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Chapter 1

Motivation

In order to motivate this work, I will start with the discoveries of the former
Belle experiment which was the predecessor experiment of Belle II, on which
this thesis is written. During its 11 years of data taking Belle accumulated an
enormous amount of B-meson decays which are analyzed until today. Two of
the discoveries made at Belle were the X(3872), which is an exotic charmonium
state, and the measurement of CP-violation in B-meson decays (chapter 2.7),
to name only the most cited ones. Since these processes are very rare it is nec-
essary to have high luminosity (chapter 3.0.5.1). At Belle the peak luminosity
reached L = 2.11 · 1034cm−2s−1 in 2009 [Col13, p. 2] and still represents the
world record.

In 2010 it was decided to upgrade the Belle experiment to Belle II which will
start taking data in 2018. Since most of the phenomena that will be studied
at Belle II are related to extremely rare decays one needs to accumulate an
enormous amount of data. This can be realized with an upgrade of the KEKB
collider ring to SuperKEKB, with a design luminosity of L = 1038 which is
40 times higher than the one at Belle. Due to this high luminosity, B-meson
decays which violate CP-conservation can be studied more detailed than in
Belle. Like the former KEKB collider, SuperKEKB will be an asymmetric
collider. This asymmetry is needed in order to measure the time dependent
CP-violation in B-meson decays precisely. Due to the asymmetric collision
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1. Motivation

energies of electrons (7GeV) and positrons (5GeV) the B-meson system will
gain a Lorentz-boost in the laboratory system. In case of CP-violation, both
B-mesons will decay at different times which can be measured as spatial sep-
aration. For high resolution purposes a pixel detector (PXD) (chapter 3.3.1)
will be installed.

The PXD consists of approximately 8 million pixels made out of semi conduct-
ing material that can measure a particles energy deposition. To dissolve the
separation of decay vertices precisely the PXD is installed close to the Interac-
tion Point (IP). Since the PXD is the innermost Belle II detector it faces high
background originating from Touschek scattering, e+, e− pair production or ra-
diative bhabha scattering [DU10, p.66] leading to a data rate of up to 20GB/s.
Therefore a complex data acquisition (DAQ) system that reduces the amount
of stored data by filtering physically interesting events was invented (chapter
3.5).

During readout, data transmitted from the PXD will be processed in several
steps of the readout chain. Each step will add an additional header to the
data format with important information for the analysis of this event. The
innermost data format refers to single pixels or cohesive pixel structures; the
clusters. They occur when a particle deposits energy in neighboring pixels
which have at least one common edge. In case of clusters the format contains
information about all pixel inside the cluster. In this thesis, the PXD cluster
format unpacking and decoding was implemented into the Belle II analysis
framework (basf2) and tested for the first time.

This thesis will start with a short introduction to the Standard Model of parti-
cle physics (SM) and some phenomena which will be studied at Belle II. After
that the Belle II experiment will be discussed starting with a short explanation
of the SuperKEKB collider upgrade before giving an overview of the detectors
that will be installed. A chapter dealing with generating, unpacking and mon-
itoring of PXD cluster data will follow. There, a detailed overview of the data
formats in use and the code written in order to finish this thesis is given. At
the end of this chapter results of a data streaming and consistency test shall
be discussed. The last chapter gives an outlook of what has to be done in
order to test the code with the whole readout chain.
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Chapter 2

The Standard model of Particle
Physics

The standard model of particle physics (SM) is a quantum-field theory which
describes the structure and forces of the universe. So far there is no experi-
mental result which is contradicting SM predictions, which is why the SM is
extremely successful. Still there are problems with the theory originating from
the fact that there are 18 ”free” parameters which can not be calculated from
theory and therefore have to be measured in experiments. Another problem
is the absence of gravitation in the SM. Since the gravitational force at small
distances is extremely weak compared to the other three forces of nature, in
the present energy regions it is not really important. Till now there is no way
to include gravitation, so the SM only deals with the three remaining forces of
nature:

• strong force: The strongest of all four forces is described in quantum
chromodynamics (QCD) [SB11, p. 107] and appeals only between color
charged objects. It is mediated by gluons which carry color and anti-color
charge. Since there are three colors and three anti-colors one can combine
9 different gluons. The ninth combination combination corresponds to
a colorless object. Since this object wouldnt interact, due to the lack
of color charge, it could travel infinitely. This can not be due to the
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2. The Standard model of Particle Physics

fact that atoms have, which are confined via the strong force, no infinite
potential.

• weak force: The weak interaction was discovered during studies on
the β-decay of nuclei [SB11, p.103]. It can interact between two quarks,
two leptons or quarks and leptons. There are some processes where only
the weak force can interact for example all processes involving neutrinos.
The SM describes the weak force as interchange of W± or Z0 bosons.

• electromagnetic force: This is, besides gravitation, the most obvi-
ous force in our daily life. Electromagnetism is mediated via the photons,
particles taking part in electromagnetic reactions need to carry charge,
which is a conserved quantity in the SM.

As described before the forces are transmitted via particles, the so called gauge-
bosons. Besides them there are some other particles which are elementary and
build up all composed particles described in the SM. An illustration of these
is shown bellow:

quarks

leptons

gauge-bosons

d

u

e

νe

c

s

µ

νµ

t

b

τ

ντ g γ

H

Z0

W±

Figure 2.1: Left: SM particles which build up the known matter of the uni-
verse. Right: The gauge-bosons which transmit the forces and the Higgs-
boson which introduces mass are drawn. The red shades symbolize the mass
differences between these particles.

2.1 Fermions

Most of our surrounding matter is made out of these elementary particles called
fermions. They all carry a half integer spin and split up into two families which
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2.1. Fermions

are made up of three different generations according to their increasing masses.
The biggest difference between these two families is the way they interact with
the forces of nature.

• Leptons: Leptons cannot interact via the strong force since they do
not carry color charge. One can further categorize them into charged and
neutral particles. The charged ones, e, µ and τ can interact with the weak
and the electromagnetic force. In addition to these three generations
of charged leptons there are three corresponding generations of neutral
leptons, the so called neutrinos; νe− , νµ and ντ . Since they do not carry
electric or color charge they can only interact via the weak force which
puts high requirements on the detectors of neutrino experiments.

• Quarks: Quarks are the only fermions which interact via all forces
of nature and, besides the gluons, the only elementary particles which
can interact via the strong force. Due to this fact they have to carry
electromagnetic and color-charge. According to the three generations of
leptons the SM includes three generations of quarks with two different
flavors for each of them. The first and lightest generation consists of
up, and down-quark (u, d), the second of strange, and charm-quark (s, c)
and the third of bottom, and top-quark (b, t) ordered according to the
increasing masses.

A very important property of quarks is the confinement. It describes the
absence of free quarks in the SM where quarks can only exist in bound
states of quark and anti-quark (mesons) or three quarks or anti-quarks
(baryons). Theoretically there are also states with four, five or even more
quarks possible and under discussion. Some candidates for these states
where also found experimentally (X,Y,Z-states) [ea03][eaBC05][eaBC13]
but still physicists are not sure what they

• Baryons: In comparison to the other fermions, baryons are composed
of elementary particles, in particular three quarks, but also carry half
integer spin which classifies them as fermions. Combining three quarks
with spin s = 1/2 leaves you with 2 possibilities for their combined spin
in the ground state, s = 1/2 or s = 3/2.

Like leptons also the baryons have their own quantum number, 1 for
baryons, -1 for anti-baryons, 1/3 for quarks, -1/3 for anti-quarks and
0 for all other particles. The baryon number is an absolute conserved
quantity in the SM.
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2. The Standard model of Particle Physics

2.2 Bosons

In the SM, bosons can be devided into gauge-bosons which transmitt the forces
and the Higgs-boson introducing mass to all other particles. In addition there
are not-elementary bosons, the mesons, which consist of a quark anti-quark
pair. All bosons have integer spin.

•Gauge-Bosons: These are all elementary spin 1 particles transmitting
the forces described in the SM. Photons (γ) transmit the electromagnetic
force, gluons (g) are the interacting particles of the strong force, W-
Bosons (W±) and Z-Bosons (Z) transmit the weak interaction, the W
are charged and the Z are neutral.

•Higgs-Boson: These particles introduce mass to the other SM-particles.
Like the W± and Z they are unstable particles which carry mass (mH ≈
125GeV ). The Higgs was first predicted from Peter Higgs in 1964 [Hig64]
and discovered at CERN in 2012 [Col12, p.1-29].

•Mesons: There are plenty of other bosons which can be distinguished
from the gauge-bosons by the simple fact that they are not elementary
and therefore a combination of elementary particles. What unites both
is their integer spin. A huge boson family are the so called mesons. They
consist of a quark and an anti-quark so their total spin adds up to 0 or
1 in the ground state.

All the particles described in the SM have their own anti-particle which is
identical in mass but switches charge, lepton or baryon number to the exact
opposite. Particles like the γ or the Z are there own anti-particles.

2.3 Conservation laws

Like in all other fields of physics conservation laws are also very important for
particle physics. Besides the classical ones like energy, momentum or angular-
momentum conservation the SM needs additional ones which are related to the
quantum numbers of particles and states. Three of them shall now be briefly
discussed.
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2.4. Cabibo-Kobayashi-Maskawa Matrix

•Parity conservation: Parity conservation predicts that, if a physical
process is taking place in a completely mirrored world, it would still
elapse the same way. Parity is conserved in strong and electromagnetic
processes but violated in weak interactions. In 1956 Chien-Shiung Wu
proved the existence of parity violation experimentally [LEE57] which
was only theoretically predicted before [LY56, p.254] [HH57].

•Charge conjugation: This process describes the transformation of
a particle in its anti-particle and therefore switches its properties like
charge, lepton number, baryon number or color charge. Like parity,
charge conjugation is conserved in electromagnetic and strong interac-
tions but violated in weak processes.

•CP-violation: CP-invariance, which was assumed to be an univer-
sal law, would suggest the outcome of a process with interacting anti-
particles taking place in a mirrored world to be the same as particles
interacting in the unmirrored world. In 1964 Cronin and Fitch could
disprove this universality [JHCJWCVLF64, 138]. After this first evi-
dence for CP-violation in the SM also Belle and BaBar made discoveries
of CP-violation in B0-meson decays [ea04].

Since CP violation is a fundamental process related to the imbalance of matter
and anti-matter in our universe, a deeper understanding of this phenomena
is an important task for both theorists and experimentalists. For that reason
many experiments tried to perform better measurements with higher statistics.
The next generation experiments such as Belle II will further focus on this issue
[DU10].

2.4 Cabibo-Kobayashi-Maskawa Matrix

To understand CP-violation one needs to study the CKM-Matrix, an extension
to the 2× 2 Cabibbo-Matrix which describes a rotation around the Cabibbo-
angle and was first introduced by Nicola Cabibbo in 1963 [Cab63]. This rota-
tion is physically related to the mixing of quark generations. These new states
are mixtures of the quark mass eigenstates which couple to the weak force.

In 1973 Kobayashi and Maskawa published there work on CP-violation and the
Cabibbo-matrix which is since then known as Cabibbo-Kobayashi-Maskawa-

7



2. The Standard model of Particle Physics

Matrix [uTM73, p. 652]. The new CKM-Matrix was now also including the
recently discovered quark generations b and t along with a complex phase
giving rise to CP-violation. A convenient and popular way to write down the
CKM-matrix is:

MCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2.1)

If one knows the values of each element, where the diagonal ones are almost one
and the rest almost zero, the transformation probability of quarks proportional
to the square of the corresponding matrix element. The entries represent free
parameters of the SM which cannot be derived from theory [SB11, 219] and
have to be measured in experiments. Determining the elements of this matrix
gives rise to a specific probability sequence for quarks changing their flavor,
which is illustrated in the picture below:

u c t

d s b

Figure 2.2: Transition between quarks will be more suppressed on light gray
lines and more likely on black lines. The red shades indicate the mass difference
between these quarks.

2.5 The unitary triangle

The unitary triangle is a direct consequence of the CKM-matrix, which is itself
unitary and therefore M ·M † = I, where I is the unitary matrix is fulfilled.
With this relation one can derive the following equation:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

This can be illustrated as vectors drawn in the complex plain.
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2.5. The unitary triangle

α

βγ

(0, 0) (1, 0)

(ρ, η)

Ru =
V ∗
ubVub
|VcdV ∗

cb|
Rs =

VtdV
∗
tb

|VcdV ∗
cb| B0 → J/ΨKS, DD

∗
, ...

Figure 2.3: The unitary triangle in the complex-plain. β can be derived from
the decay channels next to its corner [SB11, 359].

The lines not located on the real-axis Ru and Rs are normalized to map the
triangle between zero and one. Through the measurement of α, β and γ one can
directly calculate the sites of the triangle which are related to the probability
of quark-transformations. The upper point (ρ, η) can also be calculated with
the angles and gives rise to CP-violation in the SM.

As already mentioned CP-violation is a fundamental process in order to explain
the imbalance of matter and anti-matter in the universe. After the big bang
one could naively think that matter and anti-matter should be distributed in
equal densities over the whole universe. Taking a look at our environment this
cant be the case! To explain these imbalance three criteria, first introduced
from Andrei Sakharov [Sak67], are necessary.

• Baryon number violation

• Thermal non-equilibrium

• CP violation, possibly accompanied by C violation

Until now there is no experimental result for baryon number violation, nev-
ertheless it is one of the three fundamental conditions related to the matter
anti-matter imbalance and therefore needs to be possible under certain con-
ditions. These conditions were achieved directly after the big bang when the
energy density was high enough. In so called Grand Unified Theories (GUT)
the forces of nature were combined and had the same couplings to every par-
ticle during this first 10−37 seconds. All processes were allowed which leads to
the prediction of leptoquarks, states of combined quarks and leptons. When
these states where decaying the products could be either pure hadronic or as
well a combination of quarks and leptons. The probability to decay into a pure
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hadronic state is slightly higher, which after some time leads to an imbalance
of matter and anti-matter.

Thermal non-equilibrium in the primordial universe propably occured due to
a very fast expansion (inflation, Alan Guth, 1981 [Gut81]). In the inflation
phase, distances between particles increased too rapidly, so that scattering
processes could not ensure thermal equilibrium anymore.

