) *
& | Faculté * ”’;m*
* * » * * * . . *
de physique et ingénierie Psique Subatamique
o Astroparticules "
Université de Strasbourg * o

Master Science, Mention Physique
Spécialité Physique Subatomique et Astroparticules

Année universitaire 2019-2020

Ilias TSAKLIDIS

DEMONSTRATING LEARNED PARTICLE DECAY
RECONSTRUCTION USING GRAPH NEURAL
NETWORKS AT BELLE II

Rapport de stage de Master
sous la direction de
Pablo Goldenzweig

et
[sabelle Ripp-Baudot

01 Mars 2020 au 11 Juin 2020

D

KIT i

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

To my lovely sister,
and the bright future ahead of her.

Abstract

The clean environment within Belle II, with decay processes originating from non-composite
electron-positron pairs, allows for the reconstruction of the entire collision event. Having precise
information about the initial state kinematics gives a unique advantage to the Belle II experiment
in that allows for direct measurements of decay processes involving neutrinos or few detectable
particles in the final state, due to conservation of energy and momentum. This does, however,
require a catch-all reconstruction algorithm which is able to determine which particles are not
associated to the signal B-meson and reconstruct a second B-meson from them. The current full
event reconstruction algorithm at Belle II requires the reconstructed sub-decay processes to be
hard-coded, and the careful selection of which kinematic variables to exploit. This both restricts
the total branching fraction coverage of the algorithm and relies on intuition to decide which
decay processes to reconstruct and how to reconstruct them. This work introduces a method
for learning which processes to reconstruct and how to reconstruct them from example using
simple kinematic variables with graph neural networks. The efficiency of the proposed method
is demonstrated by reconstructing decays from generic and Belle II phasespaces in numerous
kinematic scenarios of increased complexity.

Abstract

L’environnement claire du Belle II, avec tous les processus de désintégration qui proviennent
de pairs électron-positron non composite, permet la reconstruction d’évenement de la collision
entier. La possession des information precises pour la cinématique de 1’état initial, donne un
avantage unique a ’experience de Belle II qui autorise la mésure direct de désintegration qui
contient des neutrino ou peu particules détectable a I’état final, en raison de la conservation
d’énergie et de I'impulsion. Ce processus demande un algorithm de reconstruction, qui prend
en compte tout les particules détectés , capable a déterminer quelles particules ne provient pas
du B-méson du signal et reconstruit un deuxieme B-méson avec eux. L’algorithm de reconstruc-
tion d’évenement complet actuel a Belle II nécessite que les processus de sous-désintégration
reconstruit sont explicitement programmer cas par cas et soigneusement choisir les variables
cinématique a exploiter. Ce processus d’un part il restreint le rapport de branchement total du
range de couverture de I'algorithm et d’autre part la décision pour quelle désintégration vont se
reconstruire et comment se fait intuitivement. Dans cet projet nous introduisons une méthode
pour apprendre quel processus a reconstruire et comment le reconstruire par ’exemple, en util-
isant des simples variables cinématique a ’aide de graphe des resaux neuronal. Nous avons
démontré effficacité de notre méthode en reconstruisant des désintégration par des éspaces
de phase generique et par le Belle II dans plusieurs scenario cinématique avec une complexité
croissante.

Acknowledgments

I would like to express my gratitude firstly to both my supervisors, Dr Pablo Goldenzweig and
Dr Isabelle Ripp-Baudot. To Pablo for being one of the nicest and most supportive people I've
ever met in my life and to Isabelle for believing in me and helping me since the very beginning.
My sincere thanks goes to Dr James Kahn, for being the best mentor a student could ever ask
for. James introduced me to the beautiful world of deep learning, spent endless hours explaining
and correcting my mistakes, and showed me how to approach every single aspect of my work.
This thesis could not have been written without James’s guidance. I would also like to thank
Dr Giulio Dujany for all our interesting discussions and for always reminding me to question
every single step I made. A big thanks goes to Dr. Markus Goetz and Dr Oskar Taubert for
their technical support and useful insights on deep learning. Lastly I would like to thank all the
members of the Belle II group at KIT, and especially Tobias Boeckh for warmly welcoming me
from the first day, and the members of the Belle II group in Strasbourg for our excellent remote
collaboration the last 3.5 months.

This project could not have been completed without the love and support of many dear
friends, who I'm extremely lucky to have in my life. To begin with, I'd like to thank my friend
and flatmate Achilleas for being the person who motivated me to move on and made me believe
in myself during difficult times, and for always supporting my decisions even though sometimes
they were against his own interest. I'd also like to thank my friend Kai simply for making life
more interesting just by being around. A big thanks goes to my friends Clémence and loanna
for their love and support. Lastly I'm grateful to my dear friends Jonas, Gerrit and Simon for
their incredible hospitality and the good times we had together.

Last but not least I’d like to thank the QMat Graduate school and its members in Strasbourg
for supporting financially all my projects during this year.

Acronyms

SM
QFT
HEP
FEI
ML
DL
NN
MLP
FFN
GNN
FSP
LCA
NRI
MC
HPO

Standard Model
Quantum Field Theory
High Energy Phycics

Full Event Interpretation
Machine Learning

Deep Learning

Neural Network
MultiLayer Perceptron
Feed Forward Network
Graph Neural Network
Final State Particle
Lowest Common Ancestor
Neural Relational Inference
Monte Carlo

HyperParameter Optimization

Contents

1 Introduction

2 Scientific Context
2.1 The Standard Model of Particle Physics
2.2 The Belle IT Experiment
2.3 Full Event Interpetation
2.4 Deep Learning motivation and elements of Neural Networks
2.5 Graph Neural Networks

3 Outline of this work
3.1 Definition of the problem and proposed approach
3.2 Demonstration of graph-based particle reconstruction
3.3 Neural Relational Inference for Interacting Systems
3.4 Data production
3.5 Metrics and Hyperparameter Optimization

4 Results and Discussion
4.1 Phasespace e
4.1.1 Proofof Concept
4.1.2 First Level Reconstruction
4.1.3 Mixofdatasets I
4.1.4 Noisy data e
4.1.5 Missing Particles oo oo
4.1.6 Mixofdatasets I
4.2 MC Truth e
4.2.1 Demonstration on first MC truth channels
4.2.2 Mixof datasets III
4.2.3 Reconstructed events L
4.3 Depth Studies

5 Conclusion and Outlook
Appendices

A Encoder Architecture

B Training Hyperparameters

C Extra Results

16
16
16
16
17
18
19
20
20
20
21
22
22

24

25

26

32

33

1. Introduction

Physics is the branch of science that describes nature by creating mathematical theories to
predict physical phenomena. The two fundamental theories that allow us to understand the
Universe are General Relativity, which describes Physics on a large scale, and the Standard
Model of Particle Physics, which describes the Universe at an elementary level. In recent decades
there has been an outstanding experimental verification of the predictions the Standard Model
[1]. However there are still open questions that demand answers, such as the origin of the CP
violation in the Universe or the nature of dark matter [2].

The Belle II experiment investigates Physics at an elementary level by colliding electrons
and their anti-particles, positrons, at the SuperKEKB collider in Tsukuba, Japan. The main
goal of the Belle II experiment is to make precision measurements related to flavour Physics
and CP violation. The particles that are produced in the collisions at Belle II are primarily B
mesons which decay very fast. The state-of-art of detector, hardware, and software technologies
of Belle II are needed to study these decays with high precision.

This thesis focuses on the development of novel software tools necessary for the precision
measurements that Belle II is aiming for. Specifically, a new Deep Learning algorithm is devel-
oped to learn how to reconstruct particle decays from example, using the kinematic information
of the particles that have been detected, as a from of B-tagging. Efficient B-tagging in Belle II is
necessary to reconstruct the signal B-mesons and study the Standard Model and its extensions
in detail.

This thesis is divided in the following sections: The scientific context and the deep learning
motivation is discussed in chapter 2. The outline of this thesis is presented in chapter 3. The
results are discussed in chapter 4, while a conclusion and the outlook of this work is given in
chapter 5

This thesis has been written under the exceptional conditions that everyone has experienced
during the last few months. Luckily the outcome of this work has been only slightly affected by
the pandemic situation. The first part of this work (3 months) has taken place at the Karlsruhe
Institute of Technology (KIT) while it is currently being continued at the University of Stras-
bourg and the Institut Pluridisciplinaire Hubert CURIEN (IPHC). The initial targets of this
thesis as they have been set by its supervisors were: the modification of data production proce-
dures to make them appropriate for a graph-network-based approach, the implementation from
the literature of an appropriate Graph Neural Network architecture for particle reconstruction,
the evaluation of the capacity of the network in the context of particle reconstruction, and the
extension of the training data to more complex reconstruction requirements.

