-9473(01)00065-2
https://dx.doi.org/10.1016/S0167-9473(01)00065-2
https://dx.doi.org/10.1016/j.nima.2005.11.166
https://dx.doi.org/10.1016/j.nima.2005.11.166
https://dx.doi.org/10.1016/j.nima.2005.08.106
http://arxiv.org/abs/physics/0402083
http://arxiv.org/abs/physics/0402083
https://ekp-invenio.physik.uni-karlsruhe.de/record/48717
https://ekp-invenio.physik.uni-karlsruhe.de/record/48215
https://dx.doi.org/10.1103/PhysRevLett.41.1581
https://ekp-invenio.physik.uni-karlsruhe.de/record/48719
https://ekp-invenio.physik.uni-karlsruhe.de/record/45460
https://dx.doi.org/10.1103/PhysRevLett.92.071802
https://dx.doi.org/10.1103/PhysRevLett.92.071802
http://arxiv.org/abs/hep-ex/0307062
https://dx.doi.org/10.1103/PhysRevLett.100.021801
http://arxiv.org/abs/0709.1698
http://arxiv.org/abs/0709.1698
https://dx.doi.org/10.1103/PhysRevLett.110.131801
http://arxiv.org/abs/1208.4678
https://dx.doi.org/10.1103/PhysRevD.92.051102
http://arxiv.org/abs/1503.05613
https://dx.doi.org/10.1103/PhysRevD.87.111103
http://arxiv.org/abs/1303.3719
https://dx.doi.org/10.1103/PhysRevD.91.112009
http://arxiv.org/abs/1504.05831
http://arxiv.org/abs/1504.05831

Bibliography

[74] Belle, M. Huschle et al., “Measurement of the branching ratio of B̄ → D (∗)τ−ν̄τ relative
to B̄ → D (∗)`−ν̄` decays with hadronic tagging at Belle,” arXiv:1507.03233
[hep-ex]. Accepted for publication in Phys. Rev. D.

[75] M. Feindt, F. Keller, M. Kreps, T. Kuhr, S. Neubauer, D. Zander, and A. Zupanc, “A
hierarchical NeuroBayes-based algorithm for full reconstruction of B mesons at B
factories,” Nucl. Instrum. Meth. A654 no. 1, (2011) 432–440, arXiv:1102.3876
[hep-ex].

[76] C. Pulvermacher, T. Keck, M. Feindt, M. Heck, and T. Kuhr, “An automated framework
for hierarchical reconstruction of B mesons at the Belle II experiment,” Journal of
Physics: Conference Series (ACAT 2014) 608 no. 1, (2015) 012048.

[77] D. Zander, Full Reconstruction And Search For Charged Higgs Effects In Semi-Tauonic B
Decays. PhD thesis, KIT, 2013.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48271.

[78] Belle, S. H. Lee et al., “Evidence for B 0 →π0π0,” Phys. Rev. Lett. 91 (Dec, 2003) 261801,
arXiv:0308040 [hep-ex].

[79] Belle, A. Sibidanov et al., “Study of Exclusive B → Xu`ν Decays and Extraction of |Vub |
using Full Reconstruction Tagging at the Belle Experiment,” Phys. Rev. D88 no. 3, (2013)
032005, arXiv:1306.2781 [hep-ex].

[80] B. Kronenbitter, Measurement of the branching fraction of B+ → τ+ντ decays at the Belle
experiment. PhD thesis, KIT, 2014.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48604.

[81] K. Kirchgessner, “Semileptonische Markierungsseiten-Rekonstruktion,” Diploma thesis,
KIT, 2012. https://ekp-invenio.physik.uni-karlsruhe.de/record/48181.

[82] S. Wehle, “Full Reconstruction of the Υ(5S) Resonance and Analysis of the Tetraquark
State ZB at Belle,” Diploma thesis, KIT, 2013.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48572.

[83] “Ohcount 3.0.0.” https://github.com/blackducksw/ohcount. (accessed 30 July
2015).

[84] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” 2001.
https://tools.ietf.org/html/rfc3174. RFC 3174.

[85] Particle Data Group, K. A. Olive et al., “Review of Particle Physics,” Chin. Phys. C38
(2014) 090001.

[86] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
Communications of the ACM 51 no. 1, (2008) 107–113.

[87] “IBM Platform LSF.”
https://www-03.ibm.com/systems/platformcomputing/products/lsf/.
(accessed 20 September 2015).

166

http://arxiv.org/abs/1507.03233
http://arxiv.org/abs/1507.03233
https://dx.doi.org/10.1016/j.nima.2011.06.008
http://arxiv.org/abs/1102.3876
http://arxiv.org/abs/1102.3876
https://dx.doi.org/10.1088/1742-6596/608/1/012048
https://dx.doi.org/10.1088/1742-6596/608/1/012048
https://ekp-invenio.physik.uni-karlsruhe.de/record/48271
https://dx.doi.org/10.1103/PhysRevLett.91.261801
http://arxiv.org/abs/0308040
https://dx.doi.org/10.1103/PhysRevD.88.032005
https://dx.doi.org/10.1103/PhysRevD.88.032005
http://arxiv.org/abs/1306.2781
https://ekp-invenio.physik.uni-karlsruhe.de/record/48604
https://ekp-invenio.physik.uni-karlsruhe.de/record/48181
https://ekp-invenio.physik.uni-karlsruhe.de/record/48572
https://github.com/blackducksw/ohcount
https://tools.ietf.org/html/rfc3174
https://dx.doi.org/10.1088/1674-1137/38/9/090001
https://dx.doi.org/10.1088/1674-1137/38/9/090001
https://dx.doi.org/10.1145/1327452.1327492
https://www-03.ibm.com/systems/platformcomputing/products/lsf/

	Introduction
	Experimental Setup
	KEKB and SuperKEKB
	The Belle Experiment
	The Belle II Experiment

	The Belle II Analysis Software Framework (BASF2)
	Python and Packages
	Modules and Data Exchange
	Path Control Flow
	Input/Output
	Parallel Processing
	Merging Objects
	Event Display
	Summary and Conclusions

	Analysis Tools
	Particle Candidates
	Vertex Fitting
	Monte Carlo Matching
	Multivariate Classification
	Skimming
	Best Candidate Selection
	Saving n-Tuples
	High-Level Reconstruction Tools
	Summary and Conclusions

	Tag-Side Reconstruction at Belle
	Control Variables
	Cut-based Full Reconstruction
	Neural-network-based Full Reconstruction
	Extensions of the Full Reconstruction
	Summary

	Full Event Interpretation
	Software Architecture
	Particle Selection and Combination
	Reducing Combinatorics
	Classifier Trainings
	Automatic Reporting
	Training Modes
	Distributed FEI Trainings
	Conclusions

	Estimation of Physics Performance
	Monte Carlo Sample
	Training
	Results
	Comparison with Full Reconstruction
	Discussion of Signal Definition
	Summary and Conclusions

	FEI on Converted Belle Data
	Conversion of Belle mDST Data
	Monte Carlo Sample
	Training
	Results
	Summary and Conclusions

	Conclusions
	Appendix
	Example FEI Report for a Small Training
	Summary
	CPU time per channel
	Particle configuration
	Final state particles
	Particle: D+
	Particle: B0

	Bibliography