The last criterion, CP-violation, was already described on page 7. Since the im-
pact of CP-violation in K-systems is too weak to contribute alone to the third
Sakharov criterion, there has to be another source of CP-violation. Therefore
physicists began to investigate B-systems. An explanation of how this works
is given in the next chapters.

2.6 Υ-resonances produced in e+e−-collisions

Since leptons do not couple to the strong force, production of particles in
e+e−-collisions is transmitted via the weak or electromagnetic force. In case
of produced quarks, the final state is a bound hadronic state of quark and
anti-quark, a meson.

γe+

e−

b

b

Figure 2.4: Electron (e−) and positron (e+) interacting via the electromagnetic
force producing a virtual photon (γ) which then forms a confined bottom, anti-
bottom quark state.

Figure 2.4 shows a Feynman diagram where electron and positron annihilate to
form a b− b-state via virtual photon exchange. The produced b− b-states can
be plotted as production cross section (σ(e+e− → hadrons)[nb]) as function
of the mass in GeV which is shown in figure 2.5.
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2.6. Υ-resonances produced in e+e−-collisions

Figure 2.5: The cross section of electron positron annihilation to hadrons
(σ(e+e− → Hadrons)) is plotted against the mass in GeV. The peaks corre-
spond to the indicated Υ-resonances up to the Υ(4S). [Fra78]

As one can see in figure 2.5, the Υ(4S) mass is slightly heavier than the com-
bined mass of a B0 − B0-system which adds up to mB0−B0 = 10.56GeV . For

that reason the Υ(4S) decays to > 96% into B0B0. Due to this ”open beauty”
decay, the width of the Υ(4S) is very broad compared to the 1S, 2S and 3S
state corresponding to a short life time.

Since one of the main research topics of Belle II will be the measurement of
CP-violation in B decays, the Υ(4S)-resonance is a good candidate to gain a
huge data sample of B-mesons which is essential for the upcoming precision
studies. A Feynman diagram of Υ(4S) decaying into B mesons is shwon in
figure 2.6.

b

b

b

b

d

d
B0

B0

Figure 2.6: Υ(4S) decaying into B0 B0.
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2.7 Time dependent CP-violation in B-meson

decays

As mentioned in section 2.5 the angles of the unitary triangle can be measured
in experiment and are related to the CP-violating phase of the CKM matrix.
The main measurements at Belle have been performed in B0-decays and in-
vestigated the β-angle. These measurements are related to the time difference
between the B0 and the B0 decay. In the SM this effect can be described as in-
terference of direct and indirect CP-violation. The B0−B0 mixings responsible
for indirect CP-violation are shown in the following Feynman diagrams.

d b
u, c, t

b du, c, t

WB0 B0W

d b
W

b d
W

u, c, t u, c, tB0 B0

Figure 2.7: Feynman diagram showing the mixtures of B0B0-mesons via in-
termediate W-bosons and quarks.

Belle measured the time dependent CP-violation via the process illustrated in
the figure 2.8.

The time value t can be measured by tagging the primary decaying B0-meson
and reconstructing the second by its decay products. The difference of this
time value in B0 and B0 decays can then be plotted which is shown in figure
2.9.

The amplitude of the difference of the two curves in 2.9 is proportional to
sin(2β), where β is the angle from the unitary triangle which determines the
position of (ρ, η) in the complex plane. The value of sin(2β) is confirmed to be
0.731±0.056 [Ber06, p. 433] which is in good comparison to the predicted SM
value. Nevertheless a better measurement of this value, which can be achieved
by accumulating more data, would proof the SM prediction to be right or
reveal some new physics if the value differs from the predicted one. To further
investigate this phenomena will be one research focus of the future Belle II
experiment.
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e− e+

B0

B0

µ+

µ−

D0 π−

K+

KS

π+

π−

µ+

π−

νµ

Υ(4S)

∆t ≈ 200µs

Figure 2.8: Electron and positron annihilating and forming a Υ(4S) which
then decays to a B0 and B0. The first decaying particle is then tagged and
identified as B0. At this time the other B-meson has to be an B0. If the
B0 decays to KSJ/Ψ the CP-violating Vtd matrix element from formula 2.1
contributes to the calculation on the decay-vertex. In the above decay the
J/Ψ can be reconstructed from µ+µ−.

Figure 2.9: Distribution of the time value ∆t for B-decays. On the y-axis the
derivative dN

d(∆t)
of the number of decays N to the time value ∆t is normalized

to the number of decays 1
N

. The x-axis shows the time value ∆t in pico seconds

(10−12s). B0 decays are shown as qξf = +1 (solid line) and B0 are shown as
qξf = −1 (dotted line) [Abe01].
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Chapter 3

The Belle II Experiment

This section will give an introduction to the future Belle II experiment, its
detectors and the SuperKEKB accelerator which provides the collisions. All
informations given in this section are taken from the Belle II technical design
report. Since the experiment will first run in 2018 small changes in hard and
software are still possible but the overall experimental setup will remain as
described here.

3.1 Motivation for the upgrade to Belle II

Belle, which was hosted at the KEKB accelerator in Tsukuba Japan, was
incredibly successful during its 11 years runtime. KEKB was an antisymmetric
electron positron collider which was running at a center of mass (CMS) energy
of ECMS = 10.58GeV , the mass of the Υ(4S)-meson. Since this resonance
is dominantly decaying into B mesons the whole facility belongs to a sort of
particle colliders which are known as B factories. In 2009 Belle accumulated a
total integrated luminosity of L = 952fb−1 which is until now the world record.
With an upgrade of collider and detector one can reach much higher precision
in the measurement of rare SM effects and may also have the possibility to
study effects which correspond to physics behind the SM. For that reason it
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3. The Belle II Experiment

was decided in 2010 that KEKB and Belle should be upgraded to SuperKEKB
and Belle II respectively.

3.2 The SuperKEKB accelerator

The Belle II experiment will be hosted at the SuperKEKB accelerator at KEK
institute Tsukuba, Japan. This asymmetric ring collider is an upgrade of the
former KEKB accelerator which was providing collisions for Belle. Since Belle
II is mainly investigating very rare processes one needs high statistics. This can
be achieved with a high collision rate and large data samples which have to be
handled by the hard- and software of the detectors. The first run of Belle II will
most probably run on the Υ(5S) energy and later go down to

√
s = 10.58GeV

which is the mass of the Υ(4S) since this resonance is decaying dominantly
(> 96%) into B-mesons [Gro14, p. 142].

Figure 3.1: Left: Sketch of the SuperKEKB accelerator. Right: The Belle II
detector [Ins10].
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3.2. The SuperKEKB accelerator

3.2.1 Luminosity

One of the most important parameters to characterize a particle collider is the
Luminosity L, which is schematically shown in figure 3.2. It is defined as the
number of particles (N1, N2) interacting with each other in a certain region
(cross section ρx, ρz[cm

2]) per unit time (f [1/s]).

L = f
N1N2

4πρxρz

[
1

cm2s

]
(3.1)

It is also directly related to the event rate N :

dN
dt

= L · σ =⇒ N = σ
∫
Ldt

N , which is the cross section times the luminosity integrated over time, repre-
sents the total amount of events collected in a certain period of time.

2ρx

2ρz

IP

Ne+

Ne−

Figure 3.2: Two particle bunches one with Ne+ positrons the other with Ne−

electrons collide at the IP. The interacting beam cross sections ρz and ρx
indicate the indicate the effective interaction areas of the beams. Luminosity
can then be calculated according to formula 3.1

Up to now the world record in luminosity L = 2.11 · 10−34cm−2s−1 is still held
by the former Belle experiment. In order to increase this by a factor of ∼ 40 for
the future Belle II experiment one can tune three parameters in formula 3.1,
the frequency f , the number of particles N1, N2 and the bunch cross section
ρxρz. For Belle II it was decided to decrease the bunch cross sections which is
described in the next chapter.
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3.2.2 The nano-beam-scheme

The future SuperKEKB collider is build for a peak luminosity of L = 80 ·
10−35cm−2s−1. To gain this increase of a factor 40, of the former Belle lu-
minosity, one can tune the three parameters of formula 3.1. For Belle II the
bunch cross section ρxρz is tuned.

The parameters ρxρz can be described as ρi =
√
εiβi, where εi is the emittance

e.g. the spread of particle coordinates in position and momentum phase-space
and βi the beta function related to the transverse size of a particle beam. The
emittance εi can be derived from ε = dφ · dq, here dφ is the angle divergence
and dq the cross section area of one beam. According to the Liouville-Theorem
[Sch06], which implies that the phase-space distribution function is constant
along a systems trajectories, the emittance is a conservation value.

With this knowledge increasing luminosity comes with decreasing the beta
function. This happens via the relation βz < d which connects the beta func-
tion with the beam overlap d. The following scheme illustrates the crossing of
two particle bunches at the IP.

z 2φ

e− e+

d

IP

Figure 3.3: The picture illustrates the bunch crossing of electron (in positive z-
direction) and positron beams at the IP. d, which indicates the effective overlap
length, limits the magnitude of the β-function at the interaction point.

As one can see in figure 3.3 a smaller d is induced by increasing φ. At the Belle
II IP φ will be 41.5mrad corresponding to σx = 10.2µm for electrons and σz =
7.75µm for positrons which leads to the proposed luminosity. Different values
of σx for positrons and electrons are related to the different beam energies
Ee− = 7GeV and Ee+ = 4GeV .
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3.3 Experimental setup

The Belle II detector consists of 6 sub-detectors which can be divided in three
fields of functionality; particle identification, track reconstruction and energy
measurement. This chapter will first describe the two types of detectors men-
tioned and then give an overview of each sub detector mainly concentrating
on the pixel detector (PXD) which is topic of this work.

• track reconstruction: The main purpose of this detector type is the
reconstruction of particle trajectories. Belle II will host three detectors of
this type, the PXD, the Silicon Vertex Detector (SVD) and the Central
Drift Chamber (CDC). Combined they will cover the polar angle region
from 17◦ < Θ < 150◦.

• particle identification: These detector type performs identifica-
tion of particles and is represented by the Time Propagation Detector
(TOP), the Electromagnetic Calorimeter (ECL) and the K0

L and µ de-
tector (KLM). These three form the outermost detector layers and will
be surrounded by the magnet-yoke.

• energy measurement: Energy measurement is performed by the
ECL and KLM which measure the energies of photons, kaons, electrons
and muons which are produced in high numbers at Belle II.

Figure 3.4: Assembling of the Belle II sub detectors inside the magnet-yoke
[DU10]. The PXD and SVD can be seen in yellow and red directly around the
IP.
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3.3.1 Pixel detector

Consisting of two layers placed 14mm and 22mm around the IP, the PXD is
the innermost Belle II detector. Together with the SVD the PXD forms the
Vertex Detector (VXD). It’s task is to reconstruct the vertices of particles
decaying near the IP. Picture 3.5 shows the layout of the PXD.

Figure 3.5: Setup of the PXD, consisting of inner and outer layer with 16 and
24 half-ladders respectively. The gray colored rectangles indicate the sensitive
detector area [DU10, p.77].

As already mentioned the main focus of Belle II will be the investigation of pro-
cesses related to B-meson decays. The reconstruction of these decay vertices
is, due to the high occupancy more or less impossible with strip detectors. For
the PXD pixels are used instead of stripes which comes with a much higher
number of channels and therefore less occupancy. Still one needs the SVD,
which is placed 38mm around the IP, to reconstruct vertices with sufficiently
high resolution. This combination of pixel and strip detectors was successfully
implemented at the LHC. Still the Belle II PXD will set new standards since
the layers of the LHC-PXD with 200− 250µm[Kei01, p.40] would be too thick
for the measurements performed at Belle II.

The thickness of the sensitive layers is a major criterion for the behavior of
a particle when flying through the sensor. If the material is too thick, it will
cause multiple scattering which makes the reconstruction of decay-vertices im-
possible. For this reason the sensitive area of the Belle II PXD consists of a new
transistor type, the DEpleted P-channel Field Effect Transistor (DEPFET),
which can be thinned down to 75µm.
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Figure 3.6: Scheme of a DEPFET transistor forming one pixel of the PXD
[DU10, p.79]. In the depleted silicon bulk (white) electrons and holes are
produced by particles flying through. These electrons and holes are then prop-
agating to the oppositely charged poles deep p-well and p+ back contact re-
spectively.

As shown in the previous picture, the major part of a DEPFET pixel consists of
depleted silicon bulk which is grounded on a positive contact and topped with
a p-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor)
or JFET (Junction gate Field-Effect Transistor ). The positive ground-plate
causes full electron depletion in the silicon which in turn charges the p-channel
ground-plate negative. Beneath the FET gate a potential minimum evolves
which accumulates the energy set free by a particle ionizing the silicon-soil
when flying through the DEPFET. The amount of energy deposited can be
approximately derived from the Bethe-Bloch formula, which reflects the energy
transfer between a charged particle and the matter it is flying through. This
ionization process causes electrons and holes in the silicon bulk which then
propagate to the oppositely charged poles. A potential difference between
deep p-well, where electrons gather and the p+ back contact, where the holes
are accumulated is the result. This leads to a channel current which is directly
proportional to the energy loss of the particle passing the DEPFET pixel.
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3.3.1.1 PXD readout

As shown in figure 3.5 the whole PXD will be made up of 40 half-ladder. Each
containing 768×250 of the discussed DEPFET pixels corresponding to a total
amount of ≈ 8 million pixels for the whole PXD. A scheme of such a half
ladder is shown in figure 3.7.

Figure 3.7: Scheme of a PXD half-ladder [DU10, p.90]. On the left the four
DHP and DCD, which read out this half-ladder, are located. In the lower
picture one sees a cross section cut of the half-ladder and how gate, clear and
drain is connected between the single pixels.

Pixels are read out by four DCDs (Drain Current Digitizer) combined with
four DHPs (Data Handling Processor). The DCDs digitize the currents so
that the DHP can produce a data format (discussed in chapter 4.3) which can
then be processed. In order to minimize readout time the whole half-ladder is
segmented in four parts with 768 rows and 64 columns. Each of these segments
is read out by one DCD-DHP pair. This is perfomred column by column in
blocks of four rows and is regulated by the switches shown on the bottom of
the half-ladder in figure 3.7. The readout of one half-ladder will take 20µs
which corresponds to a readout rate of 50kHz.