2. Scientific Context
2.1 The Standard Model of Particle Physics

The Standard Model (SM) of Particle Physics is a Quantum Field Theory (QFT), that de-
scribes the nature of the elementary particles of the Universe and their interactions. Matter in
the Universe, as described by the SM, consists of 12 elementary particles of spin % which are
called fermions and their anti-particles. Interactions between these elementary particles mani-
fest themselves as particles of spin 1, the gauge bosons, which mediate the Electroweak and the
Strong Force. Massive gauge bosons acquire mass from the Higgs scalar field. Figure 2.1 shows
the particle content of the SM. The foundations of the SM are elegant ideas about symmetries of
Nature, that lead to conservation of associated quantities and the fusion of Quantum Mechanics
and Special Relativity. The remarkable consistency with almost all the available experimental
data and the exquisite unified picture it provides, make the SM one of the greatest triumphs of
modern Science [3].

The Standard Model

an

b

HIGGS
BOSON V
W Z .
ELECTRON
W BOSON Z BOSON NEUTRINO
NEUTRINO
NEUTRINO

FERMIONS (matter)

BOSONS (force carriers)

® Quarks @ Leptons @ Gauge bosons @ Higgs boson

Figure 2.1: The particle content of the SM [4]. There are 8 gluons that mediate the Strong
Force. Two W bosons (with positive and negative charge) and a Z boson that are carriers of
the Weak Force. There are twice as much fermions since every particle has an anti-particle as
well. The Higgs boson is a spinless and neutral particle.

Even though scientists managed to answer some of the very fundamental questions about the
Universe in the last decades, there’s still further inquiry as to the details of the SM. For instance
the theory has 18 free parameters, that cannot be predicted, including structure constants, the
three mixing angles and the CP violating phase d13, or the two Higgs potential parameters.
There are further conceptual questions such as the origin of CP-violation in the Universe, the
nature of Dark matter, or whether there is an energy scale that the 4 fundamental forces were
unified, that cannot be explained within the current version of the SM. These open problems
drive the pursuit of New Physics (NP) by studying and trying to identify physical processes
beyond the SM. [5]

The tremendous progress in accelerator technology gives hope that the answers should not
be far away. Addressing these questions is possible at two main frontiers.

1. The Energy Frontier where the highest possible energy is reached in order to produce
-unseen yet- heavier particles. Undoubtedly the biggest achievement in this domain is the
discovery of the Higgs boson in 2012 at the LHC.

2. The Intensity Frontier where ultra-high luminosity gives the opportunity to compare ex-
perimental data with precise theoretical calculations. Major discrepancies due to quantum
fluctuations indicate New Physics (NP) in specific energy scales. The confirmation of the
existence of the CP violation, as described by the CKM matrix, was possible only after
exhaustive and precise measurements at SLAC and KEK during the first decade of the
21st century.

2.2 The Belle II Experiment

SuperKEKB is a particle collider located at KEK in Tsukuba, Japan and is an upgrade of the
KEKB-B-Factory. It is an asymmetric-energy electron -positron collider that runs on the Y (45)
resonance with a 7 GeV electron and a 4 GeV positron beams and aims to deliver 55 billion BB
pairs (50 ab~!) by 2027. One of the main advantages of electron-positron colliders such as the
SuperKEKB is that they don’t suffer from pile-up or any underlying event induced background
like hadron colliders[6]. This gives the opportunity to know the 4-momentum of one B meson
and the tracks associated with it, as soon as the other B-meson originating from same Y (45)
resonance is fully reconstructed. Figure 2.2 shows the principle of B-tagging schematically. If
the signal B meson candidate is reconstructed, then all the remaining final state particles of the
event must be attributed to the tag B meson and vice-versa. Both of the decay chains need
to be valid and the B mesons need to be of opposite flavour. This reduces significantly the
number of eligible possible decays trees [7]. Furthermore the admittedly ingenious asymmetric
setup establishes a large enough Lorentz boost for the ete™ system, allowing the B and D
mesons to travel trackable distances before they decay inside the detector. The aforementioned
configuration is very convenient for conducting precision measurement of important quantities,
such as CP violation parameters or lifetimes, even on the rarests processes that are predicted
by the SM [8].

Figure 2.2: The Y(4S5) resonance decays exactly into a BB pair with a branching fraction of
nearly 100%, providing a very clean experimental environment. The final state particles of the
signal and the tag sides are overlapping spatially making the task of separating the two sides
non-trivial[7]

The Belle II detector at SuperKEKB is the state-of-the-art experimental tool to study the
Physics of B-mesons. The main parts of the Belle II detector that endorse the detection of the
decay products of the B-mesons are namely:

1. The Vertex Detector (VXD) that consists of two devices; the Silicon Pixel Detector
(PXD) and the Silicon Vertex Detector (SVD) and grants the efficient reconstruction of
vertices very close to the collision point.

2. The Central Drift Chamber (CDC) that serves as the main tracking device of the
detector. The CDC is a drift chamber composed of sense wires within a gas filled com-
partment , placed in a 1.5 T magnetic field that is produced by a superconducting solenoid.

Charged final state particles are in principal reconstructed as tracks in the CDC and the
VXD.

3. Two Cerenkov detectors, a time-of-propagation (TOP) counter and the Aerogel
Ring Imaging CHerenkov (ARICH) provide particle identification in the barrel and
end-cap regions respectively.

4. The Electromagnetic Calorimeter (ECL) consists of CsI(T1) scintillation crystals.
The ECL is used for gamma detection and the separation of electrons from pions. Fur-
thermore neutral final state particles deposit energy in the ECL, formatting clusters, that
are used to detect and identify them.

5. Ky and p are identified by resistive plate chambers that are placed in the K;-Muon
Detector (KLM) in the barrel (BKLM) and end-cap (EKLM) regions.

More information about the detector system can be found in official documents of the Belle 11
collaboration such as [9]. The Belle II detector is depicted in Figure 2.3

[Bkem | | iTop | | vxp |

4 GeV positrons

Figure 2.3: The Belle II detector with its main components.

2.3 Full Event Interpetation

In order to exploit the relatively clean experimental environment in Belle II, the Full Event
Interpretation (FEI) algorithm is widely used for event reconstruction. The FEI algorithm uses
multivariate classifiers (Boosted Decision Trees specifically [10]) to reconstruct decay chains
in a hierarchical manner. Beginning with clusters, tracks, and vertices FEI first reconstructs
final state particles (FSP), then proposes intermediate particle candidates, and finally predicts
potential B meson candidates. In the end a probability is assigned to each B meson candidate
based on the reconstruction efficiency of intermediate particles and the B-meson with the highest
probability is picked. A detailed description of the FEI can be found in [11].

The performance of the FEI is outstanding compared to its very successful predecessors
[12] that were used in Belle, however it is likely only the first out of a generation of future
Machine Learning (ML) algorithms, that will be developed for full decay tree reconstruction in
B-factories. The decay channels reconstructed by the FEI are hard-coded explicitly: 100 decay
processes have been specified. This leads to the efficient reconstruction of @(10000) B-meson
decay chains, but restricts the total branching fraction coverage of the algorithm to around 15%
and relies on the developers’ intuition to decide which decay processes to reconstruct. Moreover,
the FEI's approach includes 6 distinct stages, that each runs only after completion of the last.
Therefore the final results rely heavily on the performance of each stage.

2.4 Deep Learning motivation and elements of Neural Networks

Deep Neural Networks (NNs) are techniques used in various learning tasks that mimic the
learning mechanisms in biological organisms. The human brain consist of billions of neurons
connected to each other in complicated ways. The strength of these connections is adaptive and
changes in response to external stimuli, defining all human physical and mental activity. The
same basic concept is used in NNs. External stimuli correspond to data, that is propagated
from input neurons to output neurons. The propagation happens by multiplying the values
stored in the initial neuron, with the corresponding value of the weight that connects it with the
final neuron. Learning is based on correctly adjusting these weights in order to make correct
predictions. Data is stored in the form of tensors, so the fundamental mathematical operation
that an NN is built on is tensor multiplications.

It is highly anticipated that Deep Learning (DL) will revolutionise Particle Physics [13], in the
same way it has revolutionised numerous aspects of industry and everyday life (image-speech-
text recognition [14] [15] [16], protein attributes prediction [17], self-driving cars [18], etc.).
Traditional computing has proven to be very efficient in performing arithmetic calculations very
fast and obeying a strict, user-defined, list of orders. Decision and prediction making, without
the need for explicitly programming instructions, but learning from experience, was only possible
through ML. However, the user still needs to be very active in the learning procedure, in the
sense of breaking down bigger problems into smaller ones and combining the results, or creating
the appropriate features that rely heavily on intuition and expertise [19]. The sub-field of DL
has arisen due to large amounts of available training data and enormous computational power in
the form of Graphics Processor Units (GPU). One of the main advantages of DL is the end-to-
end learning approach, which means that the learning does not occur in distinct stages. A DL
model can predict outputs, given a list of inputs in one step, which significantly speeds up the
application time of the algorithm and provides a holistic manner of training [20]. Furthermore
an end-to-end approach gives rise to the so-called representation learning which is the task of
learning representations of low level data in order to extract useful information, without relying
on human ingenuity [21]. These are two very important elements, especially in High Energy
Physics (HEP), where the time of acquisition and analysis of the data is vital and the search for
NP makes the choice of the appropriate variables very challenging.

