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1. Introduction

Particle physics experiments are advancing to increasing energies, testing our understanding
of the universe at smaller and smaller scales. The Standard Model of particle physics (SM)
describes observed phenomena with remarkable accuracy. It contains all known fundamental
particles and three of the four known fundamental interactions. Nearly all tests in high energy
physics are in agreement with the SM.

With the discovery of the Higgs boson at the Large Hadron Collider (LHC), the last piece of
the SM is now in place [1, 2]. However, there are observations which indicate the limitations
of the SM and point towards new physics beyond the SM. Astrophysical and cosmological
measurements, e.g. galactic rotation curves or gravity lensing effects imply the existence of
dark matter. The SM does not provide a viable dark matter candidate. It is also important to
understand the mechanism which generates the matter–antimatter asymmetry in the universe.

According to one of the Sakharov conditions [3], the charge-parity (CP) symmetry has to be
violated to a certain degree in the early universe to achieve the observed matter domination.
The mechanism to describe CP violation in the SM, which was introduced by Makoto Kobayashi
and Toshihide Maskawa [4], does not provide the required order of magnitude. In measurements
of neutral B meson decays by the BarBar experiment [5] and the Belle experiment [6], time
dependent CP violation in agreement with the SM was observed.

The Belle experiment is located in Tsukuba, Japan, and is dedicated to the study of B meson
decays in order to improve the knowledge about CP violation and other aspects of the flavor
sector in particle physics. Due to the high variety of successful measurements on an amount
of in total 1 ab−1 of accumulated data [7], a successor, the Belle II experiment was approved.
Measurements with unmatched precision on the angles of the unitary triangle, CP asymmetry,
rare decays and studies of the Υ(5S) resonance are planned.

Besides improvements of the experimental setup, the Belle II experiment uses a modernized
software framework which includes new techniques to make measurements even more efficient
and sensitive. Various improvements in event reconstruction algorithms and a higher degree
of automation was achieved. Continuous development incorporates the demand for utilization
and evaluation of new analysis techniques in the field of multivariate classification and machine
learning.

In the past few years, a revolution in machine learning techniques has changed the way classifi-
cation processes can be carried out with huge datasets. The so-called deep learning technique
[8] utilizes computational models with multiple layers of feature representations. A key aspect
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1. Introduction

is that these representations are not constructed manually but learned by the algorithm. The
progress does not only depend on improvements in understanding of the behavior of neural net-
works, innovative network architectures or training algorithms. It is also driven by the progress
in the utilized hardware, designed for parallelized computations.

This thesis covers a successful application of a deep neural network for the determination of
the flavor of neutral B mesons, the so-called flavor tagging.
At the Belle and Belle II experiments, neutral B mesons occur in entangled pairs, defined as
a signal-side B meson (Bsig) and tag-side B meson (Btag). They are decay products of the
Υ(4S) resonance, which is created in collisions of accelerated electrons and positrons. When
analyzing the decay of the signal B meson into an CP eigenstate which is accessible for both
B meson flavors, e.g. B0 → J/ΨK0

S , the original flavor cannot be determined by its decay
products. Due to the entanglement, the flavor of the tag-side B meson determines the flavor
of the signal-side B meson at the time of the decay of the tag-side B meson.
A full reconstruction, including all intermediate states of the tag-side B meson only is possible
in a small amount of cases. Therefore the flavor has to be determined inclusively, via its decay
products.

In this thesis, a deep neural network is utilized for the flavor tagging, without creating high level
input features or assigning single tracks to certain categories, as it is done in the current flavor
tagging approach. Instead, several attributes like particle identification, momentum and spacial
variables of reconstructed tracks are used on event basis. The convergence and performance
trainings algorithm is heavily influence by adaptable parameters, so-called hyperparameters.
They are interdependent, and may have to be adjusted to the data representation and the
network architecture. Therefore, their influence on the problem of interest is studied. By
using a deep neural network as multivariate classifier, the effective tagging efficiency could
be increased by approximately 22 % relative to the current approach on Belle II Monte Carlo
(MC).
As part of this thesis, this approach was also integrated into the software framework of the
Belle II experiment.

In Chapter 2, an overview of the experimental setup is provided. Understanding the embedding
of the multivariate classifier in the global environment helps in identifying the relevant variables,
their uncertainties, and recognizing the symmetries of the problem. The principle of flavor
tagging and its importance in B meson mixing analyses are discussed in Chapter 3. The basics
about artificial neural networks, needed for the construction of the flavor tagger, are reviewed
in Chapter 4. In Chapter 5, the utilization of a deep neural network as a flavor tagger is
illustrated. The influence of the hyperparameters on the classifier used for flavor tagging is
studied and a comparison to the established flavor tagging approach is provided. The results
of this thesis are summarized in Chapter 6 and further prospects are discussed.
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2. The Belle and Belle II Experiment

The Belle II experiment is designed to investigate electron–positron-collisions and is located at
the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan. The detector
operates at the SuperKEKB, where an electron beam with an energy of 7 GeV and a positron
beam with the energy of 4 GeV are colliding. The accelerator was upgraded from KEKB, which
was used for particle production at the Belle experiment, the predecessor of Belle II.
While both experiments build up on a common foundation, the Belle II experiment benefits
from the experience of the preceding experiment. The Belle II Collaboration is responsible
for designing, operating and analyzing the data of the Belle II experiment. Approximately 600
members from more than 20 nations are participating in it. The subsequent part mainly focuses
on the presumable setup and concepts for Belle II which are essential for the understanding of
the development of a B meson flavor tagger, the main subject of this thesis. By pointing out
the main differences, the Belle experiment will also be described briefly.
Many details of the Belle II spectrometer can be found in the technical design report [9]. It
is used as a main source of information for this chapter, and is followed, if not pointed out
otherwise. The Belle Detector is described in [10].

2.1. SuperKEKB

SuperKEKB is an upgrade of the KEKB accelerator [9]. It is an e+e−- collider with asymmetric
energies at 4 GeV in the low-energy ring (LER) and at 7 GeV in the high-energy ring(HER).
This results in a non-zero boost βγ = 0.28 of the Υ(4S) center-of-mass system (CMS) with
respect to the laboratory system and allows measurements of time dependent CP violation.
The collider uses the so-called nano beam scheme, which reduces the beam aperture to the
nano scale and makes it possible to increase the luminosity to 8 · 1035cm−2s−1 [9, p.20] .

SuperKEKB is designed to run mainly at the energy 10.58 GeV of the Υ(4S) resonance [13],
but is also planed to take data at the Υ(5S) energy and at off-resonance energies (Fig. 2.1).
For the integrated luminosity an accumulation of 50 ab−1 data was planned to be reached
by 2022 [14] and rescheduled to 2024. It is about 50 times the data amount taken by Belle.
This enhances sensitivity in several areas, where possible “New Physics” processes could be
detectable. A detailed review of some of these processes and expectations is provided in [15].

One of the advantages of an electron–positron collider over an hadron collider like the LHC
are fewer amount of tracks in a collision event . On average, an event of an Υ(4S) resonance
decay contains around 11 tracks of interest.
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2. The Belle and Belle II Experiment

Figure 2.1.: Cross section for hadron production in electron–position collisions with respect
to the center-of-mass energy. The energy axis is discontinuous. BB̄ pair
production occurs above the marked threshold. Taken from [11] which is
based on [12].

For each event, beam background and background from other sources have to be discriminated
from the particle candidates of interest. The impact of different background sources depends
on the detector parts and distances from the interaction point. For example the KLM is
affected by radiative Bhabha scattering which induces a neutron background [16]. Another
high background source are two photon processes, a main component of the so-called QED
background. Additional sources are the synchrotron radiation (mainly from HER), beam-
gas scattering and Touschek (intra-bunch) scattering.This has a significant influence on the
detector design, as can be seen in the following section.

2.2. The Belle and Belle II Detector

The design of the Belle and the Belle II spectrometer is based on similar principles. Some
modifications of the Belle II detector compared to its predecessor are due to new concepts for
improving the quality of measurement. Others are necessary to cope with the higher radiation
intensity and occupancies, which are caused by the increased beam energies.

Both detectors consist of several sub-detectors and will be described more in detail. A short
overview of the components from the inside to the outside is presented below, a schematic is
provided in Fig. 2.2.

The main parts of Belle II detector are the Silicon Pixel Detector (PXD), the Silicon Vertex
Detector (SVD), the Central Drift Chamber (CDC), the Aerogel Ring-Imaging Cherenkov
detector (ARICH), the Electromagnetic Calorimeter (ECL) and the KL and Muon detector
(KLM).
In the Belle detector, similar detector components are used, although it does not contain a
PXD. For particle identification, not an ARICH but an Aerogel Cherenkov Counter (ACC),
Time-of-Flight (TOF) system and Extreme Forward Calorimeter (EFC) is used.
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2.2. The Belle and Belle II Detector

Figure 2.2.: Schematic side view of the Belle II detector (upper half) and the Belle detector
(lower half). Taken from [9].

As a result of the enhanced luminosity the described QED backgrounds are expected to be
increased up to a factor of 40 [9], which has an influence on the detector design.
Furthermore, a better detector hermeticity compared to the Belle detector is targeted [14].

2.2.1. Beam Pipe

The beam pipe has a beryllium coating and is cooled with liquid paraffin. It has a not vanishing
crossing angle of 2φ = 41.5 mrad, which was increased due to the nano beam scheme compared
to the Belle experiment.

2.2.2. Magnetic Field

A magnetic field with the strength of approximately 1.5 T is used to determine the momentum
and charge of charged particles. The homogeneity of the magnetic field is achieved with an
iron yoke.

2.2.3. Silicon Pixel Detector

In contrast to the Belle experiment, a two-layer silicon pixel detector (PXD) is introduced
which is based on the DEPFET (DEPleted Field Effect Transistor) technology [9]. Both layers
are combinations of singular modules which are arranged around the beam axis. In the first
layer 8 modules, in the second layer 12 modules are used. Due to the upgrade, high rates
on beam-induced and QED background are expected at the innermost detector layers. As a
result, a silicon strip detectors cannot be deployed here. During a readout interval of 20 µs,
an occupancy in the order of 1% is expected. Comparing this to the number of hits related to
the particles of interest, shows that this is actually a high amount.

5



2. The Belle and Belle II Experiment

Figure 2.3.: Schematic side view of the PXD and SVD (left) and of a cross section of the
readout concept for the SVD (right). Taken from [9].

2.2.4. Silicon Vertex Detector

The Silicon Vertex Detector (SVD) consists of a four layer structure located around the PXD.
Each layer is built of silicon strip sensors with a double sided readout. The readout on the
n-side is orientated along the r−φ-plane (referred to as short strips) while on the p-side along
the z-plane (referred to as long strips). This leads to a different resolution for each direction
respectively. The sensors are arranged in a ”Windmill” like structure, so that the readout chips
on the sensors are covered from the direction of the beam axis by another sensor (Fig. 2.3).