Four of these DHP correspond to one DHE (Data Handling Engine) which is
responsible to send the data of one half-ladder to the DHC (Data Handling
Concentrator). The DHC combines data of five DHE and sends it out via four
optical links to the ONSEN (ONline SElection Node) system. This system
represents the core of the PXD’s data reduction and will be discussed in chapter
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(3.5). As mentioned before with an occupancy of≈ 3% mostly originating from
background effects the PXD DAQ (Data AcQuisition) will be faced with an
enormous amount of data which cannot be completely stored and therefore
needs to be reduced. These background sources are:

• Synchrotron radiation (SR) from upstream: Synchrotron radia-
tion originating from the high energy beam. The IP chamber is designed
to avoid direct SR hits from the high energy beam.

• Backscattering of SR from downstream: This background source
originates from the bending magnet which separates the beams behind
the IP. At SuperKEKB a much lower SR from downstream than at KEKB
is expected.

•Beam gas scattering: Bremsstrahlung and Coulomb scattering hang-
ing the momenta of beam particles which then hit the walls of vacuum
chambers and magnets. This produces shower particles which are one of
the major beam-induced background sources.

• Touschek scattering: An effect of intra-bunch scattering which
can force particles to hit vacuum chamber and magnet walls producing
shower particles.

• Radiative Bhabha scattering: Interacting electrons and positrons
produce photons which propagate along the beam axis and interact with
the iron of the magnets. In these interactions neutrons are produced via
the giant photo-nuclear resonance mechanism [ea08]. These photons are
the main background source for the KLM.

• Electron-positron pair production via two photon process:
Electron-positron pairs are produced in two-photon processes e+e− →
e+e−e+e−. This is the major background source for the PXD which is
faced with 900 to 14000 e+e− pairs in each event in the first layer, based
on monte-carlo studies [DU10, p. 67].

To reduce the data in the ONSEN-system so called ROIs (Regions Of Inter-
est) are selecting physically interesting data which does not originate from
these background effects. These ROIs are defined as areas on the PXD surface
which contain physically interesting information related to trajectories calcu-
lated from the High Level Trigger (HLT). If the ONSEN-system receives data
for a given ROI this data will be kept, otherwise it will be discarded.
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DHP4x

DHP4x

DHP4x

DHP4x

DHP4x

DHE

DHE

DHE

DHE

DHE

DHC

Trigger

1, 5, ...

2, 6, ...

3, 7, ...

4, 8, ...

Event
Number:

To ONSEN

Figure 3.8: The picture shows the readout of 5 PXD half-ladder (DHE) which
transmit their data to one DHC. Data is then ordered in event number and
further transmitted to the ONSEN-system.
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3.3.2 Silicon Vertex Detector

The second innermost detector and outer part of the VXD is the SVD, a strip
detector consisting of p-doped silicon stripes on one side and orthogonally
arranged n-doped stripes on the other. These stripes are assembled on ladders
which surround the IP at increasing radii. The first SVD layer consists of 7
ladders, the second of 10, the third of 12 and the fourth and last of 16. Main
purpose of the SVD is the reconstruction of particle tracks flying through its
layers. The DATa CONcentrator (DATCON), which gets the SVD data after
it’s readout chain, calculates ROIs for the ONSEN-system.

Figure 3.9: Illustration of the VXD surrounding the IP viewed in negative z
direction. In blue and purple the SVD layers in black the PXD layers [DU10,
p.142].

As in case of the PXD, detection of particles in the SVD is based on ionization.
Electrons and holes will propagate to the oppositely charged strip and induce
a current which can be read out. In case of one particle flying through one
SVD strip in a certain time window a distinct assignment of the position can
be made. If there are two or more particles flying through the same strip in
the same time interval the positioning is not distinctive anymore due to so
called ghost hits illustrated in figure 3.10.
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Figure 3.10: Left: Ghost hits (light red dots) produced on the SVD layers.
Dark red dots indicate the real hits. Right: Avoidance of these ghost hits on
the PXD.

3.3.3 Central Drift Chamber

The VXD is surrounded by the CDC, responsible for tracking and momentum
measurement. In addition it provides triggers and particle identification for
charged particles flying through. The chamber is filled with 50% He and
50% C2H6. Charged particles will ionize the surrounding gas-mixture and
produce electrons and ions. The electrons will gain additional velocity due to
the electric field obtained in the chamber and further ionize the gas molecules.
This causes an avalanche of new electrons generating a measurable signal which
is directly proportional to the amount of electrons produced by the primary
particle flying through.

To measure this signal the chamber is traversed by 30µm thick wires with
positive potential to attract the electrons set free by ionization. A particle track
can then be calculated via the distance d between the track of the incoming
particle and the wire which detects it. This distance is related to the time
electrons need to drift to the wire; the drift-time. Since the wires are very
close to each other electrons will always drift to two neighboring wires leading
to two different drift-times. With these drift-times, the constant drift-speed
and the distance between the wires, one can calculate the distance d in which
particles are flying by. With this distance one can ”draw” a circle around
the wire. A particle track represents one of an infinite number of tangents to
this circle. To have a distinct reconstruction of a particle path one needs to
calculate the distance d of many wires to the particle track. A tangent which
hits all calculated circles is then describing the particles trajectory.
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3.3.4 Time of Propagation Detector

The detection principle of the TOP detector is based on Cherenkov radiation
which is emitted from charged particles moving in a medium faster then the
speed of light in the same medium [PR14, p.371]. The angular distribution of
photons emitted during this process is given by:

Θ = arccos

(
1
βn

)
Θ is the angle between the particles trajectory and the wave front made up of
the emitted photons. β = v

c
is the ratio of particle speed to the speed of light

and n the index of refraction of the material. Radiation is emitted in a cone
around the particles trajectory, an illustration of this is shown below.

Flight path
high
energetic
particle

Figure 3.11: Cherenkov cone of a particle flying through a medium faster then
the speed of light in the same medium. Photons are emitted perpendicular to
the wave fronts.

The TOP detector at Belle II consists of a quartz-plate generating the Cherenkov
radiation when a particle is flying through. One side of this plate is equipped
with a micro-channel-plate photon multiplier (MPC) for photon detection.
When reaching the edge of the quartz plate photons are reflected which causes
them to exit on the side equipped with the MPC. In order to determine the
time a particle needs to travel through the quartz one measures the time differ-
ence between the reflected Cherenkov Photons in the material. The following
picture illustrates this procedure:
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charged particle

MPC

γ

Θ

Figure 3.12: Side view of a TOP quartz-plate. The photons emitted are trav-
eling in both ways through the quartz and get reflected each time they reach
an edge until they are detected in the MPC.

3.3.5 Electromagnetic Calorimeter

In the final state of B-meson decays, which are produced at Belle II in high
numbers, roughly 1/3 of the decay products are neutral particles like π0 or K0

leading to a huge number of photons with a broad energy spectrum (20MeV -
4GeV ). In order to detect these photons with high energy precision one needs
to have a high resolution electromagnetic calorimeter, which can manage the
following tasks. Detection of photons and determination of their momenta
and angular distribution, electron identification, measurement of luminosity
via Bhabha scattering, generation of suitable triggers as well as K0

L detection
together with the KLM.

For the detection material of the Belle II ECL major parts of the former Belle
ECL will be used, the major difference to the former ECL are the readout
electronics. The detecting material is made up of 8736 caesium-iodide crystals
doped with thallium (CsI(Tl)). CsI(Tl) is a scintillating material. This means
that incoming particles will produce photons that can be read out by photo
multipliers at the end of each crystal.

The new readout electronics allow wave form analysis and suppression of fake
photons detected by a factor of 7 while still keeping the efficiency for true
photons at 93% or higher for photons above 20MeV .
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3.3.6 K0
L and µ detection

The KLM, which surrounds all previous mentioned detectors, consists of a
barrel and an end cap KLM enclosed by the magnet yoke. The barrel part
provides angular acceptance from 45◦ to 125◦ which is extended by the end
cap part from 20◦ to 155◦. Therefore the KLM can detect all particles which
propagate through its layers under an angle of more than 20◦ in respect to the
beam axis. It is made up of alternating iron plates and active RPC detector
layers. RPC stands for glass Resistive Plate Chamber, a glass-electrode plate
which provides good spatial and timing resolution. The detecting material in
the end cap KLM will be renewed since the old material would only reach an
efficiency of 50% due to the higher background at Belle II.
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3.4 Global Belle II data acquisition (DAQ)

system and trigger

This chapter gives an overview of the global Belle II data acquisition (DAQ)
and trigger system. Starting with the triggers which are essential to understand
the DAQ chain used at the future Belle II experiment.

3.4.1 Trigger

For the Belle II physics program there are many interesting events with trig-
gers corresponding to their specific decay signature. These triggers lead to
characterstic responses in the Belle II sub-detectors. The trigger rates and
total cross sections for several physically interesting processes at the Υ(4S)-
resonance, assuming the goal luminosity of 8 · 1035cm−2s−1 are listed in the
table below. Bhabha and γγ have very large cross section, therefore their
triggers are prescaled by a factor of 100 or more which is no problem due to
their distinct signature. These events are also used to measure luminosity and
calibrate the detectors.

Physics process Cross section [nb] Rate [Hz]

Υ(4S)→ BB 1.2 960
Hadron production from continuum 2.8 2200

µ+µ− 0.8 640
τ+τ− 0.8 640

Bhabha (Θlab ≥ 17◦) 44 350
γγ (Θlab ≥ 17◦) 2.4 19

2γ processes (Θlab ≥ 17◦, pt ≥ 0.1GeV/c) 80 15000
Total 130 20000

For this trigger system the following requirements are necessary:

• high efficiency for hadronic events

• maximum average trigger rate of 30kHz

• fixed latency of about maximum 5µs
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• timing precision of less then 10ns

• two-event separation of 200ns or better

• flexible and robust trigger configuration

The Belle II trigger system works in two steps in order to fulfill these require-
ments. In the first step each sub-detector provides his own sub-trigger. This
is done by using Field Programmable Gate Arrays (FPGA) which provide re-
configuration support and high speed serial data transmission. Based on these
decisions the Global Decision Logic (GDL) sends a final trigger decision signal.
Triggers of the sub-detectors are listed below:

• CDC trigger: This trigger is split ub in two sub-triggers, 2D and
3D. For the 2D trigger the CDC data is processed in perpendicular pro-
jections. It first searches for circular shaped tracks and transforms the
via conformal transformation into lines originating from the vertex in
conformal space. Second step is to find these tracks via Hough transfor-
mation and transmit this 2D trigger to the GDL. In addition the data
is used to perform a r-φ-fit and r-z-fit to find an axial coordinate of the
track which is the result of the 3D trigger.

• ECL trigger: This trigger is based on FPGA hardware which analyzes
the data transmitted from the ECL. The so called fast shaper analyzes
the signal’s pulse hight and time length which are forwarded to the GDL.

• PID trigger: The PID trigger uses data from the Cherenkov detector,
which was not used before, in particular position and time and transmits
it to the GDL.

•KLM trigger: The last trigger comes from the KLM. Its main purpose
is to trigger on existing µ-pairs in the event by performing a 3D tracking
on the data.

3.4.2 Belle II DAQ

Goal of the Belle II DAQ is to store all physically interesting data and discard
most of the background. Therefore the detectors are read out according to the
level 1 (L1) trigger decision which is provided by the trigger-system explained
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in the last chapter. Data is then transferred from the front end electronics
through several steps of data processing to Event Builder 2 (EVB2) and the
storage system. An overview of this global DAQ architecture and its main
components, the unified data link (Belle2Link), the Common Readout Plat-
form (COPPER), the event Builder system (EVB1 & EVB2) and the High
Level Trigger (HLT) is given in figure 3.13.
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Figure 3.13: Design of the Belle II DAQ. All detectors are read out by there
own front end electronics (FEE) based on FPGAs. Data is then trasnmitted
according to the trigger distribution (blue) via Belle2Link to the COPPER
boards except for the PXD which transfers data via optical link to the ONSEN
system. The SVD transmits data via Belle2Link to COPPER as well as via
optical link to the DATCON. COPPER boards are read out via readout PCs
and the EVB1 which transmits the data to the HLT farm which performs
trigger and ROI calculation for the PXD and forward data to the EVB2. On
EVB2 all data is collected and stored to the RAID.

The data is transmitted via Belle2Link from the front end readout boards,
which are placed near or inside the detectors, to COPPER. Simple data re-
duction is performed on each front end board or the COPPER receiver mod-
ule. Formatting and module-level event building is done on the COPPER’s on
baord CPU. Further event building and data reduction is done on the readout
PCs and event builder. Data is then finally processed by the HLT farms for
software event selection.
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3.5 Data reduction with the ONSEN-system

The ONSEN-system represents an integral part of the PXD readout chain
where it provides the connection to Event Builder 2 (EVB2) and the data
store. The system is build out of 9 carrier boards, assembled in an ATCA-
shelf (Advanced Telecom Computing Architecture), where each can carry 4
smaller xFP cards. Main part of the xFP cards is a Xilinx Virtex 5 FPGA
(Field Programmable Gate Array) where the firmware for ROI merging and
ROI selecting is running. All cards are equipped with 4 GB DDR 3 RAM
which is necessary to store pixel data until the HLT ended calculation time
(up to 5 seconds) and ROIs arrive. For data transmission SiTCP [Uch12], an
ethernet data transmission protocol based on TCP, and AURORA (which is
a Xilinx specific data transmission protocol [Xil15]) is used. Each board is
equipped with 2 SFP+ (small form-factor pluggable) transceiver slots and one
ethernet connector on the front side. The ethernet connector is used for slow
control of the board via EPICS (Experimental Physics and Industrial Control
System). SFP+ slots can also be used as SiTCP transceivers but their main
purpose, on selecting xFP cards, is receiving pixel data from the DHCs and
send reduced data out to EVB 2. ROIs are transmitted from the merger node
to the 32 selector nodes via the carrier board’s backplane. A scheme of how
xFP cards are arranged in an ATCA shelf can be found below.
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Figure 3.14: Schematic illustration of an ATCA shelf with 9 carrier boards.
The merger (M) on the left side distributes ROIs according to their trigger
numbers to the selector nodes (S01 ... S32) via backplane AURORA. Pixel
data is coming from the DHCs to each selector node’s front optical link.
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To transmitt data to EVB2, three options are under discussion and shall be
briefly explained:

• First and so far only tested option: Send data to EVB2 via 32 eth-
ernet links, one for each selector node. Problem with that option is the
limited programmable storage on each FPGA. To transmit the data via
ethernet one needs to implement an SiTCP core to the FPGA’s firmware
which would occupy approximately 20% of the chips programmable stor-
age. This problem could be solved with one of the two following options.