The basic block of modern DL architectures is the Multilayer Perceptron (MLP). An MLP
consists of an input layer, an output layer and multiple hidden layers, the number of which is
defined by the user. MLPs are often called Feed Forward Networks (FFN) as each layer feeds
the next one in a single direction. An activation function is deployed after each layer in order to
decide which neurons are triggered or not. This is the same logic as an ON and OFF function
according to the values stored in each neuron. The values stored in the neurons lie in range
(=00, +00), so without any sort of activation these values are meaningless. Mathematically
the forward pass from one layer to another is expressed as: z = f((W - X + b)), W are the
weights connecting the two layers, z are the values of the following layer, X are the values of
the previous layer b is an optional bias and f is a particular activation function. In the end one
or several predictions are made and they are compared to some target values, defined before
the training. A loss scalar is calculated as L = ®(y — y), where ® is a specific loss function,
4 are the values of the output layer and y the target values. All this happens during the
forward pass of the data from the NN and what follows is the actual learning. NNs use the
back-propagation algorithm [22] that inversely calculates the gradient of the loss function with
respect to the weights. These gradients are utilised to update the weights in order to minimise
the loss. Starting from the output layer and moving backwards, the gradient 7 d(t 055) is subtracted
by the current weights, in order to minimise the loss. It is apparent that the backpropagatlon
takes place in a multidimensional space, thus training a neural network is a computationally
expensive procedure. This forward-backward procedure happens recursively and stops after a

certain amount of iterations, that are called epochs, or when a satisfying performance is achieved
[19]. All the above are shown schematically in Figure 2.4

Input Layer Hidden Layers Output Layer

X1 —>
Xp —>

X3 —>

w! k2] w2 2] w3 oz w4

Figure 2.4: A typical MLP. The green nodes are the inputs and the red ones are the outputs of
the MLP. Every edge between two nodes represents a weight that is updated during the training.
The nodes with black are the nodes that have been turned off by the activation function, while
the purple edges are the ones that have been randomly dropped out due to regularization.

An NN model consist of two types of parameters the learnable parameters and the hyperpa-
rameters. The learnable parameters of the model are typically the aformentioned weights. The
hyperparameters of the model are the ones that define the architecture itself. Some of the key
hyperparameters are the number of layers, the number of nodes per layer, the learning rate,
the number of epochs (iterations), and the the dropout rate. The learning rate is the size of
the steps made during the search for the minimum of the loss scalar in the multidimensional
space. The learning rate is multiplied by the gradient dcgéz)s_s)). Higher learning rates change the
weights drastically, while lower learning rates slow down the search of a minimum. The number
of epochs is a hyperparameter of the model, however the user typically deploys an early stopper
to terminate the training when the loss starts to increases. Dropout is a regularization technique
such as the early stopping and it is the percentage of random neurons within the model to be
deactivated. All regularization techniques are used to avoid the overtraining of the model. The
overtraining occurs when the model learns the statistical noise of the training sample and misses
the important information, making it useless for unknown samples.

Normally the data is splitted into a training and a validation set to monitor the level of
overtraining. The training set is the one that is used when updating the weights. At the last
stage of an epoch the walidation set is passed through the updated model and the output is
compared to the target to compute the validation loss and other metrics. Since the training and
the validation sets are statistically independant, the similarity in their performance exhibits the
ability of the trained model to generalise. Any unknown sets that the model is applied on after
the training is referred to as testing set.

Usually the user performs a hyperparameter optimization in order to achieve the best possi-
ble performance. Techniques for hyperparameter optimization differ from simple trial-and-error
approaches to more sophisticated Bayesian optimizations or exhaustive grid searches. After the
determination of the general structure of the model, the appropriate setting of the hyperparam-
eters is the most important contribution by the user in the learning procedure.

2.5 Graph Neural Networks

A graph is a type of data structure that represents objects (nodes) and the relations between
them (edges). These relations can be very complicated and for that reason, graphs are usually
referred to as non-Euclidean data structures. Graph Neural Networks (GNN) are NNs that are
designed for graph structured data and aim to capture both information related to the nodes
themselves and relational information described by structure. [23] GNNs have some significant
advantages over other techniques which arise from the nature of graphs. Conventional DL
techniques such as Convolutional Neural Networks or Recurrent Neural Network that are very
successful in other domains fail to handle properly graph structured data. One reason for that
is that the nodes within a graph are permutable: there is no natural order to represent the
neighbours of nodes in a graph. Furthermore in other Euclidean data structures such as images,
the connections are embedded in the objects themselves (i.e. each pixel has a predefined number
to adjacent pixels, whereas in graph structured data the number of edges of each node varies)
and the edges may have their own features while representing dependencies between nodes. [24]
These particularities of graph structured data have made GNNs very popular among different
fields, where they are used for node or graph classification tasks, link prediction or edge labelling
tasks [25]]26][27]. In Particle Physics GNNs have been used in the recent years in Calorimetry for
tower or jet reconstruction [28][29], as they are suitable for capturing relations of 3D structured
data.

10

3. QOutline of this work

3.1 Definition of the problem and proposed approach

The overarching goal for this research internship is to demonstrate a means of learning to
reconstruct particle decays from examples. The approach proposed is one of graph generation,
since a decay tree is naturally represented as a graph. In Graph Theory there are two matrices
that fully define a graph. The adjacency matriz denotes the structure of a given graph and
the feature matriz contains the attributes of each node. An entry of the adjacency matrix is
1 if there is a connection between two nodes and 0 if they are not connected. One may also
define an edge feature matrix to represent features attributed to the edges if they exist. In the
case of decay tree reconstruction in Particle Physics, where only the final state particles (FSPs)
are detected, the adjacency matrix is unknown. It is only after the successful prediction of
the adjacency matrix that one can attribute kinematic features to the intermediate particles.
To achieve this, this work uses the Lowest Common Ancestor Matriz (LCA). The LCA matrix
shows the level of which the nodes share a common ancestor in terms of generations. An entry
of 1 means that two particles share the same mother, 2 means that two particles share the same
grandmother and so on. The LCA matrix contains all the necessary information to reconstruct
the whole adjacency matrix. One can derive the adjacency from the LCA and vice-versa [30].
Figure 3.1 shows an example decay tree and its corresponding matrices.

Adjacency Matrix LCA Matrix
B D K n nm p vy
1st generation 1
Blo|l1|o/0]|0|1 1 K m m p vy
Dl1|o|1|1|1]0]o0 k [o IERERI2E
AN Klol1]olo|ofo]o o Tals
. X mlof1|o|ofo|o|o0
2nd generation (/D\K) AN rReconstructed H" 11022
N o|1/o0|ofofo|o
I A N " w222 0 2
pwl1/o/o/o/ 0o 00
Yul1]o|o|ofofofo B N A N N B

J

S/ ! * *
3rd generation
Vu Detected
_—

Feature Matrix

Ko | Ki | Ko
1] T | ™]
™ | ™]
Ho | Hq Hz

Yo [V1 2

Figure 3.1: Left: Example of decay tree showing what is input available to the network (detected)
and the decay tree that should be output (reconstructed). Right top: The adjacency matrix
shows the structure of the graph. Right bottom: The feature matrix contains information about
the attributes of these nodes. For particles these may be the 4-momentum or any other physical
quantity.

3.2 Demonstration of graph-based particle reconstruction

The initial target of this work was to demonstrate a graph-based particle decay reconstruction.
As of today there are very few attempts to use GNNs to reconstruct particle decays, which are
mainly individual projects still on the level of proof of concept. In the DL literature there is
a huge number of GNN applications, although they are always data-agnostic, thus there is no
out-of-the-box solution for the very specific problem at hand. Roughly all the first month of
this internship was spent on extensive research in the DL literature, in order to find the most
appropriate approach to implement.

11

Several different techniques have been used, without however leading to gratifying results.
The common ground among all the different approaches is that a complete graph is used where
the nodes are the FSPs as illustrated in Figure 3.2 The advantage of such an initial configuration
is that no assumptions or intuition are needed, since all the particles are treated equally. Particles
are bound to kinematic laws and all the necessary information to reconstruct the decays is
contained in the respective quantities. Firstly it was attempted to use Graph Convolutional
Networks to predict the LCA matrix of a given tree [31]. The fully connected configuration and
the small size of the graphs made it impossible for the models to learn any useful information.
Secondly pooling techniques were studied to select the nodes that share common ancestors [32].
However these techniques always work in a pairwise manner, by finding a first pair that is likely
to be linked and then build on top of that. Consequently they depend heavily on this first
guess, making them unreliable -or at least inefficient. Later on an edge contraction approach
was deployed where the network recursively erases connections leading to classified nodes [33]
This technique suffers from the same problem as the graph pooling. Finally the most promising
approach was the one of edge label prediction and is described in detail in the following.