The sensors in forward region are slanted to reduce the material, which is traversed by charged
particles originating from the interaction point. This decreases the negative effects on resolution
for the outer detector parts. The SVD covers (and surpasses) the full Belle II angular acceptance
17-150◦ [9, p.139, p.142].

The SVD of Belle was upgraded from 3 to 4 layers during the data taking of the Belle exper-
iment. At Belle II the positioning of the super layers is altered with respect to setup of the
predecessor experiment, to allow the positioning of the PXD.

The read-out of the SVD can be used to find tracks down to a very low momentum (less than
100 MeV/c). It allows to gain more detailed vertex information in track reconstruction and
for particle identification (PID) information. Together with the PXD it is named as Vertex
Detector (VXD).

2.2.5. Central Drift Chamber

The Central Drift Chamber (CDC) is a cell-wire structure, filled with a Helium-Methane mix-
ture. The main differences to its predecessor at Belle are the size, wire structure and improved
electronic readout system. The wires are arranged in two different shapes, parallel to the beam
axis (axial layer) or slightly tilted (stereo layer). The torsion can be performed in two directions
(U, V). In total 56 layers are grouped into 9 superlayers. The CDC of Belle II can cope with
an increased beam background of a factor 20 compared to Belle, although less is expected.
The CDC is asymmetric and covers the default experiments angular acceptance [17-150◦].
Information from the CDC is used for track reconstruction, particle identification (PID) and
trigger decisions for charged particles.

2.2.6. Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECL) is used for the detection of photons, determination of
their energy energy deposition, angular information and for the electron identification. It also
provides trigger information and is used for luminosity measurements. The sensitive material
consists of 6624 CsI(Tl) scintillation crystals in the barrel-region and 2112 CsI crystals in
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2.2. The Belle and Belle II Detector

Figure 2.4.: Schematic view of the proximity focusing Ring-Imaging Cherenkov detector.
The refractive indices n1 and n2 of the radiator materials are different. Taken
from [9].

the end-cap-region which have a reduced scintillation decay time but a smaller light output.
Readout is performed with two photodiodes per crystal on the rear surface. Its angular coverage
of 12.4 - 155.1◦ is in agreement with the Belle II detector hermeticity demands. Parts of the
Belle ECL are reused in Belle II.

2.2.7. Particle Identification

In the barrel and end-cap regions, systems for particle identification are installed. Their main
purpose is to provide information for the discrimination between kaons and pions. The Time-
Of-Propagation counter (TOP) is located in the barrel region. 16 arrays of quartz bars are
arranged circularly at the outer wall of the CDC. Charged particles which move faster than
speed of light of the medium cause a cone of Cherenkov light inside the material. It is guided
via total reflection to photomultiplier tubes (PMT) located at the end of the bars. The two
dimensional detector information and the timing information is used for reconstructing the
Cherenkov image and particle discrimination, which is correlating with the particle velocity.
The proximity-focusing Aerogel Ring-Imaging Cherenkov detector (ARICH) is located in
the forward end-cap region. It is composed of a radiator, an expansion volume and an array
of position sensitive photon detectors. To reduce the emission point uncertainty and therefore
reduce the spread of the Cherenkov rings a two layer aerogel radiator with different refraction
indices is used. A schematic is shown in Fig. 2.4.

For the Belle experiment an aerogel Cherenkov counter (ACC) and a time-of-flight detector
(TOF) was employed for particle identification, both located in the barrel region. The former
used an aeorgel as active Cherenkov material. The latter provides time measurements for
slower particles.

2.2.8. KL and Muon Detector

The KL and muon detector (KLM) is built of alternating sensor layers and iron plates. KL

interact with the iron plates and induce showers, which can be detected in glass-electrode
resistive plate chambers (RPC). Between two glas-electrodes, separated by noryl and epoxid,
a high voltage is distributed. Charged particles cause an ionization of the gas mixture, which
can be measured. As the penetration depth and shower shape of kaons and muons are very
characteristic, they permit a good discrimination between both particles. For the muon recon-
struction, tracks determined from other detector parts and extrapolated to the KLM. Similar
to the ECL, parts of the Belle KLM are reused in Belle II.
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2.3. Tracking at Belle II

Tracking quality has a huge influence on the discriminating variables used for the study in this
thesis. Tracking can be separated into two parts, the track finding and the track fitting. For
further information about tracking at Belle II, see [17, 18]. Track finding attempts to assign
detector responses, so-called hits, to their provoking particles. At the Belle II experiment,
different approaches are used, based on a global track recognition and local hit tracing. The
basic assumption of the global track finder is a helical trajectory of a track which is caused by
a charged particle in a constant magnetic field. The helix can be described by five independent
parameters. A convention for the reference point is the point of closest approach (POCA)
to the interaction point. The final track reconstruction combines information of multiple
detectors.
Track fitting is defined as the process of fitting a track model to the assigned hits of a track, in
order to determine the helix parameters. To consider momentum loss of a particle, interacting
with matter inside the detector, the assumption of constant helix parameters along the track is
being dropped. At Belle II the fitting procedure includes a Kalman filter, which is implemented
in the GenFit toolkit [19]. A higher number of correctly assigned hits can increase the quality
of the fit.

2.4. The Belle II Analysis Software Framework

The Belle II Analysis Software Framework (BASF2) is used for online (during the process
of data taking) as well as for offline analysis [20]. Although it benefits from the experience
acquired with the Belle software framework (BASF), the Belle II software framework was com-
pletely rewritten and provides different interfaces and more automated approaches than its
predecessor. While most of the calculation intensive parts are written in C++, C and Fortran, a
python interface is implemented via the boost C++ libraries. This enables the user to perform
major parts of his analysis in a python script referred to as steering file [20, p.4] with access
to common tools needed for analysis.
The framework has a modular structure, where the modules can be arranged in a linear con-
tainer called path. The data store is designed to grant simultaneously access for different
modules. It is based on ROOT tables [21], python modules can access it via the PyROOT
interface. The data, which will be available on analysis level, is stored in a format called mini
Data Summary Tables (mDST) and contains not raw detector information but already pro-
cessed information like the helix parameters, at the perigee of the track. In addition combined
likelihood ratios for particle identification from different detector parts are also available in the
mDST format.
BASF2 provides training of multivariate classifiers within and without the steering file level.
The most common way is an interface to the TMVA package [22], a rich toolkit for multivariate
data analysis. It also provides an automated approach for the hierarchical reconstruction of B
mesons [23]. For physics analysis and testing purpose Monte Carlo can be generated with the
integrated EvtGen [24] interface.
Although the framework is still under heavy development, studies on converted Belle data are
in preparation.

2.5. Processing Belle Legacy Data

In order to benefit from improvements of the Belle II software or to apply the flavor tagging
approach introduced in this thesis on data taken by the previous experiment, the conversion
of Belle legacy data has to be possible. BASF2 provides the conversion package b2bii,
with which Belle objects are partially converted into the BASF2 format. More details can be
found in [25, p.119ff]. Particle identification is partially converted to log-likelihood objects of
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BASF2, although the ACC information is mapped to the ARICH and TOF to TOP since those
detectors are replaced in the Belle II experiment. As part of this thesis, the conversion of SVD
hit patterns, together with the number of hits in the CDC and the SVD was added. On Monte
Carlo, the Belle II electron ID and kaon ID show a much better background rejection versus
signal efficiency power in classification trainings than their Belle correspondents [25, p.122].

Furthermore the conversion of Belle beam parameters, which are loaded from an online
database, is integrated. During the conversion of Monte Carlo, several filters (cuts) are applied
to coincide with filters which were applied to the measured data.
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3. Flavor Tagging

This chapter briefly introduces the relevant parts of the Standard Model for this thesis. Flavor
tagging, which is described in Section 3.4, is an essential ingredient in the measurement of the
charge parity violation (CPV) in B meson systems.

3.1. Flavor Physics

The standard model Lagrangian obeys a SU(3)C × SU(2)L × U(1)Y gauge symmetry,
where the latter part is spontaneously broken as described by the Higgs mechanism resulting in a
SU(3)C × U(1)EM symmetry. Lepton and quark fields couple to the Higgs field via the Yukawa
coupling. A transformation between mass and flavor eigenstate of the lepton fields result in
a matrix structure of the effective coupling to a (massive) W bosons. This transformation is
described by a 3x3 complex and unitary matrix, the Cabibbo-Kobyashi-Maskawa (CKM) matrix

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (3.1)

Unitary triangles, which are used to visualize measurements, follow from unitary conditions of
the CKM matrix. The most frequently examined unitary triangle arises from multiplying the
first and the third column. One of its major benefits is the clear difference of the angles from
zero and the fact that its side lengths are of the same order of magnitude

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (3.2)

The CKM matrix can be parametrized by 4 parameters: 3 angles (θ12, θ13, θ23) and one
complex phase eiδ, where the complex phase is the relevant part for measuring CPV. The
Wolfenstein parametrization [26] is commonly used as a way to parametrize the CKM matrix
since it shows a clear hierarchy of quark mixing. Hereby |Vus|, which also can be expressed as
the sine of the cabbibo mixing angle θ12, is substituted with

sin(θ12) = |Vus| = λ (3.3)

and the CKM is expanded in λ

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (3.4)
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3. Flavor Tagging

Figure 3.1.: Constraints and global fit results in the ρ̄-η̄-plane.
The parameters ρ̄+ iη̄ = −(VudVub)/(VcdVcb) can be expressed in terms of λ, ρ
and η: ρ̄ = ρ(1− λ2/2 + ...) and η̄ = η(1− λ2/2 + ...). Taken from [28].

Here A, ρ and η are real parameters [27], introduced to preserve unitarity, and are defined by

sin(θ23) = Aλ2 sin(θ13)e
−iδ = Aλ3(ρ− iη). (3.5)

It is notable that this structure is not derived by an overlaying theoretical framework but
determined by measurements for some of the 19 free parameters of the standard model. The
value of the perturbation parameter is approximately λ ≈ 0.22.

In the SM there are three generation of quarks. Each generation contains an up type quark
(up, charm, top) and a down type quark (down, strange, bottom). Transitions between both
types are allowed via coupling to a charged W boson. The branching fraction of the transition
is governed by the corresponding matrix elements of the CKM matrix. Transitions between
generations are allowed as well, but are suppressed.