• Second option: Send data via backplane AURORA to four combiner
nodes (C 01 ... 04 in figure 3.14) which concentrate the data and send
it via SiTCP to EVB2. This option needs SiTCP cores only on the
combiner nodes which is no problem since additional firmware on this
nodes would not occupy much of the FPGA’s resources.

• Third option: Send data via backplane Gbit ethernet to a 10Gbit
ethernet switch and from there via SiTCP to EVB 2. This option is
under investigation and would be the most convenient since it would not
need additional firmware development.

So far only option one is tested and considered as fall back solution. Discussions
on the other solutions are still ongoing and will be clarified when first results of
the third option are achieved. A picture of one fully equipped ONSEN carrier
board and one compute node (CN) can be found below.

Figure 3.15: Left: Picture of a fully equipped carrier board. Right: Top view
of an xFP daughter board card.
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Figure 3.16: Schematic picture of how data is reduced within the ONSEN-
system. Pixel data is transmitted from the DHEs to the DHCs as shown in
figure 3.8. DATCON ROIs and pixel data are then buffered for 5 seconds
in the ONSEN-system until the ROI decision from HLT arrives. Both ROI
sources are then merged according to the trigger number. Pixel data which
corresponds to matched ROIs is then transmitted to EVB2.

Figure 3.8 shows how pixel data is read out from the PXD, in figure 3.16 this
part is symbolized by the dashed red arrows. The ONSEN-system receives
pixel data from 8 DHCs. On the other hand two sources of ROIs are streamed
to the ONSEN, the DATCON which calculates ROIs only from SVD data and
the HLT which calculates ROIs with data from all detectors except the PXD
itself. The merger is responsible for matching these two ROI sources and trans-
mit the matched ones to the selectors. Within these selector nodes ROIs are
selecting physically interesting pixel data which has the same trigger number,
VXD ID and DHP ID combination (numbers which identify one half-ladder)
and originates from pixels inside this ROI. After ROI selection the background
in pixel data is reduced by a factor of 30 which makes it convenient to store
on hard disk. An illustration of a ROI pointed to by a particle trajectory is
given in figure 3.17
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Figure 3.17: Left: A particle track, drawn in red, crosses the layers of the
VXD and points back to its vertex near the IP. Right: Zoom on the PXD
surface. The ROI which refers to the particle track is indicated in red.
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Chapter 4

Generating, unpacking and
monitoring of clustered PXD
data

This Chapter will explain the work which was done within this thesis. The first
part will give a short introduction to the Belle 2 analysis framework (basf2),
which represents the software environment where most of this thesis’s work is
based uppon. After that a detailed picture of the specific data flow of cluster
data in basf2 is given. The data format as well as the generation of test data
in the given format for testing purposes is discussed afterwards. With this
information the modules and classes, written in C++ and registered in basf2,
which access and store the incoming data and can be understood. Finally the
result of some generated test patterns is discussed to show consistency between
incoming and outgoing data. This last chapter is then closed with a discussion
of the achieved work and an outlook to future tests and installation.
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4. Generating, unpacking and monitoring of clustered PXD
data

4.1 The Belle II analysis framework - basf2

The Belle II analysis framework is the software framework of the Belle II exper-
iment. It provides classes and modules which can analyze data accumulated
by the detectors online (directly during data taking) and offline (analysis of
pre filtered and stored data).

Basf2 is a modular structured, ROOT-based framework written in C and C++
using python-scripts to execute modules in a certain, user specific order. There
are global modules and detector specific modules which can all be organized
according to the following tasks: calibration, reconstruction, unpacking, gen-
eration and geometry simulation.

All modules and classes in basf2 consist of a source (.cc) and a header (.h) file.
The header file includes libraries and other header files and declares constants,
variables, functions and classes which are needed for the specific module or
class. In the source file the declared objects are defined which means that
functions get a specific task and variables, constants or classes are assigned
with different values according to the functions they are involved in. The
created module can then be registered in basf2 and used as part of a module
chain to analyze data. An illustration of such a module chain is made in figure
4.1.

Module 1 Module 2 Module 3 Module 4

Data Store

Figure 4.1: The picture illustrates a module chain with 4 modules in basf2.
All modules can access the data store to take and store data according to their
functions. The modules are executed from left to right (number 1 to 4).
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The registered modules with specific parameters given by the user is now ac-
cessed event by event, which means that a module chain which shall modify
1000 events would process 1000 times. Since there are far more than 1000
events to process in most of the cases one can use parallel processing in or-
der to shorten calculation time. This method is called multi-threading and is
illustrated in figure 4.2.

rx M1 M2 M3 tx

rx M1 M2 M3 tx

rx M1 M2 M3 tx

Input Module Output Module

Ring Buffer
Storage

Belle II

Detectors

DAQ

Figure 4.2: Scheme of a multi threading process in basf2. Data is received
by the input module which stores it to the ring buffer. From there a module
chain is processed event by event, modifies data and writes it back to the ring
buffer which is then accessed by an output module writing the data to storage.
Receiving data is abbreviated by rx and transmitting by tx.

The data written to the ring buffer or stored in storage is structured in objects.
These are class definitions in C++ which allow the user to store data with cer-
tain informations which is necesary in order to further analyze it. Some objects
are basf2 unique others are derived from the underlying ROOT framework.

4.2 Data flow - processing of cluster data in

basf2

As already mentioned in chapter 3.3.1 and chapter 3.5, data which is read
out from the DCDs and accumulated from the DHPs and DHCs is send via
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optical link to the ONSEN system. From there the reduced data is transmitted
to EVB 2 where it can be accessed for further analysis. Before data can be
analyzed basf2 needs to know how to treat the incoming binary data stream.
Therefore important information has to be unpacked and stored. This process
is illustrated in the picture below.

basf2

Read
Raw

ONSEN

Unpacker
Hardware
Cluster

Unpacker

ROOT
Output

Raw
PXD

Raw
Cluster

Hardware
Cluster

ONSEN *.root

Figure 4.3: Specific module chain for unpacking of cluster data in basf2. Each
module is accessing a certain class from the data store in which it reads or
saves data. The final output is a .root file.

A python script which represents the upper module chain can be found in
listing 6.1 of the appendix.
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4.3 Data formats

For each detector at the Belle II experiment a dedicated data format was
introduced in order to store important information efficiently in the binary
data stream. The specific data formats for the PXD clusters starting with
the final ONSEN format are described in this section. As mentioned in the
motivation chapter, clusters are cohesive pixel structures which have at least
one common edge. An illustration of these clusters is given in figure 4.4.

Figure 4.4: Schematic picture of four different clusters, the shades in red in-
dicate the different pixel charge. Left: V-shaped cluster. Middle: Standard
cluster without gaps. Right: This object is treated as two different clusters
since the two pixels on the right only have a common corner (and no edge)
with the rest of the structure.

4.3.1 Outgoing ONSEN frames

The final ONSEN frames which are transmitted to EVB2 are made up of DHC
start and end of sub event frames which envelope DHE start and end frames
including the data frames. The ONSEN header and trigger frame is illustrated
on top in figure 4.5 whereas an example of how frames for one event can be
arranged in a data stream is shown on bottom of figure 4.5.
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0xCAFEBABE

number of frames (n)

length of frame one

ONSEN header frame

length of frame n

HLT header 0xCAFE2000

HLT trigger number

HLT experiment run subrun number

DATCON header 0xCAFE0000

DATCON trigger number

DATCON experiment run subrun number

ONSEN trigger frame

ONSEN header

ONSEN trigger frame

DHC start of subevent frame

DHE start of event frame

Cluster frame DHP 1

Cluster frame DHP 2

Cluster frame DHP 3

Cluster frame DHP 4

DHE end of event frame

DHC start of subevent frame

Figure 4.5: Top: The ONSEN header and trigger frame. Starting with
0xCAFEBABE, the ONSEN header frame contains information about how many
frames are transmitted and the length of each frame in bytes.Bottom: Ex-
ample for the final ONSEN output including cluster data frames. After the
ONSEN header and trigger frame a DHC specific start of sub event frame is
transmitted. The DHE start frame marks the start of one DHE (half-ladder)
readout. Before the DHE end frame n cluster frames with up to 4 different
DHP numbers can be enveloped. This structure (in red) can repeat up to 5
times before the DHC end of sub event frame. One ONSEN frame can contain
up to 8 DHC start/end of sub event structures (dashed box).
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4.3.2 DHC sub event formats

These sub event formats represent the last data format changes before the
ONSEN system. The DHC start and end of sub event structures can reapeat up
to 8 times in one ONSEN frame and envelop up to 5 DHE start/end structures.

4.3.2.1 DHC start of sub event format

This start of sub event frame marks the start of one DHC frame and is illus-
trated below.

Header

15 010 9

DHC ID

14

”1011”
Fr
ee

F

3

DHE
connected

15 0

Trigger number [15;0]

15 0

Trigger Number [31;16]

15 03

Time Tag
Trigger Type

FTSW

31 0

Time Tag

31 0820

Subrun
Number

Run
Number

Experiment
Number

31 0

CRC checksum

Figure 4.6: This picture illustrates the DHC start of sub event frame. Starting
with the header, which contains information about the frame type ”1011”, the
DHC ID, how many DHE are connected and the lower bits of trigger number.
After that the upper bits of the trigger number as well as the time tag is
transmitted. The frame end with experiment, run, and subrun number and an
32bit checksum.

The header of a DHC start of subevent frame starts with a Flag and ”1011”
indicating the frame type. The next bit is unused and followed by the DHC ID
giving a distinctive number for the DHC in use. The second 16 bit word of the
header is occupied by the first 16 bit of the trigger number which is completed
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by the third 16 bit word. The next three 16 bit words are made up of a time
tag from the Front End Timing SWitch (FTSW) and the corresponding trigger
type. Before ending the frame with a 32 bit checksum the experiment, run and
subrun -number are given.

4.3.2.2 DHC end of sub event format

This frame type marks the end of a DHC frame which can envelope up two 5
DHE frames embracing the data frames.

Header

15 010 9

DHC ID

14

”1100”
Fr
ee

F

4

Reserved

15 0

Trigger number [15;0]

31 0

Count of 16 bit words in previous frames of this event

31 0

Error information

31 0

CRC checksum

Figure 4.7: This picture illustrates the DHC end of sub event frame. Starting
with the header, which contains information about the frame type ”1100”, the
DHC ID and the lower bits of trigger number. After that a 16 bit word count,
which counts the 16 bit words in the previous event is transmitted before the
frame ends with error information and checksum.

As in the other frames before the header is made up of two 16 bit words, the
first with the frame type ”1100” and the DHC ID, the second with the lower
16 bit of the trigger number. The three last 32 bit words start with a counter
for all 16 bit words in the previous frames of this event. The second last word
is for error information and the last one a 32 bit checksum.
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4.3.3 DHE event formats

Each DHE, which is responsible for one half-ladder (40 in total), will contribute
with a start and end of event frame to the outgoing data scheme which is
discussed in 4.3.1.

4.3.3.1 DHE start of event format

The DHE start of event frame will mark the start of pixel data frames. In
case pixel data is coming in cluster frames there will be up to 4 cluster frames
between DHE start and DHE end frame corresponding to the 4 DHPs on one
half-ladder.

Header

15 010 9

DHE ID

14

”0011”
Fr
ee

R
F

3

active DHPs
connected

15 0

Trigger number [15;0]

15 0

Trigger number [31;16]

DHE timer

15 0

Time Tag [31;16]

15 0

Time Tag [15;0]

15 09

Trigger offsetLast DHP Frame Nr [5:0]

31 0

CRC checksum

Figure 4.8: This picture shows the DHE start of event frame. Starting with
the header, which contains information about the frame type ”0011”, the DHE
ID, how many DHPs are connected and the trigger number. The next block
consists of the 32 bit time tag before the last DHP frame number and the
trigger offset is given. It also ends with a 32 bit checksum.
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As one can see in the upper illustration the header is made up out of one 32
bit word describing the data class and two 32 bit words for the trigger number.
The first word starts with the reformatted flag ”RF” which indicates weather
the data inside the frame was reformatted or not. The second part consists
of the frame types identification number ”0011”, the third part is one free bit
and after that the DHE ID is placed. This ID characterizes the half-ladder
this frame is read out from. The last four bits correspond to the number of
active DHPs which where red out for this frame. The DHE timer is the next
block after the header. It provides a time tag for the processed event so that
further data analysis can refer to the event. A 16 bit word shows the upper
6 bit of the last DHP frame’s number and the trigger offset in respect to the
start of frame strobe before the frame ends with a 32 bit checksum.

4.3.3.2 DHE end of event format

The DHE end of event frame format marks the end of one half-ladder readout
for one event and is structured like shown below.

Header

15 010 9

DHE ID

14

”0100”
Fr
ee

E
F

3

Reserved

15 0

Trigger number [15;0]

31 0

Count of 16 bit words in previous frame of this event

31 0

Error information

31 0

CRC checksum

Figure 4.9: The picture shows the DHE end of event frame. Beginning with
the header, which contains information about the frame type ”0100”, the DHE
ID and the lower 16 bits of the trigger number. The next 32 bit count all 16
bit words in the previous frame before a 32 bit error information is given. It
also ends with a 32 bit checksum.

As in case of the DHE start of event frame this one also starts with a flag
”EF”, but here this shows weather there was an error in the data frames or
not. Second part of the first 16 bit header word is the type number ”0100”
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then 1 bit free and the DHE ID which of course has to match the DHE ID in
the start of event frame. The last 4 bits are reserved. In the second 16 bit of
the header the lower 16 bit of the trigger number is given. The last three 32
bit words start with a counter for all 16 bit words in the previous data frames
of this event before a detailed information on errors is given when ”EF” equals
1. The last word is like in the DHE start of event frame a 32 bit checksum.

4.3.4 DHE cluster format

The DHE cluster format is the innermost data structure of the final cluster
data stream. It is build on the DHH FPGA which is why it is also called
FPGA Clustering Engine (FCE) format.