® :

Figure 3.2: In graph theory a complete graph is a fully connected graph, where all the nodes
are interconnected.

3.3 Neural Relational Inference for Interacting Systems

The goal of this approach is to assign and learn how to predict the edge labels of the fully
connected graph in Figure 3.2. These labels are interpreted as the entries of the LCA matrix.
Edge labelling is still one of the emerging subfields of GNNs, so there are not abundant appli-
cations in the literature [34]. Probably the most appropriate architecture for the problem of
particle decay reconstruction, which also has the advantages of being conceptually simple and
relatively not expensive computationally, is the one provided by the Neural Relational Inference
for Interacting Systems(NRI) [35].

The model presented in NRI is one of a graph autoencoder, used to predict the law of Physics
that governs the interaction of classical particles. An autoencoder such as the one presented in
Figure 3.3 first encodes input information in some latent space, of typically lower dimension,
which is decoded in the second stage in order to reproduce the initial input. The learning
happens by penalizing the wrong recreation of the input and so the model manages to find the
optimal latent space that contains the minimum essential information to describe the data. For
this work only the first encoding part of the autoencoder is needed. The feature matrix of the
complete graph is given as an input and the output of the network predicts the labels for each
edge which are then compared to entries of the LCA matrix.

The main idea behind the encoder is the interchange between node and edge features and
the creation of deeper representations. The basic layer is a 2-layer MLP with ELU activation
functions [36] and dropout [37]. The number of hidden nodes and outputs along with the number

12

(Legend: [: Node emb. [H: Edge emb. —»:MLP {L. : Concrete distribution =--#:Sampling)

-7 TN, Ve e—v

x! Ax!
=) =
M= s iy
ln [Ll
X.: ee Ld
- I I Y
L ! 45(2/%) ! !

Encoder Decoder

Figure 3.3: The Graph Autoencoder of the NRI.

input —MLP <Node2Edge MLP—>MLP MLP —nMLPs—>MLP <Edge2Node MLP ——nMLPs—>MLP <Node2Edge>>MLP

—> Forward pass :

----- > Residual connection
MLP| Single MLP (---------- ! -) :
: / \ v : \ v
nMLPs List of MLPs MLP%rIMLP/sHMLP <Edge2Node MLP‘{T}MLP/S"—PMLP <Node2Edge>MLP
Transition Layer h v

Block of layers
(. MLP

Legend

Figure 3.4: The encoder architecture used in this work.

of MLPs are set after the hyperparameter optimization and they are discussed in the following
sections. The key components of this model are the Node2Edge and Edge2Node layers. These
layers make the transition from node representations to edge representations and vice versa. A
detailed description of these layers can be found in the Appendix. All the models in this work
have been built using the DL library Pytorch [38]. Pytorch is one of the state-of-the-art deep
learning research platforms that provides maximum flexibility and speed, and allows the user
to take advantage of the computational power of GPUs. The original encoder consists only of 8
layers like the ones described above. It was found that for particle decay reconstruction a way
deeper network is needed that scales up to even 200 layers in some cases! The architecture of
the model for this work is presented in Figure 3.4 For all the trainings that are presented in
the following ELU activation functions were used [36]. The loss utilized was the cross entropy
loss [39] along with the Adam optimizer [40].

3.4 Data production

The appropriateness of the encoder was first demonstrated on a generic phasespace decay sam-
ple. Beginning with simple, generic phasespace decays, generated with the python Phasespace
library [41], allows for precise control over the complexity of training data. Once the encoder
has been shown to be able to learn this, it can then be progressed to the more complex Belle
II simulated decays. Phasespace provides the tools to generate Monte Carlo n-body phasespace
decays. It is possible to define the decay tree structure, the masses of generated particles, and

13

potentially a boost for the initially decaying particle.

The complexity of the experiments was increased step by step. The very first dataset that
was used, was the simplest non-trivial case that is showed in Figure 3.5. The daughter particles
in a three body decay have a rich range of momenta and energies. For the experiments that
are described in the following sections, the initially decaying particle is at rest before decaying
and the masses of all the particles are showed in Figure 3.5. With this configuration the energy
spectra and the momenta of the final state particles are strongly overlapping as can be seen
in Figure 3.5. Evidently this decay chain is a very good first test since there is no trivial way
to find the common ancestors of FSPs by just summing up the energies and the momentum
components. This graph is referred to as 303 dataset in this document, since two groups of
three particles originate from the same mothers. This naming convention is followed in the
rest of the document for all the Phasespace datasets. That is if the X particle decays to two
FSPs and the Y decays to four, this dataset is called 204 dataset. After the first demonstration
numerous datasets were generated to test the robustness of the model with respect to different
kinematic phasespaces, increased complexity in the combinatorics and missing information for
the FSPs. For all the trainings on phasespace datasets the 4-momenta of FSPs have been used
as input features to the network.

[leafs
T leaf4
3 leaf3
3 leaf2

leafl
1 leafo

Count (normalised)

\ [\ [\

0.030 a b c {d) I e) | f)
D leafs g /) // \ g

1 leafd " ~__ ~___

3 leaf3

2 leaf2

leafl

0.025 1

o
o
]
S

% 3 leafo
£ oons| Particle Z X Y a,b,c, de,f
S 0.010 Mass

(arb.units) 200 80 60 5

0.005 1

0.000

Px (arb. units)

Figure 3.5: Left top: Overlapping Energy spectra of the FSPs in arbitrary units. Left bottom:
x component of the momentum of the FSPs in arbitrary units. Similar situation for the y and
z momentum components as well. Right top: Graph of the decay chain. Right bottom: Table
showing the masses of all the particles in the tree.

The following logical step was to test the performance of the model on Monte Carlo (MC)
samples, that represent the real phasespace of the decays that take place in Belle II. Table 3.1
shows the six different tag sides from the MC samples that were generated, along with a very
short description of the motivation behind the choice of each channel. The signal side was chosen
to be B — uv,, since its a distinct signal, with only one detected particle and therefore can be
easily isolated from the tag side during the analysis. For all the trainings on MC Truth datasets
the 4-momenta and the charge of FSPs have been used as input features to the network.

Lastly the model was tested on events that were reconstructed after the simulation of the
Belle II detector. This series of experiments was of course the most realistic ones, as any proposed
algorithm that would be used by the Belle II collaboration would have be applied on real data

14

from the detector. The same decay channels that were presented in Table 3.1 were utilised for
the reconstructed events as well.

Decay Channels generated with the Belle 1T software

Decay Channel ‘ N°FSPs ‘ Motivation

Bt = DO(— K*tn—n0)r+t 5 benchmark tag side on T.Keck’s
PhD thesis on FEI

Bt > D (»n rtrt)rtat 5 two 3-body decays, overlapping
spectra, same FSPs)

Bt — D(— K*tn= 79 p(— m—7°) 7 resonances not dealt by FEI, in-

cludes 4 photons that need to be
assigned to the correct 7°

Bt = DY(— Ktn 1w(— 7ta—7%)7rt 9 Three 3-body decays, reso-
nances not dealt by FEI

Bt = D= (= r ata0)atrtqa0 9 two 4-body decays

Bt = D(— Ktn—m%ety, 5 semileptonic decay to demon-

strate semileptonic tagging

Table 3.1: Decay channels produced with the Belle II software for this work. All the 7% decay to
two photons. All the datasets contain the decay channel presented here and it charge conjugate

3.5 Metrics and Hyperparameter Optimization

One of the most important aspects of all the experiments was the set of metrics that were
used to evaluate the performance of the model. The two very basic metrics that one monitors
during a typical DL application is the overall accuracy of the predictions per epoch and the
average loss per epoch. In the particular case of the LCA matrix prediction an ordinal accuracy
was deployed. A simple example makes very clear the need for such a metric. Assuming that
the target value of an LCA entry is 1, it is worse to mistakenly predict the value 3 for this entry
than the value 2. Thus the ordinal accuracy increases the penalty for an incorrect prediction
according to how far away from the actual value it is. Another important metric is the percentage
of perfectly predicted LCA matrices, since this corresponds to perfectly predicted decay trees.
In order to evaluate the quality of the predictions, the metrics M1P, M2P, M3P, M4P, M5P and
BadLCA were used. M1P means 1 pair of wrong predictions, M2P 2 pair of wrong predictions
and so on. BadLLCA is the percentage of predicted LCAs with more than 5 wrong pairs. These
metrics correspond to pairs of mistakes, as the symmetry of the predicted matrix is imposed at
the latest stage of the architecture.