Due to the color charge of gluons and gluon self interaction, quarks only appear in bound
states. This phenomena is called confinement. A pair formed by a quark and an anti-quark
is called a meson. Mesons which contain a bottom (b) quark are referred to as B mesons. B
mesons with an up quark carry the charge ±1 while B0 mesons, which carry a charm or a
down quark are neutral. In this thesis the object of interest is the flavor of neutral B0

d mesons
with down quark and are abbreviated in the following with B0. Its anti-particle, the B̄0 meson,
contains a b̄ and a down (d) quark.
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3.2. Charge Parity Violation and B0 Meson Mixing

3.2. Charge Parity Violation and B0 Meson Mixing

While fields in the SM are invariant under the combined transformation of charge, parity and
time (CPT), the CP symmetry is violated. This is incorporated in the SM as an irreducible
complex phase, in the CKM also referred to as the weak phase. CP violation in the B meson
system was measured in 2001 by the Belle and the BarBar experiments and led to the Nobel
Price of M. Kobayashi and T. Maskawa in 2008. For the measurement, B → J/ΨK0

S decays
were investigated. The subsequent introduction into B meson mixing follows the argumentation
in [29]. The neutral B meson sector is attractive for measurements of CPV since B0 meson
pairs are in an entangled state with their corresponding antiparticle (B meson mixing) which
is defined by CP transformation.
While regarding time evolution into a mixed state, an effective Hamiltonian can be constructed
via the Wigner-Weisskopf approximation which describes a two state system. This Hamiltonian
does not obey probability conservation since the decay products are ignored (not Hermitian)
but can be divided into a real part, which represents the mass matrix, and into an imaginary
part, which represents the decay matrix. Diagonalization leads to two different states, a light
and a heavy B meson (BL and BH) which also have different lifetimes. When observing the
decay into an CP eigenstate f = fCP , the asymmetry simplifies from

Af (t) =
Γ(B̄0(t)→ f)− Γ(B0(t)→ f)

Γ(B̄0(t)→ f) + Γ(B0(t)→ f)
(3.6)

to
Af (t) = Sf sin(∆m t) (3.7)

in J/ΨK0
S decays, which allows measurements of the parameter β in the CKM unitary triangle,

since there are no hadronic terms involved. The decay coefficient Sf therefore only depends
on the weak phase.

3.3. Principles of Flavor Tagging

Decays of the Υ(4S) resonance are of main interest at Belle and Belle II. The resonance decays
roughly in equal parts into neutral or charged B meson pairs with a total branching fraction of
approximately 0.96 [13].
The final state of the decay of the meson can be flavor unspecific, but the knowledge of the
flavor of signal B meson (Bsig) is mandatory for many analysis [30, p. 100ff]. Fortunately, the
neutral B mesons are in an entangled state (Section 3.2). As a consequence, the flavor of a
B meson at the time of its decay determines the flavor of the accompanying B meson (Btag).
The determination of its flavor via the final state particles of its decay is referred to as flavor
tagging. A full reconstruction of the complete event is only possible for a small fraction of
all events [23]. Therefore an inclusive approach is used for flavor tagging. In a flavor specific
final state of the tag side, particle attributes, as described in Section 3.4, provide sufficient
information for the flavor determination.

For measurements of the time-dependent CPV with the signal decay J/ΨK0
s , the signal side

is accessible from both B flavors and flavor tagging has to be employed. Measurement of the
distance between the decay vertices of both B meson candidates allows the determination of
the decay time difference between the B mesons

∆t =
∆z

βγc
. (3.8)

The flavor tagging efficiency has an direct impact on the error of measurements of the CP
asymmetry (Section 5.5.2).
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3. Flavor Tagging

Figure 3.2.: Scheme of an typical Υ(4S) event at an asymmetric lepton collider.

3.4. Flavor Tagging at Belle II

The aim of this thesis is to investigate a new approach to flavor tagging, utilizing deep neu-
ral networks. Before describing the deep neural network tagger, the current, category-based
method [31, 32] will be reviewed, as understanding the creation of categories is also useful for
variable selection and network architecture selections of the new approach.

The current approach divides the tagging process into different sub-classifications, which are
combined by a final classifier. A scheme of the approach is shown in Fig. 3.3. Furthermore,
a special treatment for hadronic B decays in including the Full Event Interpretation [23] was
tested, but this is only applicable for a small subset of possible B decays.

At track level several classifiers are used to assign each track to a specific category.
In the lepton category, leptons directly originating from the decay of a B meson (primary
leptons) are distinguished from secondary leptons which originate from intermediate decay
products. Since primary leptons are produced by a decaying W boson, the charge provides
immediate information of the decaying B meson, see Eq. (3.9). Here X denotes a hadronic
particle which contains a c quark (and may also decay)

B0 → X−l+νl. (3.9)

A positive charge of a primary lepton implies a B0.
The charge of a secondary lepton, in contrast, implies directly the opposite flavor of the B
meson

b→W−c c→ sl+νl. (3.10)

Secondary leptons can be separated by momentum and angular distribution of the decay prod-
ucts (angle between missing momentum and lepton).
In analogy of the lepton category a discrimination between slow and fast pions is performed,
which also indicates a direct or intermediate decay. Slow pions, that are produced in D∗ to D
meson decays are produced almost at rest in the center-of-mass system (CMS) of its mother
particle. Pions are the most frequent final state particles in B meson decays.

The most reliable source is probably the kaon category [30, p.101]. There are two kaon
sub-classifiers, one focusing on the b→ c→ s transitions, the other on ss̄ quark pair popping
and b → cc̄(d, s) decays. The flavor of the former decay is directly determined by the flavor
of the charged kaon. A likely decay product for the latter decay is a K0

s meson, containing a
strange quark from these decays.
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Figure 3.3.: Mechanism of the flavor tagging algorithm as implemented in BASF2. Taken
from [31].

Another category using b → c → s decays, is the classification of lambda baryons. Even
thought this decay has only a small branching fraction, it is an essential part of the tagging
algorithm. Lambda baryons have to be reconstructed from protons and pions, so a candidate
selection has to be performed to fulfill a defined level of reconstruction quality.

At the event level, the different categorized tracks are assigned via multivariate classification
to different event categories, which consider a combination of multiple tracks.

Correlation between those subcategories are exploited for combining them to a final, single
discriminator to distinguish between neutral B0 and B̄0 mesons.
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4. Artificial Neural Networks

Artificial neural networks (Section 4.2) are one of the core subjects of this thesis. They are
used for multivariate classification (Section 4.1). In this chapter the most relevant aspects for
this thesis are pointed out. Specific training techniques and established frameworks for fitting
the classifier to a data representation are also presented.

4.1. Multivariate Classification

In a high dimensionality, distances between data-points of objects of the same class increase
drastically compared to lower dimensions. In machine learning, this is often referred to as the
curse of dimensionality. Multivariate classification tries to assign an object, defined by different
variables (features), to certain classes (targets). This is intended to reduce the dimensionality
of a problem while loosing as little information as possible . Thereby correlations between
features and targets are being included and lead to a significant boost compared to cut based
procedures.
The free parameters of a multivariate classifier (MVC) have to be adapted to a specific data set
(sample of a statistical population). The so-called training can be understood as a construction
of separation planes in a multidimensional space. The number of features has a significant
impact on adaption and separation power.
Multivariate analysis is successfully applied in many areas like engineering, physics and medicine.
As described in Section 3.4, in this thesis the distinguishing of neutral B mesons from Anti-B
mesons is studied. This is a binary classification process, the two classes are usually defined
as signal and background. A multilayer perceptron, which is introduced in Section 4.2 and
described in Section 5.6 is employed.
A common problem is the so-called bias-variance tradeoff, which describes the danger of over-
fitting a model on data with increasing its complexity. This indicates that the model complexity
of a multivariate classifier has to be carefully adapted according to the given problem.

4.2. Multilayer Perceptron

Inspired by biological information processing systems, several attempts were made to transfer
notions for pattern recognition, inference and extrapolation into a mathematical and statistical
framework. One of those attempts was the Rosenblatt Perceptron [33] which is one of the
predecessors of various established pattern recognition methods, including the widely used mul-
tilayer perceptron (MLP) architecture. While in other fields Support Vector Machines (SVM)
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Figure 4.1.: Schematic of a multilayer perceptron

had been very popular, MLPs, which recently regained their popularity in the machine learning
sector, have been deployed very successfully in physics [34, 35].
This section follows loosely some aspects in [36, p.225 ff], were a much more detailed descrip-
tion about methods in machine learning and pattern recognition can be found.

4.2.1. Architecture of a Multilayer Perceptron

A MLP contains three different types of layers, an input layer, hidden layers and an output layer.

The input layer is defined as an n-dimensional vector x
(0)
i of a given feature representation.

The hidden layers and output layer k are represented by the nodes x
(k)
i as they are defined in

Eq. (4.1). Each node contains a bias wi0 and is connected to the preceding nodes with the
weights wij , transformed with the non-linear activation function σ

x
(k+1)
i = σ(k+1)

∑
j=1

w
(k)
ij x

(k)
j + w

(k)
i0

 . (4.1)

Commonly used activation functions are the sigmoid function

σ(x) =
1

1 + exp(−x)
, (4.2)

the Tangens Hyperbolicus function tanh and the Rectified Linear Unit

r(x) = max(0, x). (4.3)

Since the network output is calculated iteratively from the input nodes to the output nodes,
the architecture is called a feed-forward network. For a better nomenclature, the last layer
of the output for a sample will be defined by yn(~x,w), where ~x ∈ Rl for l features. The
weight tensor w is defined by the dimension of the free network parameters. If a multilayer
architecture is chosen, where all layers, including the input and the output layer, have the same
width d and h hidden layers are deployed, the weight tensors is w ∈ Rd × Rd+1 × Rh+1.

4.2.2. Free Parameter Adaption

The convergence of a multivariate classifier training on data is, depending on the algorithm, not
necessarily guaranteed by design. For the training process an error function, which compares
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4 3 2 1 0 1 2 3 4
x

1.0

0.5

0.0

0.5

1.0

y

tanh
σ

r

Figure 4.2.: Schematics of different activation functions

the network output to the true value has to be minimized with respect to the weights. Choosing
the sigmoid function as non linearity for the output layer for a binary classification problem,
with the target (also truth) tn ∈ {0, 1}, the negative log likelihood function is the cross-entropy.
With the network output yn, which is a scalar for binary classification, the error function for
N samples is given by

E = −
N∑
n=1

[tn log yn + (1− tn) log(1− yn)] . (4.4)

Minimizing this error function corresponds to the calculation of the maxium-log likelihood and
allows the interpretation of the network output as a probability. The error function is non
convex with the result, that in a multidimensional feature space almost certainly not the global
minimum but only local minima are found. It can be shown, that multilayer feed-forward
networks can approximate a vast number of different functions [37], but the optimal solutions
are usually not found. The adaption of the free parameters on a dataset to approximate the
function of interest adequately demands a feasible approach. As described in Section 4.3 a
global minimum is not the desired goal to achieve.

A very simple but scalable training algorithm is the gradient descent, which uses gradient
information of the error function to change the weight parameters according to direction of
maximum slope. The magnitude of the change of the weights ∆w is governed by the parameter
η as described in

∆w = −η∇E(w). (4.5)

Performing the calculation not for the complete data set at once but for each input vector
gradually in a random order, can significantly improve convergence of the algorithm. To control
statistical fluctuations of the dataset, the weight update can be carried out in mini-batches,
the so-called mini-batch stochastic gradient descent (SGD).