Header

15 010 9

DHE ID

14

”0001”
Fr
ee

F

3

Free

15 0

Trigger number [15;0]

n × cluster

Start of Row

15 0

0

14

SoC
F

13

dE/dx

11

DHP ID

9

Row address

m × Pixel word

15 0

1
R++

F
Column address

814 13

ADC value

Figure 4.10: The DHE cluster format also starts with a header where type
”0001”, DHE ID and the lower 16bit of the trigger number is provided. After
the cluster header up to n cluster frames starting with a start of row word
which contain information about the DHP ID the deposited energy (dE/dx)
and the row address can be transmitted. Each cluster can contain m pixel
words containing column address and adc value of the pixel. If the pixel is
located in the neighboring row, the R++ flag is set to ”1”. A new cluster
always starts with a start of row word, where the SoC (start of cluster) flag is
set to ”1”.

In the upper picture ”0001” is the type number of a cluster frame. The Field
DHE ID includes the number of the DHE which is read out. In the lower box
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one cluster is shown which is basically made up out of a start of row / start of
cluster word and m pixel words. Between two header frames, which means two
different half-ladders or trigger numbers, can be n clusters each one starting
with a start of row word where the field SoC (start of cluster flag) is set to
one. One cluster can contain more then one start of row word which is for
example the case when dealing with V-shaped clusters (5.1.2). All pixel words
related to one cluster are then confined between two start of row words where
the start of cluster flag is turned to ”1”. The pixel words themselves contain
the important information about column and charge (ADC value), the row
is given in the start of row word and will be increased by the readout code
(unpacker) when the increment row flag (R++) is set to ”1”.

4.4 Generation of test data

The last chapter illustrated the frame types which where defined to transport
data from the PXD over the ONSEN system to EVB2. In order to test an un-
packing module which should read out the important properties of the received
data, it is necessary to produce data according to these given formats. Since
the cluster unpacker should unpack data arriving from the ONSEN system it
has to handle the arriving data stream as outgoing ONSEN frames with all un-
derlying sub frames generated by DHC and DHE. A detailed explanation how
this was realized in C++ can be found in listings 6.2 to 6.7 of the appendix.

By modifying the code shown in listing 6.5 in the appendix one can generate
all kinds of cluster shapes from randomly organized clusters with different
number of pixels to defined cluster patterns. Chapter 5.1 will introduce the
cluster patterns used for testing the software written in this thesis.

4.5 Cluster related modules and classes

The last chapters introduced the cluster data format and how data is generated
in order to satisfy the given format. In this chapter the modules and classes
which interpret this data within basf2 shall be explained.
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4.5.1 PXD Unpacker Module

The first module used for unpacking cluster data in basf2 is the PXD unpacker
module. It is written to unpack all data formats which can be send from
ONSEN to EVB2. For this thesis a new function which allows the module to
unpack cluster data was implemented. The C++ code describing this function
can be found in listing 6.8 of the appendix.

In order to unpack data to the PXDRawCluster class, the incoming data stream
has to be interpreted according to the formats presented in chapter 4.3. All
frames except the DHE cluster frames in figure 4.4 are discarded in this process.
Nevertheless the unpacker needs to understand all frames in order to interpret
the data structure correctly. To do so, the code in listing 6.8 is executed. The
input of this function is a data stream which is treated as a pool of RawPXD

objects each one related to one event. In case of incoming cluster data the
output of the unpacker module will be the ”PXDRawCluster” object which is
presented in the next chapter.

4.5.2 Raw cluster class

The raw cluster object (PXDRawCluster) is called in the unpacker module. It
stores cluster with a given length out of a data stream and saves the size of
this cluster and all data in its frames without unpacking it. In the appendix,
listing 6.9 and 6.10 show parts of this object’s code.

4.5.3 Hardware cluster unpacker Module

The ”PXDHardwareClusterUnpackerModule” is processed after the ”PXDUn-
packerModule” in the module chain of a basf2 python script. It is responsible
for the interpretation of ”PXDRawCluster” which is the object it gets as input.
In order to do so the module needs to unpack data according to the structure
presented in chapter 4.3.4. In addition to the interpretation of PXDRawCluster
objects it also provides functions to find the seed pixel, e.g. the pixel with the
highest charge, as well as the total cluster charge. The unpacked and calcu-
lated information is then stored as PXDHardwareCluster object which will be
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topic of the next chapter. Parts of the code written for this module can be
looked up in listings 6.11 to 6.15 in the appendix.

4.5.4 Hardware cluster class

In the last lines of listing 6.12 in the appendix, the unpack fce function is
called to store data in the PXDHardwareCluster class. This class saves im-
portant information of each cluster. Therefore it uses arrays which have the
same size as the number of pixels in the corresponding cluster. These arrays
are then filled with row, column and charge of each pixel of a certain cluster.
In addition address information of the seed pixel and its charge are saved as
well as the total charge deposited in this cluster. Since the half-ladder can
be derived from vxd-id also this number is stored. A detailed description of
how that was realized in C++ can be found in listing 6.16 and 6.17 in the
appendix.

4.5.5 Data Quality Monitoring

In order to have a live monitoring of the processed data a so called Data Quality
Monitoring (DQM) module was written. It provides ROOT histograms and
fills them with data stored in ”PXDRawCluster” and ”PXDHardwareCluster”
during the unpacking process. One of the most important values to monitor
is the cluster size and the charge deposited in each pixel of a cluster. For
the charge a 2 dimensional histogram which shows a PXD half-ladder is filled
with information about row and column of each pixel, the charge deposited is
indicated as the pixel’s color. An example of such a histogram will be shown
in chapter 5.1.3
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Chapter 5

Data consistency check

To test the written code it is important to perform an input/output consistency
check. This was done with the generation of test patterns where the exact
shape of transmitted data is known. By plotting the outgoing data to root
diagrams one can show that in and outgoing data matches.

5.1 Generation of test patterns

For the generation of test patterns the code presented in listings 6.2 to 6.7
was used. Two different patterns where used to test the unpacking chain; the
simplest one a square cluster and a more complicated V-shaped cluster. Both
where produced on all 4 DHPs. Since the column information in the cluster
frames has only 6 bit, the number of columns is limited to 63 (starting from
0) for each DHP. The ”HardwareClusterUpacker” then adds 64 × nr dhp
columns to the addressed column in order to represent the whole half-ladder.
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5.1.1 Square clusters

Square clusters where generated in the following pattern. The dark red points
in the middle symbolize the clusters seed charge i.e. the pixel with the highest
charge.
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Figure 5.1: DHE half-ladder with square cluster patterns the dark red squares
symbolize the pixel with the highest charge.

To generate the upper cluster pattern the code listed in 6.18 in the appendix
was used.
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5.1.2 V-shaped clusters

V-shaped clusters are special since they need an additional start of row word
with start of cluster flag ”0”. This behavior comes due to the fact that the
clustering algorithm on the FPGA starts with a certain row and then incre-
ments this row address by setting ”increment row flag” to ”1”. Therefore it
cannot decrease a row and a new start of row word has to be putted in, in
order realize to a ”gap” in the cluster. The illustration bellow will clarify this
procedure.
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Figure 5.2: DHE half-ladder with V-shaped cluster patterns the dark red
squares symbolize the pixel with the highest charge.

Listing 6.19 in the appendix shows the code generating the pattern in the
upper figure.
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5.1.3 Discussion of the test results

In this chapter the results of the cluster pattern test are presented within
plots and histograms. The histograms verify the right number of cluster data,
whereas the plots show the geometrical distribution of the clusters on one half-
ladder. The next two tables represent a clustered data set of 10 million events
for squared shaped as well as V-shaped clusters.

Parameter Generated Unpacked
Cluster length in 16 bit words 10 10
Number of pixel per cluster 9 9

Pixel charge 128 · 106 × 30 128 · 106 × 30
16 · 106 × 50 16 · 106 × 50

Charge of seed pixel 50 50
Total cluster charge 290 290

Coordinates of seed pixel [row/column] 12/32 12/32
12/96 12/96

DHP 1 12/160 12/160
12/224 12/224
212/32 212/32
212/96 212/96

DHP 2 212/160 212/160
212/224 212/224
412/32 412/32
412/96 412/96

DHP 3 412/160 412/160
412/224 412/224
612/32 612/32
612/96 612/96

DHP 4 612/160 612/160
612/224 612/224

The upper table compares a data set of 10 million squared shaped generated
cluster events with the unpacked numbers of the root histogram. 10 million
events with 16 cluster per event (4 per DHP) and 9 pixels in each cluster
correspond to a total amount of 144 · 106 pixels. Since each cluster has one
seed pixel (with charge 50) the amount of clusters with charge 30 should be
8/9 × 144 · 106 = 128 · 106 and 16 · 106 pixels should have charge 50. This is
shown in the upper table under the parameter pixel charge.
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The next table shows the comparison between the parameters of 10 million
generated V-shaped clusters and the corresponding unpacked parameters.

Parameter Generated Unpacked
Cluster length in 16 bit words 9 9
Number of pixel per cluster 7 7

Pixel charge 96 · 106 × 30 96 · 106 × 30
16 · 106 × 50 16 · 106 × 50

Charge of seed pixel 50 50
Total cluster charge 230 230

Coordinates of seed pixel [row/column] 12/33 12/33
12/97 12/97

DHP 1 12/161 12/161
12/225 12/225
212/33 212/33
212/97 212/97

DHP 2 212/161 212/161
212/225 212/225
412/33 412/33
412/97 412/97

DHP 3 412/161 412/161
412/225 412/225
612/33 612/33
612/97 612/97

DHP 4 612/161 612/161
612/225 612/225

As in case of the square shaped cluster data sample, the pixel charge divides
on pixels with charge 30 and seed pixels with charge 50. Here the total amount
of pixels can be calculated as 106events× 16 cluster

event
× 7 pixel

cluster
= 112 · 106pixels.

According to this calculation there should be 1/7 × 112 · 106 = 16 · 106 seed
pixels with charge 50 and 6/7 × 112 · 106 = 96 · 106 pixels with charge 30.
This can be seen under the parameter pixel charge in the upper table. The
first two parameters are related to the length of each cluster and the number
of contained pixels. Since in case of V-shaped clusters one needs to add two
start of row words, the number of words in the cluster has to be the number
of pixels plus 2.

55



5. Data consistency check

The next plots show the result of square unpacked clusters, arranged like the
pattern in figure 5.1, which were transferred to EVB2.
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Figure 5.3: Top: This picture shows one half-ladder populated with square
shaped clusters. The column is plotted on the y-axis and the row on the x-axis,
color indicates how often one pixel was hit. Bottom: Zoomed in parts of the
upper plot. For each DHP one square shaped cluster is shown.
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Now also the results of the V-shaped cluster (figure 5.2) test, which have a
more complicated data structure, shall be shown.
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Figure 5.4: Top: This picture shows one half-ladder populated with V-shaped
clusters. The column is plotted on the y-axis and the row on the x-axis, color
indicates how often one pixel was hit. Bottom: Zoomed in part of the upper
plot. One cluster on each DHP is shown therefore the column number has to
be increased by 64× nr dhp.
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The next two figures show an overview of square and V-shaped clusters as well
as a zoomed cluster of both types. All four histograms are generated with the
DQM module, the charge of each pixel is indicated with colors.
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Figure 5.5: Square cluster pattern shown on the whole half-ladder (top)
zoomed in part (bottom). Columns are shown on the y-axis and rows on
the x-axis. The bottom part shows a square cluster with its seed pixel (red)
in the middle.
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5.1. Generation of test patterns
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Figure 5.6: V-shaped cluster pattern on the whole half-ladder (top) zoomed
in part (bottom). As in case of the square cluster, the red pixel indicates the
seed charge pixel.
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5. Data consistency check

5.2 Summary and Conclusion

Goal of this thesis was the implementation of a whole new data format to
the Belle II analysis framework basf2. The implemented cluster format is
generated from the DHE which reads out one half-ladder of the pixel detector.
These clusters are cohesive structures of DEPFET pixels which were hit by a
particle depositing charge in it. Since, up to now, there is no available cluster
data from the DHE, data had to be generated according to the formats given
in section 4.3 of this thesis.

Clusters are defined as pixel structures which have at least one common edge.
Due to that, there are various of possible cluster shapes. Nevertheless it is
possible to break down the almost infinite number of different shapes to two
main categories, V-shaped and non V-shaped clusters. An example for this
two types is shown in figure 4.4. Special about the V-shaped clusters is their
additional header word, the start of row word. It is necessary in order to form
the ”gap” which is characteristic for these cluster type. For that reason the
written data generator had to be ”flexible” in the way it generates cluster
shapes.

Since the data which is transmitted to basf2 originates from the ONSEN sys-
tem, the generator also needs to add all necessary headers shown in figure
4.5, in order to be processed in the right order from the unpacking modules
implemented in basf2. For this unpacking process the existing PXD unpacker
module in basf2 needed expansion.

If the type field in the header of figure 4.10 indicates a DHE cluster frame, the
unpacker saves the length and content of each cluster in this frame as member
of the new implemented PXDRawCluster class. In this class only the length
and the packed content is saved with no additional information about row,
column or charge of the cluster’s pixels.

To further unpack each cluster and get the physically interesting information it
is further unpacker by the PXDHardwareClusterUnpackerModule. This mod-
ule takes one PXDRawCluster object from the data store (figure 4.3) and
unpacks it according to the format shown in figure 4.10. The unpacked data
is saved as PXDHardwareCluster object which was also implemented in this
work. This class provides arrays to save row, column and charge of each clus-
ter as well as variables for seed and cluster charge. These two parameters
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5.2. Summary and Conclusion

are calculated in the PXDHardwareClusterUnpackerModule. The seed charge
corresponds to the pixel with the highest charge whereas the cluster charge
indicates the total charge of the unpacked cluster. The data is in both cases
(PXDRawCluster and PXDHardwareCluster) saved in .root files which can be
accessed and analyzed.

In addition to this unpacking routine, which is processed in a sequence in-
dicated in figure 4.3, a Data Quality Monitoring (DQM) module was imple-
mented. This module provides live histograms during the unpacking process.
These histograms show parameters like cluster size in short words, pixels per
cluster, total cluster charge or seed pixel charge. In addition 2D plots which
indicate one half-ladder are produced. These plots, the so called cluster maps,
show how clusters are distributed on one half-ladder. The row is shown on the
x-axis and the column on the y-axis. Charge is indicated with colors corre-
sponding to the value shown on the right side of each plot.