In Section 2.4 it was discussed that the hyperparameters of the model are critical for the
performance of any experiment. Especially the ones that are related to the architecture of the
model, such as the number of layers, or the number of hidden nodes that defines the size of
the layers, are of significant importance and their tuning is computationally very expensive.
For this work the Hyperparameter Optimization (HPO) software Optuna was utilized in order
to find the optimal configuration for the model. [42] Optuna tries to maximise/minimise an
objective function in a particular hyperparameter space that has been defined by the user. Even
though searches conducted with Optuna are not exhaustive they have the advantage of offering
a dynamic construction of the search space, an efficient pruning algorithm that terminates
unpromising trials and in general flexibility to run optimizations. All the HPOs and the trainings
were carried out using four GeForce GTX TITAN X 12GB GPUs. Only the depth studies
discussed in section 4.3 were made with eight Tesla V100 32 GB GPUs

15

4. Results and Discussion
4.1 Phasespace

4.1.1 Proof of Concept

The first dataset used, introduced in section 3.4 and shown in fig. 3.5, serves as a proof of
concept. The model used was shallow ! and not rigorously optimised. The hyperparameters
were chosen instead from reasonable initial values. Figure 4.1 shows the performance of the
model on the validation set during the first successful training. The percentage of the perfectly
predicted LCAs is relatively low as expected for a first attempt. Moreover the training suffers
from overtraining as can be seen in Figure 4.2: after several epochs the model begins memorising
the training set, leading to worse predictions on the validation set.

1.0-
0.8-___..III
> I I I B mbad
@ 06 mE m5
= m>p
o o s map
O 04-
< mEm m3p
m2p
0.2- B mlp
perfect
oo-W R ERESSESSESSLSEEESE S S S EEERE
1 35 7 91113151719212325272931333537394143454749

Epochs

Figure 4.1: Proof of concept training results on the 303 dataset

4.1.2 First Level Reconstruction

The next step was to investigate the capacity of the network in performing first level recon-
struction. First level reconstruction includes graphs no deeper than 3 generations, like that
presented in fig. 3.5. Table 4.1 shows the weighted accuracy, the loss and the percentage of per-
fect LCAs for the training and the validation set of the numerous datasets that were generated.

The networks trained on these datasets are still shallow. The only hyperparameters that are
tuned are the number of hidden nodes, the batch size, the learning rate, and the dropout rate.
The performance of the trainings drops as a function of the number of possible combinations of
the FSPs and the complexity of the intermediate particles’ decays. For example even though
the number of FSPs is the same for the datasets 205 and 304 there is a clear drop in the
performance. This is due to the 205 dataset containing a trivial 2 body decay which the model
learns to recognise quite easily, and the number of FSPs permutations scales according to the

equation
n!
C(n,r)="C, =

(n—nr)lrl’
where n is the number of FSPs and r and n —r are the number of particles that share a common
mother. Another evident problem is the overtraining that occurs in all datasets. There are

!Shallow in this case means that there’s only 1 block of layers and 1 MLP in the list of MLPs as shown in
Figure 3.4

16

0.45- —— Training
—— Validation

0 10 20 30 40 50
Epochs
Figure 4.2: Demonstration of overtraining during the proof of concept training. The loss for
the training set decreases, but the loss for the validation set eventually increases as the model
learns the statistical fluctuation of the training set. The optimal training is one where the loss
and all the metrics of the training and validation sets are evolving in the same manner.

First Level Datasets and Respective Results
Set | OAcc(T) | OAcc(V) | CEL/(T) | CEL/(V) | PrfLCA(T) [PrfLCA(V)
202 | 0.981 0.973 0.021 0.060 0.873 0.840
203 | 0.963 0.938 0.142 0.146 0.712 0.602
204 | 0.991 0.971 0.084 0.079 0.929 0.852
205 | 0.992 0.978 0.036 0.077 0.939 0.857
303 | 0.960 0.894 0.053 0.277 0.598 0.291
304 | 0.936 0.833 0.085 0.483 0.370 0.087
305 | 0.924 0.841 0.151 0.382 0.278 0.090
404 | 0.928 0.805 0.081 0.514 0.272 0.060
405 | 0.910 0.820 0.135 0.421 0.164 0.043
505 | 0.849 0.831 0.280 0.342 0.144 0.112

Table 4.1: OAcc: Ordinal Accuracy, CEL: Cross Entropy Loss, PrfLCA : Perfectly Predicted
LCAs. The performance of the model drops as a function of the FSPs combinations. (T) stands
for Training set, while (V) for Validation set.

several possible explanations for why the overtraining occurs. The simplest solution to prevent
the observed overtraining is to use more typical DL regularization. Another explanation is that
the model is not deep enough to learn useful representations of the data, but only manages
to learn statistical noise at this point. Evidently, another way to interpret this performance is
the need for more training data as the amount of data strongly affects the capacity of any DL
model. The findings of this work, presented in the following sections, indicate that the depth of
the model played a major role in the overfitting during a training.

4.1.3 Mix of datasets 1

Any algorithm developed for Belle II should be applied to generic Y (4S) decays in the long
term. This means that the model should be able to recognise and predict different decay trees and
decay chains at the same time. The simplest way to demonstrate this is to mix different datasets
that contain the same number of final state particles. This limitation arises from the requirement

17

that all the LCA matrices of the initial DL model must be of the same size. Therefore predicting
LCA matrices of different dimensions at the same time needs extra manipulation 2. Figure 4.3
shows the performance on the validation set for a dataset containing 6 FSPs that emerged from
the mixing of the respective datasets used in Table 4.1. The networks built for these trainings
are tuned using Optuna and optimise the number of blocks of layers and size of MLPs shown
in Figure 3.4. No significant overtraining is reported for these experiments. The key difference
between these trainings and the first level reconstruction presented in Section 4.1.2 is the depth
of the model. This is a strong indication that the first models had limited prediction capacity
due to their smaller size. Similar plots are presented in the Appendix for 7 and 8 FSPs. The
training for 8 FSPs is worse than the two other cases, though it appears likely that with a more
exhaustive HPO a similar performance could be achieved.

1.0-
0.8-

I mbad
0.6- m5p

m4p
m3p

o
IS

Accuracy

mlp

I m2p
0.2- IIII___-_ |
BERGEEERSEREEER perfect
CANNNELRRRRRRNRRRananiin
715 91317
Figure 4.3: Performance on the validation set for dataset contatining 6 FSPs

4.1.4 Noisy data

Verifying the model’s robustness on data with noise is critical. For real experiment data
the detectors always introduce uncertainties (e.g. resolution effects) [43], therefore conserved
quantities such as energy or momentum do not add up exactly. To simulate this random noise
was introduced to the data. In the preprocessing stage for every momentum component of every
particle in all events a Gaussian distribution is generated with the mean the actual momentum
value and with variance of 1%. Note that the smearing factor for the Belle II tracking detectors
is only 0.1% [9], so the scenario created in this experiment is more unfavourable 3. A value
is picked up randomly from this normal distribution and then the energy is recalculated as
E=p2+ pg + p? 4+ m? since the masses of all the particles are known. Figure 4.4 shows the
performance of the network on this noisy data situation for the 6 and 8 particles datasets. No
significant discrepancies between the smeared and the unsmeared datasets is seen, which is a
straightforward demonstration that the network is robust to random noise. The last step in
this series of noisy data experiments was to save a model that was trained on unsmeared data
and test it on a sample of smeared data. For 6 FSPs the testing performance of the model
is: Acurracy:0.9756, PerfectLCA: 0.8891, performance similar to the trainings presented above.
This attempt is mainly driven by random discrepancies that may occur between the MC samples
that any DL model is trained on and the real data that it would be applied to.

2These techniques are discussed in more detail in section 4.1.6
3However this is an over-simplification since the uncertainties in Belle II events are correlated

18

0.95-

0.90-
>
©
© 0.85- — <
8 v \/J\/v\-‘ﬁw \J\/\’ vy
u] \/\/"\/“"\/"JV\' VT :
< 0.80- o~ —— obparticles
/] —— 6particles_smeared
0.75- = —— 8particles
8particles_smeared
0.70- . i i i i i
0 20 40 60 80 100
Epochs

Figure 4.4: Comparison of the model’s accuracy on smeared and unsmeared data for the 6 and
8 particles datasets.

4.1.5 Missing Particles

The next step was to demonstrate that the model is able to handle events with missing parti-
cles. These events correspond to semileptonic decays, i.e. events where one or several particles
have not been detected. There is of course a limit to the least necessary kinematic information,
from both signal and tag sides, to reconstruct an event, however a detailed discussion on this
topic is out of the scope of this thesis. The following results serve as a demonstration that the
model presented in this thesis can handle events with missing kinematic information. Figure 4.5
shows the performance of the model on the validation set for the 303 dataset when one daughter
particle has been randomly removed from one intermediate particle. In the Appendix results
are shown for the cases where two daughter particles have been removed from one intermediate
particle and when one daughter particle has been removed from each intermediate particles. It’s
observed that for the first two cases the performance of the model is similar to the one for the
mix of dataset in section 4.1.3. This indicates that the network is robust to missing particles
and warrants further investigation.

1.0-

o
o

I mbad
m5p
l m4p
i m3p
TRRR m2p
0.2- 'lll.ll-' mlp
"II "|||IIIIIII|III|I|| pertect
0.0-" &
135 7 91113151719212325272931333537394143454749
Epochs

o
o

Accuracy
o
»

Figure 4.5: Performance of the model on the 303 dataset when 1 FSP has been removed.