Furthermore the algorithm can be easily expanded with additional terms, like the momentum
term (see Eq. (4.6) to prevent oscillations at local minima. Additionally, it helps speeding
up while moving in multi-dimensional ravines. The momentum extension uses the weight
difference of the previous step

∆w = −η∇E(w) + µ∆wprev (4.6)
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4. Artificial Neural Networks

There are more sophisticated training algorithms available that take advantage of the Hessian
matrix, or have less hyperparameters to tune, but the SGD is still a widely used method.
With the introduction of error backpropagation an efficient method to calculate gradient of
the error function for the SGD algorithm was provided [38]. It takes advantage of the chain
rule to determine the gradients of the hidden layers as described in

∂E

∂w
(k)
ij

=
∂E

∂a
(k)
j

∂a
(k)
j

∂w
(k)
ij

a
(k)
i =

∑
j

w
(k)
ij x

(k)
j (4.7)

∂E

∂a
(k)
j

= σ′(k+1)
(
a
(k)
j

)∑
i

w
(k+1)
ij

∂E

∂a
(k+1)
i

. (4.8)

For the output layer, in Eq. (4.8) the gradient of the error function with respect to a
(k+1)
i has to

be replaced with the gradient with respect to the network output node. Backpropagation can
be used to calculate the same expensive computational steps multiple times and reduces the
computational complexity toO(dim(w)) per iteration step. This means that the computational
complexity is at linear order to the free parameters and therefore linear to the number of hidden
layers. The technique is applicable on various error functions and training algorithms.

4.3. Regularization mechanisms

Besides the problem of not finding a good local minimum, there is also the danger of overfitting
the parameters to the training set. There are various methods available and only methods,
which are used in this thesis are mentioned in this section. In monitoring the training process
on an independent validation dataset, overfitting can be limited with early stopping. When
the loss function of the validation set does not decrease in a defined interval, the training
process will be interrupted. Another method is the introduction of L2 weight decay. The latter
decreases the weights in each iteration as described in Eq. (4.9) with the result, that unused
connections between nodes are suppressed

E′ = E +
α

2

∑
i,j,k

(w
(k)
ij )2. (4.9)

Another method is dropout [39], where the network input for a defined number of random
nodes is set to zero. Dropout forces the network to establish different connections and is
equivalent of training at multiple networks at once. This technique shows huge improvements
on small datasets.

4.4. Deep Neural Networks

A significant boost to machine learning arose from improvements of available hardware for
parallel computation. Besides that, the amount of huge labeled datasets increased as well.
Jointly, bot developments lead to improved results of already known classification algorithms
and formed the foundation for the so-called deep learning [8, 40] area of machine learning.
Deep learning has the ambition not to use “hand-crafted” high-level features but let the MVC
“learn” complex feature representation by itself. The most popular strategies are increasing
the depth of the classifier (e.g. the amount of hidden layers of an MLP) or restrict the network
architecture to symmetries of the problem. The former results, if the training is successful, in
a more abstract feature representation for each network layer. This thesis uses the approach
to examine the performance of a deep multilayer perceptron on the classification process of B
mesons.

20



4.4. Deep Neural Networks

4.4.1. Machine Learning Frameworks

While there is a vast amount of sophisticated tools available for multivariate classification like
the TMVA package [22] or Neurobayes [34], a tool which can take advantage of the benefits
of GPU parallel computing is preferable. In the main part of thesis the machine learning library
Pylearn2 [41] was used, which operates in a python environment and is based on Theano [42].
Theano allows to create symbolic graphs of a mathematical computation and to executing them
on the Central Processing Unit (CPU) or Graphics Processing Unit (GPU) via the Compute
Unified Device Architecture (CUDA) application programming interface (API) by the company
NVIDA. Furthermore Theano allows the symbolic calculation of gradients which makes it a
powerful tool for machine learning. Similar functionality is provided by tensorflow [43], which
is deployable on a larger scale on multiple machines with multiple CPU and GPU.
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5. Deep Neural Network based Flavor
Tagger

B meson flavor taggers were improved constantly during the last decades, resulting in a hier-
archical, on particle categories based arrangement of classifiers.
In this chapter, a deep neural network as a discriminator is introduced, which shows better
classification on Monte Carlo than the category based method (Section 5.6.6). The intention
for the deep neural network approach is, that individual categories are not pre-engineered but
the corresponding high-level features are learned by the neural network (Section 4.4). The
influence of hyperparameters on the results of the MVC is studied. The performance of the
MVC is tested on Belle and Belle II Monte Carlo and compared to the established approach.

The process of training and analyzing the artificial neural network can be subdivided into the
following steps: At first, Monte Carlo datasets are generated for training, testing and evaluation
purpose. Secondly, different input variables, so-called training features have to be selected.
These selected variables are preprocessed to a flat distribution before the actual training begins.
At last the different models are validated on dedicated test sets. The classifier is compared
with the established method on the same test sets.

5.1. Dataset Generation

Studies in this thesis are based on Monte Carlo generated datasets only. For Belle II Monte Carlo
generation and detector simulation, the necessary functions are already available in BASF2.
The physical processes of a decay chain are simulated with the package EvtGen [24], the
detector simulation is performed with the package GEANT4 [44]. The Belle legacy Monte
Carlo production was carried out with an older version of EvtGen and GEANT3. This study
was part of the first tests for the conversion features and several problems occurred and had
to be considered.

The decay chain describes an Υ(4S) resonance decaying into two B mesons, which are decaying
into final state particles, as mentioned in Section 3.4. The tag side B meson is decaying via
the b→ c decay chain, according to the decay tables published by the particle data group [13],
a so-called generic decay. The products may further decay. Normally, the term generic would
include also direct decays without transitions to a charm quark, so-called rare decays. Due to
their small fraction they are neglected in this thesis.

Since the tag side is of primary interest, for the selected signal side, a B meson decay into
two τ neutrinos is chosen. The signal of this so-called mono-generic decay does not cause any
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Figure 5.1.: Histogram to show the distribution of tracks for a mono-generic testing (a) set
and a testing set with reconstructed J/ΨK0

s (b). Mean / standard derivation
for: (a) 5.90 / 2.14, (b) 5.89 / 2.40

detector responses. Therefore training and evaluation of the flavor tagger will be independent
from the reconstruction efficiency of a specific decay. In this special case, B meson mixing is
not included, since this is not necessary for training and testing the flavor tagging algorithm
itself.
In a further control sample, the signal side B meson decays into J/ΨK0

s with K0
s → π+π−

and J/Ψ → µ+µ−. The tag side decays generically. This allows a comparison with other
approaches in literature, since reconstruction efficiency might decrease the MVC performance.
Here, B meson mixing is already included in the decay table and allows also a test of the
integration of the flavor tagger into the analysis framework. For each signal event, a Monte
Carlo matching is performed in order to use only correctly reconstructed signal events for
classifier training and evaluation. This can introduce a systematic bias.
The remainder of particle objects in an event after the successful reconstruction of the signal

side is called rest of event. Fig. 5.1 shows the distribution of the number of tracks for both
signal sides in the rest of event.
Converted Belle Monte Carlo does also include beam background. The beam background
was sampled from random trigger data. On the other hand, no measured beam background
samples are available for Belle II. Hence no beam background was used in Belle II Monte Carlo
generation.

For the Belle II training datasets, four datasets with exactly 13 million events were generated
and the detector response was simulated. This was performed with a BASF2 version with the
revision number 21137. An internal testing and validation set are used to monitor the classifier
during the training and to sample the PDFs, required for the transformation of the classifier
output to a probability (see Section 5.5.3). Each training dataset was split with a factor 0.92
into an internal training data set and an internal validation and testing set, containing the
same amount of events. The internal training set contains approximately 12 million events,
the internal testing and internal validation sets approximately 500.000 events respectively.

The Belle training datasets include four datasets with 13 million generated events. After
passing a skim during the conversion into the BASF2 mdst file format, approximately 12.4
million events with no empty RestOfEvent, could be successfully reconstructed per training
dataset. The sets were divided by the factor 0.92 into an internal training, testing and validation
set, as well. Besides that, a training dataset with the signal J/ΨK0

s containing 42 million events
was generated. After reconstruction and skimming the n-tuple files contained approximately
15.3 million events. The low efficiency is influenced by the limited Ks reconstruction efficiency.
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5.2. Variable Selection

For evaluation, the trained classifiers have to be tested on independent data samples to provide
an unbiased comparison between different MVC. These sets differ from the data sets used for
internally testing.

5.2. Variable Selection

As described in Section 4.1, choosing the optimal set of variables is crucial for adapting a
multivariate classifier to a data representation. The intention is to use a set of features,
which are as uncorrelated as possible to each other to gain as much information which as
little dimensionality as possible. Variable selection was a process of constant development
in this thesis. Here the final selection of all variables is described. The variable selection
mainly concentrates on information gained by the reconstructed tracks, which carry most of
the information. Linear correlations between those variables are shown in Fig. 5.2. Further
improvements will be discussed in the outlook.

Charge

The charge of a track is determined by the curvature of the reconstructed helix, caused by
the charged particle traveling through the mostly homogeneous magnetic field. Due to charge
conservation, the variable can be an indicator for a missing track or an additionally wrongly
reconstructed track. For some particles, it also carries the information about the B meson
flavor, as described in Section 3.4. The charge parameter is not provided directly as an input
variable but used to impose a certain symmetry on the structure of the input vector. More
details are provided in Section 5.4.

Momentum

Kinematic variables of a particle can provide direct flavor information in combination with the
charge. As described by the primary and secondary particle categories in Section 3.4, high
and low momentum decays are an indication, if a track is originating directly from a B meson
decay.

The momentum is transformed into the center-of-mass system (CMS) of the Υ(4S) to provide
a better representation of the symmetry of the problem. The polar angle φ is defined perpen-
dicular to the beam axis, and the azimuth angle θ defined in forward direction with respect to
the beam axis. For limited degree, the momentum can be used to infer on common production
vertices.

Summarized the

• absolute value of p in CMS,

• cos(θp) in CMS,

• φp in CMS,

are used for the selected particles of the event (Section 5.4).

Particle Identification

As described in Chapter 2, the particle identification (PID) assigns a track to classes of final
state particles, using different information from different detector parts. The final result for a
PID value is the combined likelihood ratio for a given particle in relation to the pion hypothesis.
Since in combination with charge and momentum, the particle type is strongly correlated with
the flavor of the B meson, the PID is essential. Knowing the PID is crucial for the reconstruction
of mother particles of a subset of final state particles

Following PIDs are explicitly used:
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Figure 5.2.: Linear correlations between variables of a track (top) and variables of an event
(bottom). The input for an event is described in Section 5.4. A positive sign
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• ElectronID,

• KaonID,

• PionID,

• ProtonID,

• and MuonID.