To verify that everything works, a data consistency check was performed. Two
data samples with 10 million events were generated, one for square shaped
and one for V-shaped clusters. Both samples where unpacked to basf2 and
the received and transmitted clusters were compared. The result of this test
is shown in the tables shown in section 5.1.3. During processing no error
was observed in the unpacking routine, which means that all unpacked cluster
patterns where stored in therefore developed data classes and show the same
pattern in the final root output as they have in the data generated file. The
average data rate for the unpacking process on a 2.4GHz PC is 2.5MB/s.

The code was committed into the repository of basf2 to provide global access
for Belle II members who want to make tests with clustered pixel data.
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5. Data consistency check

5.3 Outlook

The code developed during this master thesis provides basf2 with the ability of
unpacking and storing pixel data which is accumulated in clusters. In order to
use this software with pixel data coming from the DHCs the cluster format has
to implemented to the ROI selection firmware which runs on the FPGA of the
selector xFP cards. If this is done the ONSEN system can place its header on
top of the DHC start of sub event frames to satisfy the data structure shown in
figure 3.10. In october 2015 will be a first test with a reduced ONSEN system
and a DHC at KEK, Japan. Till now it is unclear when the cluster format will
be implemented in the firmware of the ONSEN, nevertheless this work shows
that clusters can be read out and saved from a data stream correcly in order
to use the included data for further physically interesting analysis.
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Chapter 6

Appendix

Python script for processing of cluster data

Listing 6.1: Python script which corresponds the module chain shown in figure
4.3. At first the modules are declared by giving them a specific name which
is related to the module via the register module() function. For each mod-
ule one can define parameters with MODULE NAME.param(’PARAMETER NAME’,

’VALUE’), for module2 the parameter DoNotStore is set to ’False’ since data
shall be stored. When all modules are registered, a specific sequence is de-
clared. This is done in line 20-24 with the add module() function. The last
line gives the command for executing this module chain.

1 #!/ usr/bin/env python

2 # -*- coding: utf -8 -*-

3

4 import os

5 import shutil

6 from basf2 import *

7

8 from basf2 import Module

9 module1 = register_module(’ReadRawONSEN ’)

10 module1.param(’FileName ’, ’input.dat’)

11

12 module2 = register_module(’PXDUnpacker ’)

13 module2.param(’DoNotStore ’,False);
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14

15 module3 = register_module(’PXDHardwareClusterUnpacker ’)

16 module3.param(’histoFileName ’, ’histogram_of_input.root’)

17

18 module4 = register_module(’RootOutput ’)

19 module4.param(’outputFileName ’, ’output.root’)

20 main = create_path ()

21 main.add_module(ReadRawONSEN)

22 main.add_module(PXDUnpacker)

23 main.add_module(PXDHardwareClusterUnpacker)

24 main.add_module(RootOutput)

25 process(main)

Data generator code

Listing 6.2: Main function of the data generator which calls the sender()

function (line 8) as long as i is smaller than the chosen amount of triggers
(trigger number). In line 4 the data format variable data output format is
set to ’CLUSTER’.

1 int trigger_counter =0;

2 int main()

3 {

4 data_output_format = CLUSTER;

5 int i = 0;

6 while(i < trigger_number){

7 i++;

8 if(! sender ()) break; // Calls the send function in listing 6.3

9 trigger_counter ++;

10 };

11 printf(stderr ,"Status Send: Frames %8d, TrigNr %08X\n", send_frames ,

send_trig);

12 return EXIT_SUCCESS;

13 }

Listing 6.3: sender function which calls generate data for trigger with
the current trigger number and the data format one wants to process; in this
case CLUSTER. Line 4 and 5 clear the header and payload in order to have free
variables for the next frame.

1 int sender(void)

2 {

3 // Clears header and payload before new frame is processed .

4 m_onsen_header.clear();

5 m_onsen_payload.clear ();

6
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7 // Create data frames

8 return generate_data_for_trig(trigger_counter , data_output_format);

9 }

Before moving to the actual data generating function, generate data for trigger,
three other important functions which do often appear shall be explained.

Listing 6.4: The append int16() and append int32() functions, for generat-
ing correct data word types. These two functions get an integer or short as
input and shift the entries to the right sequence in order to transform the data
stream into big endian which can in turn be read by the unpacker. If this would
not be done the output of 0xCAFE2000 in line 9 of listing 6.5, which is part
of the ONSEN trigger frame, would transform to 0x0020FECA and therefore
interpreted wrong from the unpacker.

1 void append_int16(unsigned short word)

2 {

3 m_current_frame.push_back (( unsigned char)(word >> 8));

4 m_current_frame.push_back (( unsigned char)(word));

5 }

6

7 void append_int32(unsigned int word)

8 {

9 m_current_frame.push_back (( unsigned char)(word >> 24));

10 m_current_frame.push_back (( unsigned char)(word >> 16));

11 m_current_frame.push_back (( unsigned char)(word >> 8));

12 m_current_frame.push_back (( unsigned char)(word));

13 }

Listing 6.5: add frame to payload function. This function is called each time
a frame is finished and shall be added to payload. In line 3 it checks weather
the frame is 32 bit aligned or not. If not it reports an error since the unpacker
is written to receive 32 bit aligned frames. Line 7 to 9 add the checksum which
is part of each frame before adding the length of the frame in bytes (line 11)
and its content (line 12) to the payload.

1 void add_frame_to_payload(void)

2 {

3 if (m_current_frame.size() & 0x3) {

4 cerr << "Frame is not 32bit aligned , unsupported by Unpacker!"<<endl;

5 }

6 // Add checksum frame

7 dhe_crc_32_type current_crc;

8 current_crc.process_bytes(m_current_frame.data(), m_current_frame.size());

9 append_int32(current_crc.checksum ());
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10 // And add it

11 m_onsen_header.push_back(m_current_frame.size());

12 m_onsen_payload.push_back(m_current_frame);

13 }

Listing 6.6: Generator function: generates cluster data for each trigger number
processed in main() (listing 6.2). Line 6 to 15 generates the ONSEN trigger
frame of the outgoing ONSEN format (figure 4.5) starting with the frame type
and the trigger number. Line 18 to 20 declare variables connected to the VXD
ID such as the DHE ID (dhe ids list), the DHC ID and the number of active
DHEs per DHC which can vary from 1 to 5. The next frame is the DHC start
of sub event frame, which is created in lines 22 to 32. For each of these DHC
start/end of sub event structures up to 5 DHE start/end of event frames can
be generated. In line 36 this is done via a for loop, in this case only for one
DHE. Line 37 sets the number of active DHPs for his DHE to 4 which is
maximum and corresponds to a full half-ladder. The DHE ID is set according
to the number in the dhe ids list array in line 18. This number is given
determined by the for loop. Line 42 to 49 produce the DHE start frame. Now
the data frames which contain the cluster data are generated in lines 54 to 99.
This is done for all four DHPs (line 57). For each DHP one cluser header is
generated (line 58-61) which increases the word count by 2 (line 62). This is
important since it has to be checked if the frame is 32 bit aligned. From line
66 to 94 the cluster are generated, five per DHP as shown in the for loop (line
66). Line 72 produces 9 pixel for every cluster. The loop repeats 10 times
since the first 16 bit word of each cluster is the start of row word (figure 4.10)
which is generated in lines 74 to 76. If it is not the first word, pixel words are
generated from line 77 to 94. Line 81 to 84 forfec the generator to produce
square shaped cluster like shown in figure 5.1. Since the middle pixel of each
cluster shall have the highest charge line 86 sets the charge value to 50. Line
95 to 98 check weather the frame i 32 aligned or not. If not the last start of
row word will be added. Then the DHE end frame is produced in lines 105 to
110, followed be the DHC sub of vent frame produced in line 114 to 119. The
last lines call the write out data() function which is explained in the next
listing and increase the number of frames sent as well as the trigger number.

1 int generate_data_for_trig(unsigned int trigger_nr , data_output_format_type

mode)

2 {

3 int crc_value;

4 int global_word_count =0;

5 // Places ONSEN trigger frame on top of the generated data

6 start_frame ();
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7 crc_value =( DHC_FRAME_HEADER_DATA_TYPE_ONSEN_TRG << 27) | (trigger_nr & 0

xFFFF);

8 append_int32(crc_value); // Frame type and trigger number

9 append_int32 (0 xCAFE2000);// HLT HEADER

10 append_int32(trigger_nr);// HLT Trigger Nr

11 append_int32 (0 x00400101);// HLT Run Nr etc.

12 append_int32 (0 xCAFE0000);// DATCON HEADER

13 append_int32(trigger_nr);// DATCON Trigger Nr

14 append_int32 (0 x00400101);// DATCON Run Nr etc.

15 add_frame_to_payload ();

16

17 // DHC Start

18 int dhe_ids_list [5]={0x02 ,0x03 ,0x04 ,0x08 ,0x22};

19 int dhc_id =1; // DHC ID , can vary from 1 to 8

20 int dhe_active =0x1;// Max 5 DHE per DHC

21

22 start_frame ();

23 crc_value = (DHC_FRAME_HEADER_DATA_TYPE_DHC_START << 27) | (dhc_id & 0xF)

<< 21 | (dhe_active & 0x1F) << 16 | trigger_nr & 0xFFFF ;

24 append_int32(crc_value);

25 crc_value = (trigger_nr & 0xFFFF0000 ) >>16;

26 append_int16(crc_value);

27 append_int32 (0 x00000000);// TimeTag 11-0 | Type | TimeTag 27 -12

28 append_int16 (0 x00000000);// TimeTag 43 -27

29 append_int16 (0x0000);// run number 0, subrun number 0

30 crc_value = (0x1) << 8 | 0x00; // exp number 1, run number 0

31 append_int16(crc_value);

32 add_frame_to_payload ();

33

34 // nr_dhe_frames = number of dhe_start/dhe_end structures between dhc_start

and dhc_end frame

35 // Max 5 for each DHE connected to one DHC

36 for(int nr_dhe_frames =0 ; nr_dhe_frames < 1 ; nr_dhe_frames ++) {

37 int dhp_active =0xF;//If 0xF all four DHP channels are connected

38 int dhe_id = 0;

39 dhe_id = dhe_ids_list[nr_dhe_frames ];

40

41 // DHE Start

42 start_frame ();

43 crc_value = 0x18000000 | (dhe_id & 0x3F) << 20 | (dhp_active & 0xF) <<16

| trigger_nr & 0xFFFF ;

44 append_int32( crc_value);

45 append_int16(trigger_nr >> 16); // Trigger Nr High

46 append_int16 (0 x00000000); // DHE Timer Low

47 append_int16 (0 x00000000); // DHE Timer High

48 append_int16 (0 x00000000); // Last DHP Frame Nr 5-0, Trigger Offset 9-0

49 add_frame_to_payload ();

50

51 // Now the data frames ...
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52

53 // DHP numbering valid on one DHE (half -ladder)

54 int dhp_ids_list [4]={0x0 ,0x1 ,0x2 ,0x3};

55 int word_count = 0;//in 16 bit words

56 // nr_dhp_frames = number of DHP frames per DHE. Max 4, one for each DHP!

57 for(int nr_dhp_frames = 0 ; nr_dhp_frames < 4 ; nr_dhp_frames ++){

58 start_frame ();

59 // FCE Header , one per DHP

60 crc_value =(0x0 << 31) | (DHC_FRAME_HEADER_DATA_TYPE_FCE_RAW << 27) | (

dhe_ids_list [0] & 0x3F) << 20 | (0x00 << 16) | (trigger_nr & 0

xFFFF);

61 append_int32(crc_value);

62 word_count = word_count + 2;// since header is a 32 bit word

63 int row_address = 10;

64 int dEdx = 2;

65 // Generates nr_cluster Cluster for one DHP

66 for(int nr_cluster = 0 ; nr_cluster < 5 ; nr_cluster ++){

67 int start_of_row_flag = 0, start_of_cluster_flag = 0,

pixel_word_flag = 0, increment_row_flag = 0, column_address = 0;

68 int adc_value = 0;

69 column_address = 20;

70 start_of_cluster_flag = 1;

71 // Generates pixel in cluster

72 for (int pixel_in_cluster = 0 ; pixel_in_cluster < 10 ;

pixel_in_cluster ++){

73 if(pixel_in_cluster ==0 ){

74 crc_value = (0 << 15) | (1 << 14) | (dEdx & 0x3) << 12 | (

dhp_ids_list[nr_dhp_frames] & 0x3) << 10 | (row_address & 0

x3FF);

75 append_int16(crc_value);

76 word_count ++;

77 } else {

78 adc_value = 30;

79 pixel_word_flag = 1;

80 increment_row_flag = 0;

81 if(pixel_in_cluster == 4 || pixel_in_cluster == 7 ){

82 increment_row_flag = 1;

83 column_address = column_address - 3;

84 }

85 if(pixel_in_cluster ==5){

86 adc_value = 50;// One pixel with high charge for seed pixel

unpacking

87 }

88 crc_value = (pixel_word_flag << 15) | (increment_row_flag << 14)

| (column_address & 0x3F) << 8 | (adc_value & 0xFF);

89 append_int16(crc_value);

90 word_count ++;

91 column_address ++;

92 }
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93 }

94 }

95 if(( word_count % 4) != 0){//If frame is not 32 bit aligned the last 16

bit word will be identical with the last start of row word

96 crc_value = (0 << 15) | (1 << 14) | (dEdx & 0x3) << 12 | (

dhp_ids_list[nr_dhp_frames] & 0x3) << 10 | (row_address & 0x3FF)

;

97 append_int16(crc_value);

98 }

99 add_frame_to_payload ();

100 //16 bit word count for DHE end of event frame

101 global_word_count = global_word_count + word_count;

102 word_count = 0;

103 }

104 // DHE end of frame

105 start_frame ();

106 crc_value = 0x20000000 | (dhe_id & 0x3F) << 20 | trigger_nr & 0xFFFF;

107 append_int32(crc_value);

108 append_int32(global_word_count);/ 16 bit word count

109 append_int32 (0 x00000000);// Error Flags

110 add_frame_to_payload ();

111 global_word_count = global_word_count + 96;

112 }

113 // DHC end of sub event frame

114 start_frame ();

115 crc_value = 0x60000000 | (dhc_id & 0xF) << 21 | trigger_nr & 0xFFFF ;

116 append_int32(crc_value);

117 append_int32(global_word_count);// 16 bit word count

118 append_int32 (0 x00000000);// Error Flags

119 add_frame_to_payload ();

120

121 // Done

122 WriteOutData(m_onsen_header ,m_onsen_payload ,mode);

123 send_frames ++;

124 send_trig=trigger_nr;

125 return 1;

126 }

When one event is fully processed the data is written out by the WriteOutData
function which is shown in the next listing. cout.write(POINTER, LENGTH);

streams the generated data to a file of which the name is consigned as an
command line argument to the generator program.