19

=
o

0.8-
9 B mbad
e B m5
= p
: [mdp
;:dOA_III — 3
...l m2p
02IIIII THHHRHETHT m1p

fect

A - -

1 5 913172125293337414549535761656973778185899397.0105

Epochs

Figure 4.6: Performance on the Validation set for all the datasets.

4.1.6 Mix of datasets 11

The final experiment that was conducted using the Phasespace datasets was to train on a
mix of all the datasets that were presented in Table 4.1 together. In order to do that, the
problem of training on datasets with different number of FSPs needed to be overcome. Padding
is a technique traditionally used in convolutional neural networks or other ML techniques to
artificially increase the size of different sized inputs and fit them in a multidimensional array.
Zero padding works by adding rows and columns of zeros when a particular dimension of a
tensor needs to be extended. For instance the LCA matrix for the 505 dataset is a 10 x 10
matrix whereas the one for the 305 is a 8 x 8 matrix. For the latter there are two extra rows
and columns of zeros added to meet the dimensions of 505. These extra zero elements are
ignored in the learning procedure using a technique called masking, thus they don’t affect the
loss calculation and the weight update, nor do they interfere with the validation metrics such as
the Perfect LCA. The same principle is followed for all the datasets and for the initial adjacency
and feature matrices as well.

Figure 4.6 shows the results for a mix of all the datasets presented in table 4.1. The percent-
age of the Perfect LCAs is lower than the previous tests, however almost 75% of the predictions
are perfect. The various successful tests on the phasespace datasets, including this last one
which demonstrates that the model can handle different kind of input datasets with different
FSPs, warrant the proceeding to Belle II datasets, with an ultimate goal of training on generic
B-meson decays.

4.2 MC Truth

4.2.1 Demonstration on first MC truth channels

Table 3.1 in section 3.4 shows the decay channels for the tag sides that were produced using
the Belle II software. Figures 4.7a and 4.7b show the model performance on the validation
set for the benchmark Belle II tag side and the semileptonic B-meson decay channel. The
percentage of perfect LCA predictions is almost 95% which is higher than most of the Phasespace
datasets. Moreover the network achieves a very good performance, especially for the BT —
DY(— K+r— 7%zt very early during the training. This is well expected as the kinematic
scenario created in the Phasespace datasets is more troublesome than the one in the first Belle
IT datasets. The FSPs in the Belle II datasets differ in their masses in multiple orders of

20

=
o

0.8-
> B mbad
@ 06 M5
e mop
o
g0 B m3p
m2p
(l2|\ e milp
| [perfect
o2l lElsEsscsEEN-nm=
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Epochs
(a)

1.0-
0.8-
> | l B mbad
© %% m g B m5p
||
S 0 n i
< a=n 1 = m3p
EliRR m2p
= _ perfect
0.0-8 - Illiﬁi;i
135791113151

719212325272931333537394143454749
Epochs

(b)

Figure 4.7: Performance on the MC truth validation datasets for the (a) B* — DO(—
Ktr= %7t and (b) BY — DY(— K+7~7%)e* v, decay channels.

magnitude for the cases of electrons and photons. This means that there is a lot separation
information embedded in the 3-momenta of the FSPs, event though their momentum spectra
are overlapping, that leads to efficient LCA predictions. The training performance for the rest
of the MC datasets in table 3.1 is given in the Appendix.

4.2.2 Mix of datasets II1

Following the same methodology as for the Phasespace datasets a mix of all the different decay
channels is used to train the model. Figure 4.8 shows the training performance of the model
on a mix of all the B-meson decay channels from table 3.1. The performance is significantly
lower than in the case of Phasespace dataset, however this is something well expected. Some of
the kinematic scenarios created in the Belle II channels and included in this mix of datasets are
more difficult to handle, as they contain 9 final state particles, deeper decay trees and numerous
photons, originating from 7%s, that probably make the predictions of the model more difficult.

21

=
o

0.8-
- B mbad
@ 06 = m5
et mop
5 0.4 — mip
U . -
< B m3p
m2p
02-B m mlp
. EEmm R RN
eEREEEEEEEEREEEER perfect
00-1 lllllllll-llllllllllllll-
1 5 913172125293337414549535761656973778185899397101

Figure 4.8: Performance on the Validation set for all the Belle IT datasets.

4.2.3 Reconstructed events

Results for the trainings on reconstructed events after the detector simulation using the Belle
IT software have not been included in this thesis. The firsts results are very promising and no
significant discrepancies between these trainings and the ones on MC truth samples have been
observed. In addition, the good performance on the noisy Phasespace datasets presented in
section 4.1.4 is also an indicator that the model will be able to handle Belle II reconstructed
events with detector related noise.

4.3 Depth Studies

The last study conducted for this thesis was aiming to identify potential patterns on how
the size of the model scales with respect to the number of FSPs. For that reason optuna was
deployed to map the hyperparameter space. The HPO performed was a grid seach to explore the
whole hyperparamer space. Contrary to the rest HPOs in this thesis, these experiments used 8
Tesla V100-PCIE GPUs of 32 GB each for a grid search optimization. The hyperparameter space
that was mapped included: number of layers : 1 and 2 — 72 with steps of 4, number of blocks
: 1 and 2 — 10 with steps of 2, and dropout rate: 0.25,0.4,0.5. The latter was included in the
search since DL models with more learnable parameters have the tendency to overfit more [37].
In fig. 4.9 contour plots are presented, for the number of layers and the number of blocks,
for the phasespace datasets. A trend towards lower number of blocks is reported from these
experiments. This is something logical as multiple transitions from node to edge representations
and vice-versa probably lead to loss of information or at least they don’t favour better predictions
4 Besides that no final conclusions can be made regarding the number of learnable parameters
of the model. However, since the combinatorics problem is an open problem in both DL [44]
and HEP [45], these initial findings warrant further investigation in the future, as a potentially
larger network could provide fast and efficient solutions to other HEP related problems too,
where the number of possible combinations is large.

4The details about these transitions are presented in the Appendix.

22

Objective Value

Objective Value
—— 08 =on
0.72
o o
3 3
& 08 &g 07
I:I I:I
0.68
0.66
0.7
0.64
-
2 4 6 8 10
n_blocks n_blocks
(a) 202 (b) 203
Objective Value Objective Value
o8
——o0n
072
4] 4]
]]
H 07 H 0.75
I:I I:I
0.68
0.66 07
0.64
2 4 6 8 10
n_blocks n_blocks
(c) 6 particles (d) 7 particles
Objective Value Objective Value
[] 0.75
0.72
“E’. “E’. 0.74
& 07 &
I:I I:I
07 073
n_blocks n_blocks
(e) 8 particles (f) 405

Figure 4.9: Contour plots for the number of layers and blocks for the phasespace datasets. The
objective value is the validation accuracy and is indicated by the shade of blue.

23

5. Conclusion and Outlook

This master’s thesis has covered two major topics.

Proof of concept of a graph based approach for decay tree reconstruction. This work
introduces one of the first attempts to reconstruct particle decays from example using graphs.
The contribution of this work on the topic is twofold: an end-to-end Deep Learning solution
is proposed for reconstruction of particle decays in Belle II | and it is demonstrated that the
Lowest Common Ancestor matrix contains the necessary information to capture the structure
of a decay tree, by using as input only the 4 momentum of each particle. Two key advantages of
the proposed algorithm are that it doesn’t rely on the intuition of the developers for the choice
of which physical processes to exploit for efficient B-tagging and that no Physics expertise are
needed for the determination of the appropriate input features.

Demonstration on numerous kinematic scenarios. The proposed model has been tested
on generic phasespace decays, including complex n-body decays, decays with missing particles,
and decays with random noise. The majority of the results are very promising. Moreover it
has been shown that the model achieves similar, or even better performance in some cases, on
datasets produced with the Belle II software. The most important results of this work are: the
75% of perfect tree predictions for the mixture of all the phasespace datasets, which indicates
that the model can be used efficiently on unbalanced data such as generic B-meson decays,
and the 95% of perfect predictions on the benchmark decay tree used by Belle II for B-tagging,
which suggests that the model has the potential to compete with and even supersede the current
algorithm.

This work is the first study on this particular graph approach as part of an effort to replace the
current decay tree reconstruction algorithm FEI used by the Belle II collaboration. Therefore
there are numerous further steps to be made in the development. Firstly, the model needs to be
trained and evaluated on generic B-meson MC decays, after the fist demonstration on a handful
of them in this work. Secondly, the model needs to be tested extensively on events where the final
state particles have been reconstructed after the simulation of the Belle II detector. The initial
findings of this work indicate that the model will be able to achieve similar performance such as
those on the MC truth samples. Thirdly, it is required to investigate how efficiently the Belle 11
software can identify the intermediate particles that are implicit in the decay tree structure
predicted by the LCA. However since the 4 momenta of the final state particles are known, if
the tree structure is correctly predicted it is likely that the identification of the intermediate
particles and B-mesons will be trivial. Another important test is to explore to what level the
Belle II software can correct wrong predictions that are made by the model. This would allow
its predictive capacity to be widely extended if for example the Belle II software could alter
predictions with few mistakes that could potentially be valid graph trees, but invalid physical
decay processes. All these steps provide a potential pathway to making a fully fledged alternative
for decay reconstruction, that could in the long term replace the FEI.