Number of Hits

As described in Section 2.3, the number of hits has a direct impact on the quality of a track
fit. The quality is correlated with the resolution of the track parameters and the PID accuracy.
Furthermore, the number of hits, separately for each detector part, might be correlated to the
type of a particle and provide hints about the spacial information, e.g. which detector part is
reached by the particle. The number of hits is also correlated to the fact, if the track is curling
in the detector, which could result in a wrongly reconstructed charge. Following hit counts are
used:

• number of hits in the PXD (only Belle II),

• number of hits in the SVD,

• number of hits in the CDC.

Perigee of Tracks

Spacial information provides insight into relations between different tracks. Since only final
state particles are detected, knowing the region of their production vertices helps to determine
if they originate from primary or intermediate decays and let infer to their mother particles.
Furthermore they provide essential information for the reconstruction of mother particles. Un-
fortunately, the vertices have to be reconstructed under specific hypotheses and recombined
to subsets of particle groups. BASF2 would allow such an implementation in general, but
this goes beyond the scope of this thesis. Therefore, only the perigee information of a recon-
structed track was used, which is also correlated to the production vertex of a particle but
far less constraining. However, for particles, which are decaying near the Υ(4S) production
vertex, the perigee information might be stronger correlated to their production vertex. Used
variables are

• the radial distance of the perigee from the beam axis

• and the distance in z-direction (beam axis) to the interaction point.

This information provides a significant classification quality improvement, as stated in Sec-
tion 5.6.3.

p Value of the Track Fit

The p value of a track fit is given by the integral over the χ2 distribution of the corresponding
degrees of freedom of the problem. Limits of the integral are chosen from the χ2

m value of the
investigated (fitted) model to infinity. It therefore can be understood as a measure for how
successful the fit of a certain model was.
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5.3. Input Feature Preprocessing

Regularization and normalization of the input variables can lead to a much better network
performance. This is heavily related to the activation functions, used in the first hidden layers.
In the vicinity, where a non-linear activation function shows approximately linear behavior,
varying input values lead to higher gradients, compared to the high non-linear regime. As a
result, a higher sensitivity can be achieved in this region. For the tanh function, this is the
vicinity around zero.

Normalization can transform most of the values to a desired region, but single outliers still can
push the activation functions into the non linear regime. One way to achieve a restriction to a
desired interval and furthermore a protection against outliers, is the equal frequency binning.
Here, the attempt is to transform the input variable into a flat distribution, regulated by the
cumulated density function. Since the tanh activation functions are used for the hidden layers

in this thesis, a uniform distribution in the interval x
(0)
i ∈ [−1, 1] with mean of approximately

zero is targeted.
The transformation can be obtained by the following steps. Each bin of a histogram should
contain the same amount of entries. An exception is made for a discrete spectrum. If a specific
value occurs more often than the targeted number of entries per bin. Then, a larger bin is
constructed and the average value of that bin is used in the transfered distribution.
As part of this thesis, this was implemented in the dft python-package, containing the nec-
essary functions for training the MVC within and without BASF2. An example of the trans-
formation is given in Fig. 5.3. The flattened distribution can be transformed into a normal
distribution, subsequently.

5.4. Feature Representation

Finding a suitable feature representation is key for the success of a multivariate classification
problem. If symmetries of the problem are known, they can be put in “by hand” to reduce
the complexity of the problem. While the over-engineering of features can result in a loss of
useful correlations between input variables, using the raw information increases dimension of
the input space significantly and increases the training difficulty of the MVC. In this thesis, not
the raw output of sensors of the detector was used, but attributes of the reconstructed track

objects. Besides that, BASF2 provides also ECL cluster and KLM cluster objects, which
could be potentially used in an extended tagging approach.

One of the major problems of employing a neural network to flavor tagging is the fixed number
of input nodes. Since the number of tracks is not equal for each event, the input has to
be transformed. It would be beneficial if empty tracks would be separable by the algorithm.
Fig. 5.1 shows the distribution of tracks on the tag side for an simulated generic decay of an
B0 meson. A possible solution could be the assignment of a track to a particle type specific
input vector. Without increasing the input space significantly, this would not be possible.

Since the decay process obeys charge conservation, an even number of charged particles is pro-
duced. Because of errors in recombination and reconstruction, and as well due to the limited
detector acceptance, the assumption of an even number of track objects is violated. Never-
theless, considering this symmetry could help to decide, if all tracks are found or reconstructed
correctly.

Fig. 5.4 shows the feature representation, which was chosen in this thesis. Each track is ranked
by its momentum. This is correlated with the attribute of primary and secondary particles and
provides a defined order of the input vector. A total number of 10 charged tracks at most is
used for each rest of event. This covers roughly 92% of all occurring tracks. For roughly 96%
events, no cuts are performed. For events with less than 5 positive or 5 negative tracks, the
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Figure 5.4.: Schematics of the feature representation of the input variables. Each variable
set is sampled from a track object and contains the variables described in
Section 5.2

features of the empty variable sets are set to zero. This value corresponds to the mean of the
(uniform) distribution.

Another way to deal with an variable input space can be the introduction of convolutional
neural networks which demand spacial symmetries (invariance of patterns against translations
or rotations). First tests in the scope of this thesis did indicate that the approach might
succeed, but would require further optimization.

5.5. Testing Metrics

In this section, the common metrics used for comparisons in this thesis, are introduced. The
Area under the Receiver Operation Curve (AUC) is mainly used in this thesis for benchmarking
purpose of the classifier performance, e.g. for different variable sets or hyperparameters.
Additionally, it is practical to introduce quantities that directly show the expected impact of
the algorithm on measurements. The effective tagging efficiency allows a direct inference of
the uncertainty of measurements of the CP asymmetry.

5.5.1. Area under the Receiver Operating Characteristic Curve

The receiver operating characteristics (ROC) curve can be used to determine the performance
of a classifier for an arbitrary working point, defined by two quality measures. In this thesis,
these two quantities are chosen as the true positive rate (TPR) and the false positive rate
(FPR).

They can be expressed with the help of probability density functions (PDF) f , which denote
the probability that a random variable ~x takes a value inside a given interval A, with

P (~x ∈ A) =

∫
A

f(~x) d~x. (5.1)

The PDF is normalized and always positive. The output of a MVC yn ∈ [0, 1] can be interpreted
as a test-statistic. With the signal hypothesis H1 and background hypothesis H0, the PDFs
for the test-statistic can be defined as t0(yn) and t1(yn). For a given threshold parameter Tc,
the following cumulative density functions (CDF) PTP (PFP ), which define the TPR (FPR),
can be obtained

PTP (Tc) =

∫ ∞
Tc

t0(yn) dyn (5.2)
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TPR

FPR

Figure 5.5.: Example for the true positive rate and false positive rate for the two PDFs t0,
t1 for an arbitrary Tc.

PFP (Tc) =

∫ ∞
Tc

t1(yn) dyn. (5.3)

An example is shown in Fig. 5.5. The area under the ROC curve (AUC), θ, is used as a testing
metric, given by

θ =

∫ ∞
−∞

PTP (Tc)P
′
FP (Tc)dTc. (5.4)

A value θ = 0.5 would stand for a random decision of an MVC, values smaller than θ = 0.5
can be inverted (1− θ) to correspond to values above the threshold.

For estimation of the standard error of the AUC, an approximation of the standard error of
the Wilcoxon statistic SE(W), as stated in [45] was used. NS is defined as the number of true
signal events, and NB as the number of true background events. It is given as

SE(W) =

√
θ(1− θ) + (NS − 1)(Q1 − θ2) + (NB − 1)(Q2 − θ2)

NSNB
(5.5)

with

Q1 =
θ

2− θ
Q2 =

2θ2

1 + θ
. (5.6)

In Fig. 5.6 a comparison between the category based method with the deep neural network
approach is shown. For an arbitrary working point, the deep neural network performs better
than the category based approach.

5.5.2. Effective Tagging Efficiency

It is useful to find a figure of merit, that allows to directly infer on the impact of the performance
of a MVC on a measurement. The purpose of a flavor tagger is to classify the reconstructed B
mesons, here defined as signal (B0) or background (B̄0). It is mainly used for measurements
of the CP asymmetry. For this case the effective tagging efficiency εeff , as it is described
in [32, 30, p.100ff], is a useful metric. The number of reconstructed mesons classified as B0

(B̄0) is defined as Ns,tag (Nb,tag).
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Figure 5.6.: Receiver Operation Curves (ROC) for a comparison of the category based
flavor tagger and the deep neural network based approach (default parameters,
8 hidden layers) on Belle II Monte Carlo. The area under the ROC curve
(AUC) is used as a quality measure.

At Belle and Belle II, a tag can be assigned to almost every reconstructed B meson candidate.
Let ε be defined as the efficiency for tag-able events

ε =
Ns,tag +Nb,tag

Ns,rec +Nb,rec
. (5.7)

With the fraction w of wrongly assigned B mesons, for the number of reconstructed B0 (B̄0)
mesons Ns,rec and Nb,rec follows

Ns,tag = ε(1− w)Ns,rec + εwNb,rec (5.8)

Nb,tag = ε(1− w)Nb,rec + εwNs,rec. (5.9)

The observed CP asymmetry is Aobs is

Aobs =
Ns,tag −Nb,tag

Ns,tag +Nb,tag
= (1− 2w)

Ns,rec −Nb,rec

Ns,rec +Nb,rec
. (5.10)

The observed asymmetry is diluted by the dilution factor r = 1− 2w from the actual value A0

Aobs = (1− 2w)A0. (5.11)

The dilution factor directly influences the statistical uncertainty σA0 with

σA0 ∝
1√

ε(1− 2w)
:=

1
√
εeff

(5.12)
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In literature, the output of the flavor-tagger is often described in terms of q · r, where
q ∈ {−1, 1} denotes the assigned flavor and r the dilution factor. Using w obtained from
Monte Carlo Studies would introduce a systematic bias on the measurement [32]. The tagging
performance on recorded data has to be determined as well. Here the potential danger exists,
that Monte Carlo specific attributes are “learned” by the network. This is even more impor-
tant for the deep neural network approach, since there are no reference values available. The
wrong tag fraction w has to be measured on so-called self tagging decays, e.g B0 → D∗−l+ν,
D∗−π+, D∗−ρ+, D−π+ [32, p.15]. The charge of the decay products let directly infer to the
flavor of the B meson. At the Belle experiment, the wrong tag fraction was measured in 6 re-
gions of r. The latter are defined by 0 < r ≤ 0.25, 0.25 < r ≤ 0.5, 0.5 < r ≤ 0.625, 0.625 <
r ≤ 0.75, 0.75 < r ≤ 0.875 and 0.875 < r ≤ 1. To obtain comparability to Monte Carlo, the
wrong tag fraction together with the effective tagging efficiency are calculated bin wise

εeff =

6∑
i=1

εi〈ri〉2. (5.13)

Here, εi is the efficiency per bin and 〈ri〉 = (1 − 2〈wi〉) is the average dilution per bin.
Evaluation of the flavor tagger on data will be subject of future studies and goes beyond the
scope of this thesis. Nevertheless the effective tagging efficiency is a metric of interest for
comparability between different Monte Carlo studies.