Listing 6.7: WriteOutData function to stream the processed data to a file.
Line 11 to 20 add the ONSEN header frame from figure 4.5, starting in line
11 and 12 with the ONSEN header magic (0xCAFEBABE). Then the number of
generated frames followed by there length is written out in line 14 to 20. Now
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the content of each frame, with the actual cluster data, is written out in line
22 to 26.

1 void WriteOutData(std:: vector <unsigned int >& header , std:: vector <std:: vector

<unsigned char > >& payload , data_output_format_type mode)

2 {

3 // Create header from payload

4 int nr_frames = header.size();

5 int payload_size = 0; // in 32 bit words

6 for (auto & it : header) {

7 payload_size += (it + 3) / 4; // in 32 bit word , rounded up

8 }

9 unsigned int w;

10 // Write ONSEN header Magic to stream

11 w = endian_swap (( unsigned int)0xCAFEBABE);

12 cout.write((const char *)&w, 4);

13 // Write number of frames in this event to stream

14 w = endian_swap (( unsigned int)nr_frames);

15 cout.write((const char *)&w, 4);

16 // Append length of each frame to w and write it to stream

17 for (auto & it : payload) {

18 w = endian_swap (( unsigned int)it.size());

19 cout.write((const char *)&w, 4);

20 }

21 // Write actual data to stream

22 for (auto & it : payload) {

23 cout.write((const char *)it.data(), it.size());

24 // Checks if data is always 32 bit aligned

25 if( (it.size()) & 0x3) cerr << "Frame is not 32 bit boundary!" <<endl;

26 }

27 }

Pixel data unpacker

Listing 6.8: Unpack cluster data function: unpack fce. This function is called
from the unpack event function which receives one ONSEN frame structure
as shown in figure 4.5. The length and pointer to first word of this frame are
then forwarded to the unpack fce function shown below. Data is then written
to the ubig16 t variable cluster which is a 16 bit big endian variable. In line
12 to 33 data is read out and saved to the Raw cluster class. Since the function
gets a pointer to the first word of the actual cluster frame (figure 4.10), the
header and trigger number can be skipped (line 12). The if condition in line 15
searches for a start of row frame with start of cluster flag set to one. The found
cluster is then stored as RawCluster object in line 17 and words in cluster

is set to 0 to count words for the next cluster. Line 20 to 22 searches for
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start of row frame. If the last word in the whole cluster frame is equal to
the last start of row frame (happens when generated data was not 32bit
aligned), line 28 will overwrite this word with zeros to make checking easier
for the PXDHardwareClusterUnpacker.

1 void PXDUnpackerModule :: unpack_fce(unsigned short* data , unsigned int length ,

VxdID vxd_id)

2 {

3 // initializes cluster pointers with the 16 bit data words

4 ubig16_t* cluster = (ubig16_t *)data;

5 int nr_words; // Words in DHP frame

6 unsigned int words_in_cluster = 0; // Counts 16 bit words in cluster

7 nr_words = length / 2; // length in bytes , nr_words in 16 bit words

8 ubig16_t start_of_row_frame;

9 // Loops over i which is representing all entries in the array pointed to

10 //By cluster starting with 2 since first two 16 bit words are header and

11 // Trigger number which can be skipped

12 for (int i = 2 ; i < nr_words ; i++) {

13 // Searches for start of row frame with start of cluster flag = 1

14 //=> new cluster

15 if (((( cluster[i] & 0x8000) == 0) && (( cluster[i] & 0x4000) >> 14) == 1)

) {

16 // Stores information in new raw cluster object with length

words_in_cluster

17 m_storeRawCluster.appendNew (&data[i-words_in_cluster],

words_in_cluster , vxd_id);

18 words_in_cluster = 0;

19 }

20 if(( cluster[i] & 0x8000) == 0){

21 start_of_row_frame = cluster[i];

22 }

23 words_in_cluster ++;

24 //if frame is not 32 bit aligned last word will be the last start of row

word

25 if (( cluster[nr_words - 1] & 0xFFFF) == (start_of_row_frame & 0xFFFF)) {

26 // overwrites the last redundant word with zero to make checking easier

in

27 // PXDHardwareClusterUnpacker

28 cluster[nr_words - 1] = 0x0000;

29 }

30 if (i == nr_words - 1) {

31 m_storeRawCluster.appendNew (&data[i-words_in_cluster +1],

words_in_cluster , vxd_id);

32 }

33 }

34 }
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Raw cluster class

Listing 6.9: Functions declared in the PXDRawCluster class which become
important for storing and further unpacking.

1 // Constructor of the PXDRawCluster class

2 PXDRawCluster ():

3 m_length (0), m_cluster (0), m_vxdID () {};

4 /**

5 * @param length // length of cluster frame in shorts

6 * @param data // pointer to the first word in cluster frame

7 * @param vxdID // Vertex Detector ID of the half ladder the cluster

originates

8 */

9

10 // Destructor of the PXDRawCluster class , called last to clean requested memory

space

11 ∼PXDRawCluster ();
12

13 // Actual storing function defined in the source file Listing 3.9

14 PXDRawCluster(unsigned short* data , unsigned int length , VxdID vxdID);

15

16 // Length of cluster in short words

17 unsigned int getLength () const { return m_length; }

18

19 /** Get static pointer to data.

20 * @param j Index of pointer in data

21 * @return pointer.

22 */

23 unsigned short getData(unsigned int j) const { return (m_cluster[j]); }

24

25 /** Get the Vertex Detector ID of the half ladder the cluster originates from.

26 * @return Vertex Detector ID.

27 */

28 VxdID getVxdID () const { return m_vxdID; }

Listing 6.10: Parts of the source code of the PXDRawCluster class. The class
constructor is called in line 2 and 3. It assigns the values it gets from the
unpacker (listing 6.8 line 17) to the class own variables m length and m vxdID.
m cluster is initialized as array with length m length in line 6. Line 10 to
13 write the data in d[i] which was assigned in line 8 to the array elements
of m cluster. At the end the destructor ∼PXDRawCluster() is called which
deletes the memory space allocated for m cluster in order to allocate new one
for the next event.

1 // Storing function which was declared in Listing 3.8
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2 PXDRawCluster :: PXDRawCluster(unsigned short* data , unsigned int length , VxdID

vxdID):

3 m_length(length), m_cluster (0), m_vxdID(vxdID) // variables get initialized

4 {

5 // Requests new memory space for m_cluster array with length m_length

6 m_cluster = new unsigned short[m_length ];

7 // Boost ’s endianess and data type of ’unsigned short* data ’ to ’ubig16_t* d’

8 boost:: spirit :: endian :: ubig16_t* d = (boost:: spirit :: endian :: ubig16_t *)data;

9 // Writes all data stored in the array pointed to by ’d’ into ’m_cluster ’

10 for (unsigned int i = 0 ; i < m_length ; i++) {

11 m_cluster[i] = d[i];

12 }

13 };

14

15 PXDRawCluster ::~ PXDRawCluster ()

16 {

17 delete m_cluster;

18 };

Hardware cluster unpacker

Listing 6.11: This function parses all PXDRawCluster objects in one event to
the unpack event function. In line 4 the object RawCluster is declared which
which contains entries of the PXDRawCluster class. The lines 12 to 15 save
the important event data of the event where the cluster is contained. Now the
RawCluster objects are parsed to the unpack event function in lines 18 to 23
and number of unpacked events is increased in line 24.

1 void PXDHardwareClusterUnpackerModule ::event ()

2 {

3 // Registers PXDRawCluster object as RawCluster

4 StoreArray <PXDRawCluster > RawClusters;

5 StoreObjPtr <EventMetaData > evtPtr;

6 // Gets Entries in RawCluster

7 int nRaws = RawClusters.getEntries ();

8 if (verbose) {

9 B2INFO("PXD Hardware Cluster Unpacker Info --> RawClusters Objects in

event: " << nRaws);

10 };

11

12 m_meta_event_nr = evtPtr ->getEvent ();

13 m_meta_run_nr = evtPtr ->getRun ();

14 m_meta_subrun_nr = evtPtr ->getSubrun ();

15 m_meta_experiment = evtPtr ->getExperiment ();

16

17 // Hands out each RawCluster object to the unpack_event function

18 for (auto& it : RawClusters) {
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19 if (verbose) {

20 B2INFO("PXD Hardware Cluster Unpacker Module --> Unpack Objects");

21 };

22 unpack_event(it);

23 }

24 m_unpackedEventsCount ++;

25 }

Listing 6.12: The unpack event function checks weather data has the right
size (line 6 to 9) and parses a full PXDRawCluster to the unpack fce function
(line 23). The lines 15 to 20 check weather a frame ended with a zero word
(happens when produced data was not 32 bit aligned) and discards it.

1 void PXDHardwareClusterUnpackerModule :: unpack_event(PXDRawCluster& cl)

2 {

3 int fullsize;

4 unsigned short data[cl.getLength ()];

5 VxdID vxdID;

6 if (cl.getLength () <= 0 || cl.getLength () > 16 * 1024 * 1024) {

7 B2ERROR("PXD Hardware Cluster Unpacker Module --> invalid packet size (32

bit words) " << hex << cl.getLength ());

8 return;

9 }

10

11 fullsize = cl.getLength ();

12 vxdID = cl.getVxdID ();

13

14 // Writes the data stored in PXDRawCluster to data[i], an array of 16 bit

words.

15 for (int i = 0 ; i < fullsize ; i++) { data[i] = cl.getData(i); }

16

17 // Checks weather the last 16 bit word is zero. If so fullsize will be

decreased by one

18 //16 bit word. This comes if produced data was not 32 bit aligned and an

additional word

19 // had to be added in order to align it.

20 if((data[fullsize - 1] & 0xFFFF) == 0){ fullsize = fullsize - 1; }

21

22 // Calls the unpack_fce function.

23 unpack_fce (&data[0], fullsize , vxdID);

24 B2INFO("unpack Cluster frame with size " << fullsize);

25 }

Listing 6.13: The unpack fce function unpacks one PXDRawCluster object
according to its data structure illustrated in figure 4.10. After declaring vari-
ables and initializing the arrays with zero, the main unpacking code starts
in line 21. Here it is checked weather the word is a start of row word or a
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pixel word. If it is a pixel word, the number of pixels is incremented and a
increment row flag is searched. If this is one, the row address written out
ion line 24 is incremented by one. Now the column address is written out in
line 32 and it is checked on which DHP the cluster is located. According to the
DHP number an offset of 64·dhp id is added. All characterizing pixel values
(row, column, charge) are then written out to the corresponding arrays (line 38
to 40). The for loop starting in line 45 checks weather that the arrays do not
have entry zero which would correspond to a second start of row word in the
cluster. If a the entries are zero, the arrays gets shifted by one entry. In line 67
the calc cluster charge function is called, which calculates the total cluster
charge. Line 69 calls the find seed pixel function which searches the clusters
seed pixel. The last lines store the unpacked data to an PXDHardwareCluster

object.

1 void PXDHardwareClusterUnpackerModule :: unpack_fce(void* data , unsigned int

nr_words ,

2 VxdID vxdID)

3 {

4 unsigned short* dhe_fce = (unsigned short *)data;

5 unsigned int increment_row_flag = 0, all , dhp_id = 0, index[nr_words],

nrPixel = 0;

6 unsigned short rows[nr_words], cols[nr_words], row_address = 0,

column_address = 0;

7 unsigned char adcs[nr_words], adc_value = 0;

8 // Declares a variable of the type seed_pixel defined as struct in

9 // PXDHardwareClusterUnpacker .h

10 seed_pixel addr;

11

12 // Initializes declared arrays with zero

13 for (unsigned int i = 1; i < nr_words ; i++) {

14 rows[i] = 0;

15 cols[i] = 0;

16 adcs[i] = 0;

17 index[i] = 0;

18 }

19

20 // Checks weather short word is a start of row or a pixel word

21 for (unsigned int i = 0; i < nr_words; i++) {

22 if (( dhe_fce[i] & 0x8000) == 0 && i != nr_words - 1) {

23 // Start Of Row

24 row_address = (dhe_fce[i] & 0x3FF);

25 dhp_id = (dhe_fce[i] & 0xC00) >> 10;

26 index[i] = i;

27 } else {

28 // Pixel word

29 nrPixel ++;
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30 increment_row_flag = (dhe_fce[i] & 0x4000) >> 14;

31 if (increment_row_flag == 1) { row_address ++; }

32 column_address = (dhe_fce[i] & 0x3F00) >> 8;

33 // Adds 64* nr_dhp to column address if dhp_id != 0

34 if (dhp_id == 1) { column_address = column_address + 64; }

35 if (dhp_id == 2) { column_address = column_address + 64 + 64; }

36 if (dhp_id == 3) { column_address = column_address + 64 + 64 + 64; }

37 adc_value = (dhe_fce[i] & 0xFF);

38 adcs[i] = adc_value;

39 cols[i] = column_address;

40 rows[i] = row_address;

41 }

42 }

43 // Checks that the arrays adcs , cols , rows do not have entry 0 which would

44 // correspond to a Start of Row word from the previous loop

45 for (unsigned int j = 1 ; j < nr_words ; j++) {

46 if (index[j] != 0 ) {

47 for (unsigned int l = j ; l < nr_words; l++) {

48 cols[l] = cols[l + 1];

49 rows[l] = rows[l + 1];

50 adcs[l] = adcs[l + 1];

51 }

52 }

53 }

54

55 unsigned short r[nrPixel], c[nrPixel ];

56 unsigned char q[nrPixel ];

57

58 // Shifts the arrays rows cols adcs so that they don not have entries with

value 0 at the end

59 // which can derive from more than one Start of Row word per cluster

60 for (int k = 1; k <= nrPixel ; k++) {

61 r[k - 1] = rows[k];

62 c[k - 1] = cols[k];

63 q[k - 1] = adcs[k];

64 }

65

66 // Calls the calc_cluster_charge function described in listings 6.14

67 all = calc_cluster_charge(dhe_fce , nr_words);

68 // Calls the find_seed_pixel function described in listings 6.15

69 addr = find_seed_pixel(dhe_fce , nr_words , dhp_id);

70

71 if (! m_doNotStore) { // Stores one PXDHardwareCluster object to the data

store

72 m_storeHardwareCluster.appendNew (&r[0], &c[0], &q[0], nrPixel , addr.charge

, addr.row , addr.col , all , vxdID , dhp_id);

73 }

74 }
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In order to calculate the total cluster charge and search the seed pixel, two
other functions are necessary. Both are called in the unpack fce function in
listing 6.13. The next two listings show how this functions work.