24

Appendices

25

A. Encoder Architecture

In the following the encoder architecture is described in detail. The way the encoder works
is presented with a simple example in a pedagogical manner. For this example we consider a
dataset containing 6 final state particles and a network where each layer has 64 hidden nodes.
Furthermore in this example a shallow version of the network is presented. This means that for
the model presented in fig. 3.4 the MLP list contains a single MLP and the model has only one
block of layers.

We begin with 4 tensors that are passed to the model. The first one is the feature matrix,
a 6 x 4 tensor that contains the 4 momenta for all the particles. zdiag is a tensor used to fill
the diagonal with zeros at the end of the training. The diagonal is filled with zeros since the
diagonal of the LCA matrix should always be zero. The other two tensor are used to move from
node features to edge labels and vica-versa.

input

input.1 rel_rec rel_send zdiag

Figure A.1: inputs to the forward method of the network

&£
'

Linear[fc2]

!
b

35 input.3
36
37

input Linear[fc1]
Figure A.2: The first mlp1:

The first MLP creates different representations for the node features and for every node.The
number of these representations is set by the user when defining the model by the parameter
nhid. In this particular training nhid = 64 as mentioned above, however the number of repre-
sentations is a hyperparameter of the model. A hyperparameter optimization will give us the
optimal number of hidden representations. The example below shows exactly what we mean by
representations of the node features (4 momenta):

Pe1 Py1 Pz1 En wig Wi - Wied TL1T21 ctt Te4l
Px2 Dy2 D22 Es o w1 W22 v W2e4| T2 ottt T642
: : : : w31 w32 - W364 : : : :
Dz6 Dy6 P26 L6 W41 W42 - W4e4 Tie ottt Teds

Where r; ; is of course the ith representation of the jth node as follows:

Tij = PajWii + Pyjw2i + Pzjws + Ljwa

26

After the first MLP we have moved to a space of higher dimensions, where each node is described
not by 4 numbers anymore, but by 64 different representations of the 4 components of the 4-
momentum of each particle.

At this point we need to move from node representations to edge representations. To do
this we use the two tensors rel_rec and rel_send that we gave to the network as input. rel_rec
and rel_send are simply two 36 x 6 tensors that keep track of the connections inside the fully
connected graph. The zeroth dimension is 36 since in a complete graph of 6 nodes has 36 edges.

1 0 0 07 1 0 0 07
100 0 010 0
1 00 0 0 0 1 0
100 0 0 0O 0
1 00 0 0 00 0
relrec= |1 0 0 0| rel_send= |0 0 0 1
010 0 1 00 0
010 0 010 0
000 ---1 000 ---
000 --- 1 000 --- 1

Now we multiply those matrices with the output of the mlpl and we essentially copy the
representations of each node six times. This is very clear if someones considers the dimensions
of the matrices:

rel_rec X x = receivers
(36 x 6) x (6 x 64) = (36 x 64)

(710 roq o Tean] (711 roq o+ Tean]
1,1 T21 cc Te4,1 1,2 722 - T64,2
) 1,1 T21 v Te4,1 1,3 72,3 0 T64,3
recetvers = senders =
T1,6 DY DY ’]"6476 ’,"‘175 “ . .« T64,5
T1,6 PEEEEY PEEEEY r6476 _’,"1’6 “ e “ e T64,6_

Next we concatenate the receivers and the senders and we end up with a 36 x 128 tensor.
This tensor is the inputb in figure A.3 and is the basis of our label prediction. At this moment
we can think of it as a matrix containing 128 different representations for all the 36 edges. Of
course at this point these representations are nothing more but some copies of the different
representations of the 4 momenta of the nodes that were created by the first MLP. However the
edge features is something that will be built on top of this .

The 2nd mlp that follows the node2edge layer is extremely important as it starts to mix
representations that originate from different nodes and thus it gives meaning to the edge rep-
resentation that we want to achieve. This happens in a pairwise manner and is very easy to

27

47
48
26
QF*QE,
senders1 receiversi
input input

By,

41 x.1

&
8

Figure A.3: node2edgel: The first passage from nodes to edges happens here.

understand if we consider what kind of representations this 36 x 64 matrix contains

[1(x64) 1(x64)]
1(x64) 2(x64)
1(x64) 3(x64)
1(x64) 4(x64)
1(x64) 5(x64)
1(x64) 6(x64)
2(x64) 1(x64)
2(x64) 2(x64)
2(x64) 3(x64)
2(x64) 4(x64)
2(x64) 5(x64)
2(x64) 6(x64)
6(x64) 5(x64)
6(x64) 6(x64)]

The entries of the matrix above are just indices that represent the node from which the repre-
sentations originate from. For example the entry [2,0] contains 64 node feature representations
of particle’s 1 four-momentum while entry [2, 1] contains 64 representations of particle’s 3 four-
momentum. This matrix is passed to an MLP and the resulting tensor after the linear trans-
formation is a mixture of representations from different node features. Now all the information
that could lead us back to the original node features is lost. It is probably fair to say that the
output of the mlp2 is a tensor that contains 64 representations for the 36 edges of the graph. We
say that it contains edge features since these entries are a mixture of entries of different node
attributes.

At this point we create a residual connection as showed in Figure A.5 to keep those first
edge representations and use them later. It has been reported that networks start to have worse
performance when they get too big. This problem is known as the vanishing gradient problem.
Residual connections solve this problem. The tensor that enters the ‘“incoming’ node at Figure
A.5 has the following shape, where these entries are again some indices to help us understand

28

Figure A.4: With the mlp2 layer we move from node representations to edge representations

better the situation.

(6,5)(x64)
(6, 6)(x64)

For example the entry [6,0] contains 64 representations for the edge between particles 2 and 1.

The edge2node layer gathers all the nodes representations of edges that end up in a specific
node. This becomes possible by multiplying incoming = rel_rec.t() x = There is also a nor-
malization step where we have : incoming = incoming/incoming.size(1). After the edge2node
layer we have ended up with something that looks like a node representation matrix again which
is a (6 x 64) tensor. It seems like we picked some information from all the neighbors with the
above procedure and then we created a new node representation. This step is the reason that
we say that our approach is a graphical one, since we aggregate information from neighboring
nodes.

We pass this output to a third mlp and it seems that it only creates deeper representations of
the same information and then from a second node2edge layer to move back to the edge feature
space. Everything we described above for those layers stand for here as well.

Like before after the node2edge layer we have a 36 x 128 tensor but this time we concatenate
it with the skip connection we established earlier. Notice that the residual connection was
established after the 2nd mlp that followed the first node2edge layer. Finally we use a last mlp
layer to reduce the dimensions and a last MLP that makes the predictions for the n classes (3
in our first example) These predictions are turned into probabilities with the help of a Softmax
or LogSoftmax function.

After this last layer we use the zdiag matrix to fill the diagonal manually with zeros and we

29

Cox36

input.9
e,
68
8
[67
66
\ . e
Incoming
yﬁrp 9&9{
64 58 X2
input 59
60

£
&
£

Figure A.5: The edge2node layer moves us back to node representations

L

inpﬁt.‘)

Figure A.6: The mlp3 creates deeper representations of the reconstructed node features

input.13
87 P
88
A7
£ 95',{%
edges2 x_ski
84 g 62 P
85
e
%,
senders2 receivers2
input input
&
&
D6,
78 X

Svs:

Figure A.7: The second node2edge layer moves us back to edge representations

also impose symmetry to our predictions, since the LCA matrix is symmetric by default. These
two last steps improve the quality of the predictions.

30

Linear[fc5]

inpl‘}t.Q

Figure A.8: mlp4 is the last mlp layer

Encoder

4

Linear[fc_out]

k1
%
%

Figure A.9: The last linear layer named fc_out makes the predictions for the classes.