5.5.3. Transformation to Probability

If the deployed MVC would have been trained perfectly, the network output would correspond
to a probability (Section 4.2.2). In this case, for a binned classifier output, the ratio of signal
events with respect to all events per bin (bin purity) as a function of the bin number, would
be centered around a straight line. Since this is usually not the case, for example the classifier
adapted for a certain degree on statistical fluctuations, the network output can be re-weighted
on a test set compared to Monte Carlo truth to provide a better representation of the data.
This transformation was implemented as part of this thesis. It is applied before evaluating the
effective tagging efficiency of the algorithm. An example is shown in Fig. 5.7.

In general, a trained MVC can be used for classification processes with a different signal to
background ratio than during the training. In that case, another transformation has to be
applied, in order to transform the classifier output to a probability. The presented approach
follows [35] and makes use of the Bayes Theorem. The untransformed output of the classifier
is transformed to a probability according to the training signal fraction yn → ot. Then it is
corrected according to the signal fraction of the prediction dataset to op. Pt(S) (Pt(B)) is the
probability to get a specific network output ot for a signal S (background B). Pp(S) is the
probability for the prediction dataset. One obtains

op =

(
1 +

(
1

ot
− 1

)
Pp(B)

Pp(S)

Pt(S)

Pt(B)

)−1
. (5.14)

5.6. The Algorithm

The algorithm and its initial hyperparameters used in this thesis are based on a benchmark
study for a potential application of deep neural networks and deep learning in high-energy
physics [40]. A dataset with 21 low-level and 7 high-level input variables was investigated for
different network configurations and learning techniques. Adding the high level-features did
only lead to a minor increase of the network performance.

The standard network configuration in this study, which is based on [40] uses tanh activation
functions in the hidden layers and a sigmoid function in the output layer. An advantage of
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Figure 5.7.: Bin purity with (red) and without (blue) transformation to probability for
a training on Belle II Monte Carlo with 8 hidden layers. The straight line
trough the origin which corresponds to a perfectly trained algorithm without
fluctuations.

the tanh function lies in the fact, that the weight symmetry is centered around zero which
does not lead to a biased saturation [46]. The classifier is trained with mini-batch stochastic
gradient descent with a batch size of 100 events and a binary cross-entropy error function. The
weights were initialized with random values drawn from a uniform distribution, with respect
to the activations functions according to [46]. The learning rate η was initialized with 0.05
and decreased exponentially with a factor of 1 + 2 · 10−7 per mini-batch until a value of 10−6.
A momentum extension was used with linear increase from 0.9 to 0.99 after 200 epochs. A
trainings epoch is defined as a complete iteration on the applied training dataset. The training
was monitored on a validation set and stopped when the error function did not decline after
10 epochs with a factor of 10−5 to the overall minimum. This parameter setup will be referred
to as the standard parameter set. The training process for the standard variable set on Belle
II Monte Carlo is shown in Fig. 5.7. The error function indicates a slight over-training on the
algorithm, although the loss-function on training and validation set shows similar movements
on both datasets.

As described in Section 5.6.1, the hyperparameter setup found by [40] was already a good
configuration choice for the feature space for the deep neural network used for flavor tagging
purpose.

5.6.1. Influence of Hyperparameters

In this thesis the influence of hyperparameters on the employed model was studied. The
observed hyperparameters are strongly related to each other and to the feature representation.
Varying only some of them while letting the majority constant provides only a limited insight.
Nevertheless this approach reveals information about the stability of a minimum, found by the
classifier and adjustments can improve the training performance.

For each data point for the comparison of layer width and layer depth, the model has been
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Figure 5.8.: Monitoring of network parameters during the training process for a neural
network with 8 hidden layers on Belle II Monte Carlo. The training time,
learning rate, momentum parameter η and the error function are shown with
respect to the epochs. The error function is monitored for the training dataset
and the validation dataset, which is a fraction of 0.04 of the complete dataset
defined in Section 5.1.
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Figure 5.9.: Influence of the layer width for the standard variable set and the standard
parameter set on all Belle II Monte Carlo datasets. All hidden layers of a
neural network have the same number of nodes.

trained on all 4 datasets with the same hyperparameters. The rather small number of trainings
for a classifier was due to the fact, that an average training with the standard parameter set
takes in the order of 24 hours on the utilized GTX970 GPU. Eight layer networks require
roughly twice as much training time. That is in agreement with the expected computational
complexity, as described in Section 4.2.2. For many of the comparisons, therefore only one
network training was used, to gain at least a limited overview. A more detailed overview of
the used hardware is provided in Appendix A.

If a series of tests for a given hyperparameter setting was available, the median of the AUC
or the effective tagging efficiency was calculated. The median was chosen because of its
robustness against outliers. For an estimation of the statistical error, the error of the mean is
used. For the AUC, this error and the error as stated in Eq. (5.5) is accumulated.

As shown in Fig. 5.9, the classifier performance increases with the width of layers and reaches
its best value at a width of 300 nodes where it starts to saturate. The number of nodes of
a hidden layer defines the dimension of an internal feature representation. In this approach
it is intended to chose a network architecture, which is complicated enough to be able to ex-
trapolate all important aspects available in the training data. If the regularization mechanisms
(Section 4.3) work as intended, the network performance should be stable inside a certain
parameter region, even if the the network contains more degrees of freedom than necessary.
Results from Fig. 5.9 indicate that this is the case.

An increase of the layer depth allows a better generalization of the feature representation
developed by the neural network. However, with an increased number of layers, the gradient
of the error function gets smaller in the first layers while training with back propagation [47]
(here shown for recurrent neural networks).
For neural networks, this is described as the vanishing gradient problem. There are various
suggestions to deal with the problem, e.g. increasing the norm of gradient updates in back
propagation with respect to the iteration step [48] or the introduction or rectified linear units
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Figure 5.10.: Influence of the number of hidden layers (depth) for the standard variable
set and the standard parameter set on all Belle Monte Carlo datasets. All
hidden layers of the same set have the same number of nodes.

(ReLu) [49]. Using ReLus comes with the danger of an exploding gradient. This can be
controlled with weight decay or clipping the weight tensor to a norm [48]. Limited tests in the
scope of this thesis did not show any improvements when using ReLus. In Fig. 5.10 it is shown
that the best result on the default parameter set was obtained for a setup with 8 hidden layers.
To increase model complexity other approaches like convolutional networks could be deployed.

The shape of a layer can influence the developed feature representation of a trained network.
Decreasing the number of nodes forces the network to a description of the constructed objects
in the feature space with less attributes, increasing could allow a greater variety.
In Table 5.1 the examined models are described. The model

• W0 corresponds to the default network setup,

• W1 and W2 have a declining shape,

• W3 has an increasing layer shape,

• W4 and W5 has an narrowing shape and

• W6 and W7 have an broadening shape.

In Fig. 5.11 can be seen that the shape has only minor effect. Noticeable are the architectures
W3 and W7. The former layout has fewest nodes in the input layer, this could indicate
that dimension in the first hidden layer is decisive for the development of a good feature
representation. The latter layout is increasing to the broadest setup, with the possible effect,
that the task, for example the reconstruction of immediate particles of a decay, can be described
better with a smaller representation. Another possible reason could be the failure of regulative
mechanisms.

In contrast to the previously studied parameters, the regularization mechanism weight decay
shows a huge influence (see Fig. 5.12). The best result is achieved for the standard parameter
setup WD2, whereas a lower and a higher weight decay values for each layer provoke a smaller
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Figure 5.11.: Influence of the shape of hidden layers for the standard variable set and the
standard parameter set on a single Belle Monte Carlo dataset for a model
with 8 hidden layers. The models W0, ...,W7 are described in Table 5.1.

Model L 0 L 1 L 2 L 3 L 4 L 5 L 6 L 7 AUC

W0 300 300 300 300 300 300 300 300 0.8452±0.0005
W1 300 275 250 225 200 175 150 125 0.8451±0.0005
W2 600 500 400 300 250 200 175 150 0.8448±0.0005
W3 125 150 175 200 225 250 275 300 0.8437±0.0005
W4 300 200 100 50 50 100 200 300 0.8442±0.0005
W5 300 250 200 150 150 200 250 300 0.8449±0.0005
W6 300 350 400 450 450 400 350 300 0.845±0.0005
W7 300 400 500 600 600 500 400 300 0.8433±0.0005

Table 5.1.: Influence of the shape of hidden layers for the standard variable set and the
standard parameter set on a single Belle Monte Carlo dataset for a model with
8 hidden layers. The columns L 0, ..., L 7 describe the number of nodes in
the specific hidden layer. The model W0 corresponds to the default parameter
setup.
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Figure 5.12.: Influence of weight decay for the standard variable set and the standard
parameter set on a single Belle Monte Carlo dataset for a model with 4
hidden layers. The models are described in Table 5.2. The errors are too
small to be visible.

AUC. Almost similar results could be obtained when linear increasing the weight decay from
α = 10−6.. 10−4 in each layer, respectively (model WD7). This scheme was tested with the
vanishing gradient problem but also faster saturation effects in the first layers, shown in [46]
in mind.

Varying the batch size shows rather interesting results. When using SGD, increasing the
mini-batch size can result in a greater generalization and being less susceptible to statistical
fluctuations. A smaller mini-batch size results in a more stochastic treatment and a higher
difference of batches in each step. Fig. 5.13 shows a maximum for the default parameters and
indicate that the minimum, found by the approach in [40] is also applicable for the extended
approach in this thesis. It furthermore indicates, that a sophisticated hyperparameter search,
e.g with simulated annealing or Bayesian optimization [50] could lead to even better minimum.

Another parameter with a huge impact is the learning rate. While the default learning rate
already shows good results (Fig. 5.14, model LR0), decreasing the initial learning rate with
a factor 5 leads to a slight improvement (LR2). Decreasing the minimum learning rate also
leads an improvement compared to the default parameter setup but increases training time
significantly (LR6).

The impact of the momentum term was object of interest as well (Fig. 5.15). The initial
momentum and the slope of the increment was varied. The termination criterion of the
minimal number of epochs was altered to the point, when the final value of the momentum
was reached. Again, the default parameter (M0) for the momentum is a good choice for the
examined hyperparameter set, only setting the initial momentum to 0.5 (M3) leads to a slight
improvement.