Listing 6.14: calc cluster charge calculates the integral charge of one clus-
ter. In the for loop (lines 5 to 10) a pixel word is identified by its flag (figure
4.10) and the charge is written to the value charge. This value is then added
to cluster charge for all pixels in the cluster. Line 11 returns the value of
cluster charge.

1 unsigned int PXDHardwareClusterUnpackerModule :: calc_cluster_charge(unsigned

short* data , unsigned int nr_pixel_words)

2 {

3 unsigned char charge = 0;

4 unsigned int cluster_charge = 0;

5 for (unsigned int i = 1 ; i < nr_pixel_words ; i++) {

6 if ((data[i] & 0x8000) != 0) { // Checks if short word is a pixel word

7 charge = (data[i] & 0xFF);

8 cluster_charge = cluster_charge + charge;

9 }

10 }

11 return cluster_charge;

12 }

Listing 6.15: find seed pixel searches address and charge information of the
clusters seed pixel. The seed charge is initialized with the first pixels charge
(line 5). Then it is checked for every pixel weather itscharge is higher or lower
then the actual value of seed charge. Every time seed charge is changed,
the row and column of the pixel is written out. Line 13 writes out the index i
of the pixel in order to get information of its DHP ID in lines 18 to 21. Here
the pixels column is customized according to the DHP the pixel originates
from. The last lines set the variables of the addr-object and return it.

1 PXDHardwareClusterUnpackerModule :: seed_pixel PXDHardwareClusterUnpackerModule

:: find_seed_pixel(unsigned short* data , unsigned int nr_pixel_words ,

unsigned int dhp_id)

2 {

3 seed_pixel addr;

4 unsigned short row_addr = 0, col = 0, index = 0, row = (data [0] & 0x3FF);

5 unsigned char seed_charge = (data [1] & 0xFF) >> 8;

6 for (unsigned int i = 0 ; i < nr_pixel_words ; i++) {

7 if ((data[i] & 0x8000) == 0) { row = (data[i] & 0x3FF); }

8 if ((data[i] & 0x8000) != 0) {

9 if ((( data[i] & 0x4000) >> 14) == 1) { row ++; }

10 if ((data[i] & 0xFF) > seed_charge) {

11 seed_charge = (data[i] & 0xFF);
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12 row_addr = row;

13 index = i;

14 }

15 }

16 }

17 // Sets the column address according to the DHP the cluster emerges from

18 if (dhp_id == 0) { col = (data[index] & 0x3F00) >> 8; }

19 if (dhp_id == 1) { col = ((data[index] & 0x3F00) >> 8) + 64; }

20 if (dhp_id == 2) { col = ((data[index] & 0x3F00) >> 8) + 64 + 64; }

21 if (dhp_id == 3) { col = ((data[index] & 0x3F00) >> 8) + 64 + 64 + 64; }

22 addr.col = col; // column of seed pixel

23 addr.row = row_addr; // row of seed pixel

24 addr.charge = seed_charge; // charge of seed pixel

25 return addr;

26 }

Hardware cluster class

Listing 6.16: Constructor and destructor function of the PXDHardwareCluster
class. These two functions will be executed every time the class is called. The
constructor at the beginning and the destructor at the end to free requested
memory space. The lines 4 to 6 assign the values parsed to the class from the
unpacker (listing6.13 line 72) to the cluster own variables. Line 11 starts the
for loop which writes each pixels column, charge and row values to the arrays
allocated in line 8 to 10. The ∼PXDHardwareCluster destructor, called in line
19, frees the memory space allocated for the arrays.

1 PXDHardwareCluster :: PXDHardwareCluster(unsigned short* pixelU , unsigned short*

pixelV , unsigned char* pixelQ , unsigned int nrPixel , unsigned char

seedCharge , unsigned short seedU , unsigned short seedV , unsigned int

clusterCharge , VxdID vxdID , unsigned int chipID):

2 // Initializes the variables declared in this class with the parsed ones

from the

3 // function call in the PXDHardwareClusterUnpacker lisitng 3.12

4 m_nrPixel(nrPixel), m_pixelU (0), m_pixelV (0), m_pixelQ (0), m_seedCharge(

seedCharge),

5 m_seedU(seedU), m_seedV(seedV), m_clusterCharge(clusterCharge), m_vxdID(

vxdID),

6 m_chipID(chipID)

7 {

8 m_pixelU = new unsigned short[m_nrPixel ];

9 m_pixelV = new unsigned short[m_nrPixel ];

10 m_pixelQ = new unsigned char[m_nrPixel ];

11 for (unsigned int i = 0 ; i < m_nrPixel ; i++) {

12 m_pixelU[i] = pixelU[i];

13 m_pixelV[i] = pixelV[i];
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14 m_pixelQ[i] = pixelQ[i];

15 }

16 };

17

18 // Deletes all memory space requested for this classes arrays.

19 PXDHardwareCluster ::~ PXDHardwareCluster ()

20 {

21 delete m_pixelU;

22 delete m_pixelV;

23 delete m_pixelQ;

24 };

To access the so saved data in ROOT one needs to define functions which just
return the variables data was saved to. This is done in the header file of this
class. Part of this file are shown in listing 6.17.

Listing 6.17: A section of the PXDHardwareCluster classes header file listing
the declared variables and the functions needed to access them.

1 protected:

2 unsigned int m_nrPixel , m_clusterCharge , m_chipID;

3 unsigned short* m_pixelU; // [m_nrPixel ] /**< Buffer of size m_nrPixel

shorts */

4 unsigned short* m_pixelV; // [m_nrPixel ] /**< Buffer of size m_nrPixel

shorts */

5 unsigned char* m_pixelQ; // [m_nrPixel ] /**< Buffer of size m_nrPixel

shorts */

6 unsigned char m_seedCharge;

7 unsigned short m_seedU , m_seedV;

8 VxdID m_vxdID;

9

10 // returns the number of pixel in the cluster

11 unsigned int getNrPixels () const { return m_nrPixel; }

12

13 // returns the row coordinate of pixel j

14 unsigned short getPixelU(unsigned int j) const { return (m_pixelU[j]); }

15

16 // returns the column coordinate of pixel j

17 unsigned short getPixelV(unsigned int j) const { return (m_pixelV[j]); }

18

19 // returns the charge of pixel j

20 unsigned char getPixelQ(unsigned int j) const { return (m_pixelQ[j]); }

21

22 // returns the seed charge of the cluster

23 unsigned char getSeedCharge () const { return m_seedCharge; }

24

25 // returns the seed pixels row address
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26 unsigned short getSeedU () const { return m_seedU; }

27

28 // returns the seed pixels column address

29 unsigned short getSeedV () const { return m_seedV; }

30

31 // returns the total cluster charge

32 unsigned int getClusterCharge () const { return m_clusterCharge; }

33

34 // returns the VXD ID of the cluster

35 VxdID getVxdID () const { return m_vxdID; }

36

37 // returns the DHP ID of the cluster

38 unsigned int getChipID () const { return m_chipID; }

Square shaped cluster generator

Listing 6.18: Essential part of the C++ code which generates a square cluster
shaped pattern. The first for loop starting in line 2, loops over all 4 DHPs.
In line 4 the first frame starts and the cluster header is added in line 6 and
7. The cluster is build of 9 pixels. Since the first word before the pixel words
is a start of row word, the loop in line 17 repeats 10 times (one start of row
and 9 pixel words). The if condition in line 27 forces the column address to
be decreased by 3 and the increment row flag to be one when the fourth or
the seventh pixel is reached. This behavior assures that the cluster shape is a
square.

1 // Generate data on all 4 DHP

2 for(int nr_dhp_frames = 0 ; nr_dhp_frames < 4 ; nr_dhp_frames ++){

3 int row_add = 11;

4 start_frame ();

5 // FCE Header , one per DHP

6 crc_value =(0x0 << 31) | (DHC_FRAME_HEADER_DATA_TYPE_FCE_RAW << 27) | (

dhe_ids_list [0] & 0x3F) << 20 | (0x00 << 16) | (trigger_nr & 0xFFFF);

7 append_int32(crc_value);

8 word_count = word_count + 2;

9 int dEdx = 2;

10 // Generate 4 cluster per DHP

11 for(int nr_of_cluster = 0 ; nr_of_cluster < 4 ; nr_of_cluster ++){

12 int increment_row_flag = 0, column_address = 0;

13 int adc_value = 0;

14 column_address = 31;

15

16 // Generate square pattern with 9 pixel , loop over 10 due to the start

of cluster word

17 for (int pixel_in_cluster = 0 ; pixel_in_cluster < 10 ; pixel_in_cluster

++){
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18 // Start of cluster word

19 if(pixel_in_cluster ==0 ){

20 crc_value = (0 << 15) | (1 << 14) | (dEdx & 0x3) << 12 | (

dhp_ids_list[nr_dhp_frames] & 0x3) << 10 | (row_address & 0x3FF)

;

21 append_int16(crc_value);

22 word_count ++;

23 // Pixel words

24 }else{

25 adc_value = 30;

26 increment_row_flag = 0;

27 if(pixel_in_cluster == 4 || pixel_in_cluster == 7 ){

28 increment_row_flag = 1;

29 column_address = column_address - 3;

30 }

31 // Seed pixel charge

32 if(pixel_in_cluster ==5){

33 adc_value = 50;

34 }

35 crc_value = (1 << 15) | (increment_row_flag << 14) | (column_address &

0x3F) << 8 | (adc_value & 0xFF);

36 append_int16(crc_value);

37 word_count ++;

38 column_address ++;

39 }

40 }

41 row_address = row_address + 200;

42 }

43 // Payload adder in order to stay 32 bit aligned

44 if(( word_count % 4) != 0 && (word_count % 2) != 0){

45 crc_value = (0 << 15) | (1 << 14) | (dEdx & 0x3) << 12 | (dhp_ids_list[

nr_dhp_frames] & 0x3) << 10 | (row_add & 0x3FF);

46 append_int16(crc_value);

47 }

48 word_count = 0;

49 add_frame_to_payload ();

V-shaped cluster generator

Listing 6.19: Section of the C++ code that generates a V-shaped cluster pat-
tern. The main functions are already explained in listing 6.6. The main
difference is the second start of row word in the cluster (line 24). It generates
the clusters row for the clusters seed pixel (figure 5.2 dark red pixel). In line
40 the column address for the pixels is customized to form a V-shaped pattern.

1 // Generates data for all 4 DHPs

2 for(int nr_dhp_frames = 0 ; nr_dhp_frames < 4 ; nr_dhp_frames ++){
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3 int row_add = 11;

4 start_frame ();

5 // FCE Header , one per DHP

6 crc_value =(0x0 << 31) | (DHC_FRAME_HEADER_DATA_TYPE_FCE_RAW << 27) | (

dhe_ids_list [0] & 0x3F) << 20 | (0x00 << 16) | (trigger_nr & 0xFFFF);

7 append_int32(crc_value);

8 word_count = word_count + 2;

9 int dEdx = 2;

10 // Generates 4 cluster per DHP

11 for(int nr_of_cluster = 0 ; nr_of_cluster < 4 ; nr_of_cluster ++){

12 int increment_row_flag = 0, column_address = 31;

13 int adc_value = 0;

14 // Generates 7 pixels for each cluster pattern , loops to 9 due to start

of cluster and start of row words

15 for (int pixel_in_cluster = 0 ; pixel_in_cluster < 9 ; pixel_in_cluster

++){

16 if(pixel_in_cluster ==0 || pixel_in_cluster ==6){

17 // Start of cluster word

18 if(pixel_in_cluster ==0){

19 crc_value = (0 << 15) | (1 << 14) | (dEdx & 0x3) << 12 | (

dhp_ids_list[nr_dhp_frames] & 0x3) << 10 | (row_address & 0

x3FF);

20 append_int16(crc_value);

21 word_count ++;

22 }

23 // Start of row word

24 if(pixel_in_cluster ==6){

25 row_address = row_address + 1;

26 crc_value = (0 << 15) | (0 << 14) | (dEdx & 0x3) << 12 | (

dhp_ids_list[nr_dhp_frames] & 0x3) << 10 | (row_address & 0

x3FF);

27 append_int16(crc_value);

28 word_count ++;

29 }

30 }else{

31 adc_value = 30;

32 increment_row_flag = 0;

33 if(pixel_in_cluster == 2 || pixel_in_cluster == 3 ){

34 increment_row_flag = 1;

35 }

36 // Seed pixel charge

37 if(pixel_in_cluster ==7){

38 adc_value = 50;

39 }

40 if(pixel_in_cluster ==4 || pixel_in_cluster ==5 || pixel_in_cluster

==8){

41 column_address ++;

42 }

43 // Pixel word

82



44 crc_value = (1 << 15) | (increment_row_flag << 14) | (column_address

& 0x3F) << 8 | (adc_value & 0xFF);

45 append_int16(crc_value);

46 word_count ++;

47 }

48 }

49 row_address = row_address + 200;

50 }

51 // Payload adder in order to stay 32 bit aligned

52 if(( word_count % 4) != 0 && (word_count % 2) != 0){

53 crc_value = (0 << 15) | (1 << 14) | (dEdx & 0x3) << 12 | (dhp_ids_list

[nr_dhp_frames] & 0x3) << 10 | (row_address & 0x3FF);

54 append_int16(crc_value);

55 }

56 word_count = 0;

57 add_frame_to_payload ();

58 }
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