31

B. Training Hyperparameters

Best tuning for mixed datasets

Set \ bsize \ Ir \ dropout ‘ nhid ‘ nBlocks | nMLPs
6par 16 | 0.0011 [0.000744 [128 8 14
Tpar 16 | 0.000072 | 0.308 | 128 8 4
8par 16 | 0.000185 | 0.133 80 4 14
Bt = DO(— K*tn—n0)r+t 32 0.001 | 0.008520 | 512 4

Bt — DO(— K+7r_7ro))e+ue 32 0.001 | 0.008520 | 512 4

Bt > D (—»n atat)rtn 64 | 0.00062 | 0.1883 | 128 4 12
Bt = DO(— Ktn~n0)p(— 77) 16 | 0.00036 | 0.0624 | 128 4 12
Bt = DO(— Ktr 70)w(—)t | 16 | 0.000485 | 0.0304 | 128 4 12
Bt = D (»n rm atnl)n + + 0 64 | 0.00117 | 0.00551 | 256 4 12
all Phasespace 128 0.001 0.25 1024 2 4
all Belle 128 | 0.001 0.25 | 1024 2 4

32

C. Extra Results

33

=
=}
]

1

0.8 -
> BN mbad
@ 06 == mS5p
—
8 B mdp
éEJ 0.4 BN m3p
m2p
0.2- e milp
HiHinhl = ~-
1 9 17 25 33 41 49 57 65 73 81 89 97105113121129137145153
Epochs
Figure C.1: Performance on the validation set for 7 FSPs
1.0-
0.8-
= | |
506 -.-'.--'II-I-..-..-...--mbad
G B mS5p
8 B mdp
éEJ 0.4 BN m3p
m2p
0.2- B mlp
perfect
0.0 - 5% 5% A AR ORR AR ORRORE A AT OAR AR AR AR A A AR AR A A AR A A A AR
1509 0

131721252933374145495357616569737781858993971
Epochs

Figure C.2: Performance on the validation set for 8 FSPs

1.0-
0.8-
> B mbad
%06 | 5
Fd mop
304 s map
Soa-
3 : = m3p
m2p
]
. N "
0.2 Bfipg 1L T 1111 e milp
| n = perfect
go-MmEEnlslsnnlnnNannnlalnn:
1 35 7 91113151719212325272931333537394143454749

Epochs

Figure C.3: Performance on the validation set for the 303 dataset with 2 missing particles on
one side

34

1.0-

0.8-
aOGI B mbad
c i n s_ 1 B m5p
o n |] m N n m
3 I g ! TRl iin, =5 F mm mgp
(@]
g0 W= m3p
m2p
0.2 B mlp
perfect
0,0—..!.— -T -F?-.TT.—.I—-TT—.-
135 7 91113151719212325272931333537394143454749
Epochs

Figure C.4: Performance on the validation set for the 303 dataset with 2 missing particles from
two intermediate particles

1.0-
0.8-
> B mbad
© 06 mE m5
© I m5p
S 04 e L
< I B m3p
1 5 m2p
0.2-
II-I---"- 11 | | -ml::)
e ECREESEESEER perfect
am,,,l,llllllllllllllllllli
1 35 7 91113151719212325272931333537394143454749
Epochs

Figure C.5: Performance on the validation set for Bt — DO(— K7~ 70)p(— 7~ 7Y)

1.0-
0.8-
> i B mbad
Q06 -
5 - mp
S LR f I i e mdp
< Bl m 8 b mE m3p
0.2- e mlp
perfect
0.0-W BB BB WS i EENEHNE
135 7 91113151719212325272931333537394143454749
Epochs

Figure C.6: Performance on the validation set for BT — DO(— K+tr = n0)w(— 7t77%)xt

35

=
o
:

0.8- =
B = - = . B
> =Ngn | mm mbad
& 06" | | n
© [| I BN mb5p
—
g0 B m3p
m2p
0.2- s mlp
perfect
135 7 91113151719212325272931333537394143454749

Epochs

Figure C.7: Performance on the validation set for BY — D~ (— m~a - nt70)ntat70

1.0-
0.8-
[|
> B mbad
@ 06" M5
e | | mop
3 | _-- = Eml == ERRE k12
20 | EE R EREE © mmm m3p
m2p
0.2- e milp
perfect
135709 1113151719212325272931333537394143454749
Epochs

Figure C.8: Performance on the validation set for Bt — D~ (— 7 ntat)rtrt

36

Bibliography

[1]
2]

J. L. Hewett. The standard model and why we believe it, 1998.

Makoto Kobayashi and Toshihide Maskawa. CP-Violation in the Renormalizable Theory
of Weak Interaction. Progress of Theoretical Physics, 49(2):652-657, 02 1973.

Mark Thomson. Modern particle physics. Cambridge University Press, New York, 2013.

Charlie Wood. Why do matter particles come in threes? a physics titan weighs in. Quanta
Magazine.

John Ellis. Physics beyond the standard model. Nuclear Physics A, 827(1-4):187c—198c,
Aug 2009.

Kazunori Akai, Kazuro Furukawa, and Haruyo Koiso. Superkekb collider. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 907:188-199, Nov 2018.

T. Keck, F. Abudinén, Florian U. Bernlochner, R. Cheaib, S. Cunliffe, M. Feindt, T. Ferber,
M. Gelb, J. Gemmler, P. Goldenzweig, and et al. The full event interpretation. Computing
and Software for Big Science, 3(1), Feb 2019.

E Kou, P Urquijo, W Altmannshofer, F Beaujean, G Bell, M Beneke, I I Bigi, F Bishara,
M Blanke, C Bobeth, and et al. The belle ii physics book. Progress of Theoretical and
Experimental Physics, 2019(12), Dec 2019.

The Belle II collaboration. Belle ii technical design report, 2010.

Thomas Keck. Fastbdt: A speed-optimized multivariate classification algorithm for the
belle ii experiment. Computing and Software for Big Science, 1, 12 2017.

Thomas Keck. Machine learning algorithms for the Belle II experiment and their validation
on Belle data. PhD thesis, Karlsruher Institut fiir Technologie (KIT), 2017.

Thomas Keck. Machine Learning at the Belle II Experiment. Springer Theses. Springer
International Publishing, 1 edition, 2018.

Dan Guest, Kyle Cranmer, and Daniel Whiteson. Deep learning and its application to lhc
physics. Annual Review of Nuclear and Particle Science, 68(1):161-181, Oct 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’12, page 1097-1105, Red Hook,
NY, USA, 2012. Curran Associates Inc.

Diana Militaru. New trends in machine learning for speech recognition. 06 2015.
Felix Stahlberg. Neural machine translation: A review, 2019.

Swakkhar Shatabda, Shadma Shadab, Md Khan, Nazia Neezi, and Sheikh Adilina. Deep-
dbp: Deep neural networks for identification of dna-binding proteins. 11 2019.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey
of autonomous driving: Common practices and emerging technologies. I[IEEE Access,
8:58443-58469, 2020.

37

[19]
[20]
[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]
[34]

[35]

[36]

[37]

Char C. Aggarwal. Neural Networks and Deep Learning.
Tobias Glasmachers. Limits of end-to-end learning, 2017.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives, 2012.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323:533-536, 1986.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu.
A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks
and Learning Systems, page 1-21, 2020.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications, 2018.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification, 2019.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal Self-Attention Network
for Graph Classification. arXiv preprint arXiv:1909.11855, 2019.

Rui Wang, Bicheng Li, Shengwei Hu, Wenqgian Du, and Min Zhang. Knowledge graph
embedding via graph attenuated attention networks. IEFE Access, 8:5212-5224, 2020.

Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D, 101(5),
Mar 2020.

Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghyun Cho, Kyle Cranmer, Gilles
Louppe, and Gaspar Rochette. Neural message passing for jet physics. 2017.

Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2016.

Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. Asap: Adaptive structure
aware pooling for learning hierarchical graph representations, 2019.

Frederik Diehl. Edge contraction pooling for graph neural networks, 2019.

Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D. Yoo. Edge-labeling graph
neural network for few-shot learning, 2019.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.

Chigozie Nwankpa, Winifred [jomah, Anthony Gachagan, and Stephen Marshall. Activation
functions: Comparison of trends in practice and research for deep learning, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15(1):1929-1958, January 2014.

38

[38]

[43]
[44]

[45]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32, pages 8024-8035. Curran Associates, Inc., 2019.

Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep neural
networks in classification, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Albert Puig and Jonas Eschle. phasespace: n-body phase space generation in python.
Journal of Open Source Software, oct 2019.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the
25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2019.

Glenn F Knoll. Radiation detection and measurement; 4th ed. Wiley, New York, NY, 2010.

J. R. Caldwell, R. A. Watson, C. Thies, and J. D. Knowles. Deep optimisation: Solving
combinatorial optimisation problems using deep neural networks, 2018.

Physics Letters B, page 257-267, Jul 2017.

39

	Introduction
	Scientific Context
	The Standard Model of Particle Physics
	The Belle II Experiment
	Full Event Interpetation
	Deep Learning motivation and elements of Neural Networks
	Graph Neural Networks

	Outline of this work
	Definition of the problem and proposed approach
	Demonstration of graph-based particle reconstruction
	Neural Relational Inference for Interacting Systems
	Data production
	Metrics and Hyperparameter Optimization

	Results and Discussion
	Phasespace
	Proof of Concept
	First Level Reconstruction
	Mix of datasets I
	Noisy data
	Missing Particles
	Mix of datasets II

	MC Truth
	Demonstration on first MC truth channels
	Mix of datasets III
	Reconstructed events

	Depth Studies

	Conclusion and Outlook
	Appendices
	Encoder Architecture
	Training Hyperparameters
	Extra Results