The best models M3 and LR2 were found during the extensive hyperparameter search. Both
values were found on Belle Monte Carlo training data sets. On Belle II Monte Carlo, the
superior performance of these compared to the default parameter set, could not be reproduced.
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Model Name first layer last layer type AUC

WD0 0.001 0.001 constant 0.79±0.0006
WD1 0.0001 0.0001 constant 0.8185±0.0006
WD2 1e-05 1e-05 constant 0.8452±0.0005
WD3 1e-06 1e-06 constant 0.832±0.0005
WD4 1e-07 1e-07 constant 0.8212±0.0006
WD5 5e-05 5e-06 linear decrease 0.8289±0.0005
WD6 5e-06 5e-05 linear increase 0.8403±0.0005
WD7 1e-06 0.0001 linear increase 0.8422±0.0005

Table 5.2.: Influence of weight decay for the standard variable set and the standard pa-
rameter set on a single Belle Monte Carlo dataset for a model with 4 hidden
layers. The weight decay factor for the first and for the last layer is given, the
state of the intermediate layers is described by their type. The model WD2
corresponds to the default parameter setup.
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Figure 5.13.: Influence of the mini-batch size for standard variable set and standard pa-
rameter set on a single Belle Monte Carlo dataset.
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Figure 5.14.: Influence of the learning rate for standard variable set and standard param-
eter set on a single Belle Monte Carlo dataset with 4 hidden layers. The
models LR0, ..., LR10 are described in Table 5.1. The model LR5 is not
shown due to its large relative number of training epochs (1297).

Model Initial LR Final LR LR decay factor AUC

LR0 0.05 1e-06 1.0000002 0.8415±0.0005
LR1 0.01 1e-06 1.0000002 0.843±0.0005
LR2 0.001 1e-06 1.0000002 0.836±0.0005
LR3 0.05 1e-06 1.0000004 0.8409±0.0005
LR4 0.05 1e-06 1.0000001 0.8292±0.0005
LR5 0.05 1e-06 1.000008 0.831±0.0005
LR6 0.05 1e-08 1.0000001 0.842±0.0005
LR7 0.001 1e-08 1.0000001 0.8361±0.0005
LR8 0.01 1e-06 1.0000001 0.8402±0.0005
LR9 0.01 1e-06 1.0000004 0.84±0.0005
LR10 0.01 1e-06 1.0000008 0.8225±0.0006

Table 5.3.: Influence of the learning rate for standard variable set and standard parameter
set on a single Belle Monte Carlo dataset for a model with 4 hidden layers. The
initial learning rate, the final learning rate and the learning rate decay factor
per batch is shown. The model LR0 corresponds to the default parameter
setup.
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Figure 5.15.: Influence of momentum for the standard variable set and the standard pa-
rameter set on a single Belle Monte Carlo dataset. The models M0, ..., M7
are described in Table 5.4.

Model Initial Momentum Increase until Epoch AUC

M0 0.9 200 0.8452±0.0005
M1 0.9 100 0.8439±0.0005
M2 0.9 300 0.8439±0.0005
M3 0.5 200 0.8462±0.0005
M4 0.5 100 0.8388±0.0005
M5 0.5 300 0.8441±0.0005
M6 0.6 300 0.8443±0.0005
M7 0.8 300 0.8452±0.0005

Table 5.4.: Influence of momentum for the standard variable set and the standard parame-
ter set on a single Belle Monte Carlo dataset for a model with 4 hidden layers.
The models are described in Table 5.4. The model M0 corresponds to the
default parameter setup.
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Figure 5.16.: Influence of size for the standard variable set and the standard parameter set
on a single Belle II Monte Carlo dataset for model with 8 hidden layers.

Furthermore, first studies indicated, that the hyperparamters, found by the approach of [40]
provided stable results. Therefore this set was chosen as default parameter set.

5.6.2. Dataset Size

A key requirement of deep learning is the massive amount of (labeled) data. In this thesis, an
algorithm with large scalability was examined. Therefore it is of interest, how scaling has an
effect on the results. In Fig. 5.16 the impact of four different dataset sizes is shown. The best
result can be achieved on a dataset with 55 million training events. Unfortunately the benefit
comes with increased training and dataset generation time. Nevertheless the results indicate,
that an improvement is still possible.

5.6.3. Variable Influence

Influence of additional variables is of interest, especially the impact of the hit variables. In
this section the most interesting discriminations between the variables of the used standard
variable sets are shown. In Fig. 5.17 the differences between the standard parameter sets, with
and without any combination of perigee information and hit information are shown. Without
the perigee information, using the hit information provides a significant increase classification
performance. After adding the impact parameters, no significant difference is notable. There
are many more variables including ECL- and KLM cluster variables which could be of interest
for flavor tagging. A restriction for the usage of variables was the limited amount of memory
that was available for a large part of this thesis. This did not allow an arbitrary large amount
of variables to test the limitations of the network setup with respect to the variable number.

5.6.4. Decay Channel Dependency

In Table 5.6 a comparison for training and testing on different Monte Carlo sets is shown. Due
to the very limited statistics, this can only be seen as a hint, that a training on mono-generic
Monte Carlo is preferable.
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Figure 5.17.: Influence of size for different variable sets for the standard parameter set on
a network with 4 hidden layers on all Belle II Monte Carlo datasets. The
variable sets are described in Table 5.5

Model hit variables perigee variables AUC

V0 x x 0.867±0.0007
V1 x 0.8662±0.0008
V2 x 0.8511±0.0008
V3 0.8433±0.0009

Table 5.5.: Influence of chosen variables for the standard parameter set on all Belle Monte
Carlo II dataset for a model with 4 hidden layers. In for this selection, the
usage of the hit variables and the perigee variables was altered. The model V0
corresponds to the default parameter setup.

mono-generic training J/ΨK0
S training

mono-generic test set 0.3492±0.0006 0.3438
J/ΨK0

S test set 0.3387±0.0008 0.3372

Table 5.6.: Comparison of the effective tagging efficiency for training and testing on mono-
generic and J/ΨK0

S Belle Monte Carlo with a 4 layer deep neural network. For
training on J/ΨK0

S this was only performed on one dataset. Therefore no error
is calculable.
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Category Based Deep Neural Network

Belle II mono-generic 0.3407±0.0001 0.4091±0.0005
J/ΨK0

S 0.3329±0.0001 0.4069±0.0003

Belle mono-generic 0.3549±0.0008
J/ΨK0

S 0.3442±0.0009

Table 5.7.: Comparison of the effective flavor tagging efficiency of the category based and
the deep neural network based approach with 8 hidden layers on different
Monte Carlo test sets. Both taggers were trained on mono-generic Monte Carlo.
At the time of evaluation the category based flavor tagger was not available
for converted Belle Monte Carlo. The flavor tagger of the Belle experiment
showed an effective tagging efficiency of 0.293± 0.01[32] on Monte Carlo. The
evaluation was performed on different test sets, as used for the hyperparameter
search.

5.6.5. Implementation and Execution in BASF2

As part of this thesis, the feature selection, feature preprocessing and network training was
implemented to be accessible within BASF2. At first a TMVA plugin was developed but dis-
carded due to the high internal memory usage of TMVA for the rather large training datasets.
Due to the fact of the constant development of BASF2, several changes and adaptions of the
interface had to be carried out. Feature selection is performed on the steering file level and can
access and rank according to every variable of the BASF2 variable manager. The variable pre-
processing and network training which is carried out in Python is accessed by the multivariate
analysis package MVA, which was influenced by this thesis. The Python code is executed via
boost::python in C++. The training itself is performed via the basf2 mva teacher which
can be executed as a stand-alone program. The required bash command and the training
variables file is provided by the DeepFlavorTagger function from the dft package. During
the training process, a weight file is generated which is stored in a local database and can be
uploaded to a global weight file database. To use the trained network for classification, the
identifier of the weight file has to be passed, besides the parameters regarding the specific
input and output files. The network can be also used internally via the MVAExpert module. A
basic example for the usage of the flavor tagger is given in Appendix B.

5.6.6. Comparison on Belle and Belle II Monte Carlo

As shown in Section 5.6.1, the standard parameter set was among the best parameters and
resulted in a reliable and stable tagging performance. The results on a mono-generic and on
a J/ΨK0

s test sample are provided. Table 5.7 shows that on Monte Carlo, the deep neural
network flavor tagger shows a significant improvement. The output of the trained classifier
for the corresponding test dataset is shown in Fig. 5.18 for Belle II and in Fig. 5.19 converted
Belle Monte Carlo. It is noticeable, that for Belle II Monte Carlo, more tagging decisions are
mapped with to high probability.
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Figure 5.18.: Classifier output on the standard parameter set and 8 layers for Belle II.
Signal events (B0 mesons) and background events (B̄0) are separated by
color.
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Figure 5.19.: Classifier output on the standard parameter set and 8 layers for Belle. Signal
events (B0 mesons) and background events (B̄0) are separated by color.
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In this thesis, a deep neural network was applied to the task of flavor tagging. Instead of assign-
ing single tracks with dedicated classifiers to single categories and combining them afterwards,
this approach considers each event at once. It uses attributes of tracks, like particle identifica-
tion, momentum, and spacial variables. An effective tagging efficiency of 0.4069± 0.0003 on
Belle II Monte Carlo and of 0.3442±0.0009 on Belle Monte Carlo is achieved. Compared to the
established method, this corresponds to relative increase of the effective tagging efficiency on
Belle II Monte Carlo of approximately 22%. On Belle Monte Carlo, the relative improvement
of the effective tagging efficiency with respect to the established flavor tagger is approximately
17%.
The necessary pre-processing and post-processing transformations were implemented. The ap-
proach was integrated into BASF2 and is now also available for converted Belle Monte Carlo.
A classifier, which was trained on a GPU, can also be applied on machines with only CPUs.
This study was part of the first tests of the b2bii conversion feature and had to cope with
continuous changes of BASF2, which is still under heavy development.
A study of the performance dependence of the classifier on various hyperparameters has been
carried out. The parameter set found by Baldi, Sadowski and Whiteson [40] was among the
best parameters. Maxima, which was found on Belle Monte Carlo did not show a significant
improvement on Belle II Monte Carlo.

The performance of the presented approach heavily depends on the quality of the Monte
Carlo. Therefore an evaluation on data is mandatory to make a final conclusion on the flavor
tagging quality of the presented approach. This evaluation can be performed with so-called
self-tagging decays. However, since no intermediate particles or sub-categories are introduced
as classification targets, there is the possibility to train the deep neural network directly on
data. This can be achieved with advanced event reweighting techniques [51]. Depending on
the quality of the Monte Carlo, it might be possible to start a network training on Monte Carlo
and finish the parameter adaption on data, allowing for a better fine tuning on data specific
features.
Although the approach of this thesis already shows a significant improvement of a method,
which was optimized over decades, further progression seems likely.

Better minima might be found when carrying out a sophisticated hyperparameter search based
on Bayesian methods [50] or simulated annealing. This can also lead to a better classifier
or a faster convergence of the training process while taking less computational resources into
account. On the other hand, it is reasonable to decrease training time in order to increase the
rate of testable models or to use a higher amount of data efficiently. A promising way to speed
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up the training process is by the introduction of the batch normalization technique [52], where
each mini-batch is normalized by its variance.
While GPUs became very popular in machine learning because of the high possibility of par-
allelization, the deployed hardware might shift to engineered systems for the specific task.
Computation on application-specific integrated circuits (ASICs), where calculations are per-
formed with reduced precision, like the Tensor Processing Unit (TPU) [53] utilized by google,
might decrease the training time of a neural network drastically.

Rectified linear units were only considered very briefly in this thesis. In combination with an
altered hyperparameter setup, especially for the weight decay parameters, improvement may
be achieved. In combination with different training methods like Adadelta, Adagrad [54] or
Adam [55], which adjust the learning rate with respect to the gradients of the preceding steps
or take the Hessian matrix into account, the training process can be sped up and stabilized.
Another approach could be the introduction of a convolutional neural network, to cope with the
altering input space of an event. For example, arranging tracks according to their production
vertices in the dr − dz plane could allow the MVC to construct an easier connection between
single tracks and allow inference to a common mother particle. It should be noted, that these
vertices would have to be found by a vertex fitter under a certain particle hypothesis or with
the utilization of a vertex finder.
First tests with using the perigee information as a reference system, indicated that this approach
might succeed, but will require significant work in tuning, testing and further optimization.

48



Bibliography

[1] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett.
B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration, S. Chatrchyan et al., “Observation of a new boson at a mass of
125 GeV with the CMS experiment at the LHC,” Phys. Lett. B716 (2012) 30–61,
arXiv:1207.7235 [hep-ex].

[3] A. D. Sakharov, “Violation of CP invariance, C asymmetry, and baryon asymmetry of
the universe,” JETP lett. 5 (1967) 24–27.

[4] M. Kobayashi and T. Maskawa, “CP-Violation in the Renormalizable Theory of Weak
Interaction,” Progress of Theoretical Physics 49 no. 2, (1973) 652–657.

[5] B. Aubert et al., “Observation of CP Violation in the B0 Meson System,” Physical
Review Letters 87 no. 9, (2001) 091801, arXiv:1201.5897.

[6] Belle Collaboration, K. Abe et al., “Observation of Mixing-induced CP Violation in the
Neutral B Meson System,” arXiv:0202027 [hep-ex].

[7] “Physics achievements from the Belle Experiment,” Progress of Theoretical and
Experimental Physics 2012 no. 1, (2012) 4D001, arXiv:1212.5342.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521 no. 7553, (2015)
436–444.

[9] Belle-II Collaboration, T. Abe et al., “Belle II Technical Design Report,”
arXiv:1011.0352 [physics.ins-det].

[10] A. Abashian, K. Gotow, N. Morgan, L. Piilonen, S. Schrenk, and K. Abe, “The Belle
Detector,” Nuclear Instruments and Methods in Physics Research 479 no. A, (2002)
117–232.

[11] M. Ziegler, “Search for the decay B0 → τ+τ− with the Belle detector,” Internal Belle
Note no. 1390, (2016) .

[12] D. Besson and T. Skwarnicki, “Upsilon Spectroscopy: Transitions in the Bottomonium
System,” Annual Review of Nuclear and Particle Science 43 no. 1, (1993) 333–378.

[13] Particle Data Group Collaboration, K. A. Olive et al., “Review of Particle Physics,”
Chin. Phys. C38 (2014) 090001.

[14] C. Schwanda, “SuperKEKB machine and Belle II detector status,” Nuclear Physics B -
Proceedings Supplements 209 no. 1, (2010) 70–72.

[15] T. E. Browder, T. Gershon, D. Pirjol, A. Soni, and J. Zupan, “New physics at a super
flavor factory,” Reviews of Modern Physics 81 no. 4, (2009) 1887.

[16] sBelle Design Group Collaboration, I. Adachi et al., “sBelle Design Study Report,”
arXiv:0810.4084 [hep-ex].

49

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.87.091801
http://dx.doi.org/10.1103/PhysRevLett.87.091801
http://arxiv.org/abs/1201.5897
http://arxiv.org/abs/0202027
http://dx.doi.org/10.1093/ptep/pts072
http://dx.doi.org/10.1093/ptep/pts072
http://arxiv.org/abs/1212.5342
http://arxiv.org/abs/1011.0352
http://dx.doi.org/10.1016/S0168-9002(01)02013-7
http://dx.doi.org/10.1016/S0168-9002(01)02013-7
http://dx.doi.org/10.1146/annurev.ns.43.120193.002001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.012
http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.012
http://arxiv.org/abs/0810.4084


Bibliography

[17] N. Braun, “Momentum Estimation of Slow Pions and Improvements on the Track
Finding in the Central Drift Chamber for the Belle II Experiment,” Master’s thesis, KIT,
2015. https://ekp-invenio.physik.uni-karlsruhe.de/record/48740.

[18] M. Prim, “Study of material effects in track fitting and improvement of the K0
S

reconstruction at Belle II,” Master’s thesis, KIT, 2015.
https://ekp-invenio.physik.uni-karlsruhe.de/record/48795.
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6. Appendix

A. Available Hardware

IEKP (Institut für experimentelle Kernphysik) working station – Hardware available during
almost the complete time of the study

• Intel Core i7-5820K @3.30 GHz (6 cores)

• 32 GB DDR4-2133

• Nvidia GeForce GTX 970 Phantom, 4GB GDDR5

• Mainboard: Gigabyte GA-X99-UD4 Quad Channel

• Internal Storage: 1 TB HDD, 256GB SSD

IEKP GPU server – Hardware available for a limited time

• 2x Intel Xeon CPU E5-2630 v4 @2.20 GHz (10 cores)

• 378 GB DDR4-2133 LRDIMM

• 4x GeForce GTX TITAN X (Maxwell), 12 GB GDDR5
7.00 TFlops Single Precision floating point performance (peak)

• Mainboard: Supermicro X10 DGQ - Dual Socket

Institut für Prozessdatenverarbeitung und Elektronik (IPE) – Hardware available for a limited
time

• 2x Intel Xeon CPU E5-2640 @2.50 GHz (12 cores)

• 258 GB RAM

• 2x Tesla K20Xm, ∼6GB GDDR

• 4x GeForce GTX TITAN 6GB GDDR
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B. Tutorial for using the Deep Flavor Tagger with BASF2

B. Tutorial for using the Deep Flavor Tagger with BASF2

from d f t import s t e e r i n g t r a i n i n g d a t a
import os
import s u b p r o c e s s
import p i c k l e

# B a s i c t u t o r i a l f o r th e t r a i n i n g o f the deep f l a v o r t a g g e r .
# make s u r e t h a t you have i n s t a l l e d Theano ( p i p 3 i n s t a l l theano ) ,

# you a l s o need pandas , n o s e p a r a m e t r i e z e d , root−numpy
# and p y l e a r n 2 ( f o r t r a i n i n g , o n l y )

# examples f o r data s e t g e n e r a t i o n , t e s t i n g and t r a i n i n g
# a r e p r o v i d e d i n s t e e r i n g t r a i n i n g d a t a

# monogener ic monte c a r l o . a decay i n t o n u t a u and a n t i−n u t a u f o r c l a s s i f i e r
# c l a s s i f i e r t r a i n i n g i s recommended

# e n t e r a l i s t o f s t r i n g s f o r t he f i l e n a m e s
f i l e n a m e s = [ ]

# name o f t he i d e n t i f i e r i n t he d a t a b a s e
u n i q u e I d e n t i f i e r = ’ s t a n d a r d ’

# i n s e r t h e r e a l i s t o f b a s f 2 v a r i a b l e names
# None i s s t a n d a r d
v a r i a b l e l i s t = None

# use t he c u r r e n t d i r e c t o r y as work ing d i r e c t o r y
w o r k i n g d i r = ’ ’

# path o f t he e x t e r n t r a i n command w i l l be
e x t e r n t r a i n c o m m a n d p a t h = os . path . j o i n ( w o r k i n g d i r ,

u n i q u e I d e n t i f i e r + ’ t e a c h e r p r e f i x ’ )

# w r i t e out th e v a r i a b l e f i l e , and t he t r a i n i n g command f o r e x t e r n t r a i n i n g
# i n t e r n a l t r a i n i n g c o u l d be implemented , too

# i f n e c e s s a r y , you can p a s s keyword−arguments f o r t he mlp t r a i n i n g ,
# f o r example t he number o f 8 h i d d e n l a y e r s and u n i f o r m w e i g h t i n t i a l i z a t i o n
# c l a s s i f i e r a r g s = { ’ n h i d ’ : 8 , ’ w e i g h t i n i t ’ : ’ u n i f o r m ’}

s t e e r i n g t r a i n i n g d a t a . c r e a t e t r a i n d a t a (
w o r k i n g d i r ,
f i l e n a m e s ,
u n i q u e I d e n t i f i e r ,
v a r i a b l e l i s t ,
c o n v e r t t o c p u=F a l s e ,
o v e r w r i t e=True )

# run th e e x t e r n a l bash command , j u s t w i t h . / bash s t a n d a r d t e a c h e r p r e f i x
# <p r e f i x > t e a c h e r p r e f i x

# or e x e c u t e v i a s u b p r o c e s s
# or r e w r i t e th e f u n c t i o n , j u s t as d e s c r i b e d i n mva/ t u t o r i a l s

# i n t h i s example , r e a d th e w r i t t e n f i l e from d i s k
w i t h open ( e x t e r n t r a i n c o m m a n d p a t h , ’ r ’ ) as f :
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6. Appendix

command = f . r e a d l i n e s ( ) [ 0 ]
p r i n t ( command )

# and s t a r t t he a c t u a l l t r a i n i n g
j o b = s u b p r o c e s s . Popen ( command , s h e l l=True )
j o b . w a i t ( )

####################################
# B a s i c t u t o r i a l f o r th e e x p e r t

# a f t e r t he t r a i n i n g , you can use t he e x p e r t w i t h

# b a s f 2 m v a e x p e r t −−d a t a f i l e < t r a i n i n g d a t a f i l e > −−t reename d f t v a r i a b l e s
# −−w e i g h t f i l e <u n i q u e I d e n t i f i e r > −−o u t p u t f i l e <o u t p u t f i l e >. r o o t

# make s u r e the d a t a f i l e i s i n th e same format as th e t r a i n i n g data

# th e e x p e r t can o p e r a t e at b a s f 2 s t e e r i n g f i l e l e v e l
# an example i s p r o v i d e d i n t e s t e x p e r t
s t e e r i n g t r a i n i n g d a t a . t e s t e x p e r t ( w o r k i n g d i r , f i l e n a m e s , u n i q u e I d e n t i f i e r )
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Zunächst möchte ich mich bei Herrn Prof. Dr. Michael Feindt für die Möglichkeit, am Institut
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