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Abstract

B0 → K0
SK

0
SK

0
S decay is mediated by b → sqq penguin transition within the Standard

Model. Comparison of CP-violating parameters between the penguin-dominated decays

and b → ccs decays such as B0 → J/ψK0
S provides a probe for new physics which

contributes to the b → s transition. We report a measurement of time-dependent CP

violation in B0 → K0
SK

0
SK

0
S decays, using a data set containing 198 × 106 BB pairs

collected at the Belle II experiment from 2019 to 2021. We obtain

S = −1.86+0.91
−0.46(stat)± 0.09(syst), and

A = −0.22+0.30
−0.27(stat)± 0.04(syst).

The result is consistent with the SM expectation (S,A) = (−0.70 ± 0.02, 0) based on

the measurements in B0 → (cc)K0 and the previous measurements at Belle, BaBar,

and Belle II. We have established the analysis procedure anticipating the high-precision

measurement using 50 ab−1 data to be taken at the Belle II experiment.
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0
SK
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taken at the Belle II experiment. The improvement includes the use of r bin and cos θ∗B
in signal fraction estimation to avoid the Punzi effect and the removal of a possible

peaking background component that was neglected in previous analyses.

iii



Outline

In Chapter 1 we review the mechanism of time-dependent CP violation in B-meson system

and manifest the sensitivity of B0 → K0
SK

0
SK

0
S decays to physics beyond the Standard

Model. In Chapter 2 we describe the experimental apparatus with which we have recorded

our data set, the SuperKEKB collider and the Belle II detector. In Chapter 3 we give

an overview of our measurement of time-dependent CP-violating parameters of B0 →
K0

SK
0
SK

0
S decays. In Chapter 4 we explain the reconstruction algorithm and selection

criteria for the B0 → K0
SK

0
SK

0
S decays. In Chapter 5 we describe the method to extract

the CP-violating parameters from the reconstructed and selected data, various validation

tests of the method, the result of our measurement, and systematic uncertainties in it.

In Chapter 6 we discuss on the statistical significance of the measurement, improvement

from Belle, and future prospect. We conclude the thesis in Chapter 7.
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Chapter 1

Physics motivation

The Standard Model (SM) describes fundamental interactions between elementary par-

ticles. While it is a greatly successful theory to describe most of observations, there

remain unsolved phenomena and unnaturalness such as the matter-antimatter asymme-

try problem, dark matter, dark energy, quantum gravity, hierarchy problem, and strong

CP problem. The matter-antimatter asymmetry problem indicates the existence of an

additional source of violation of CP symmetry other than the quark mixing matrix in the

SM. C and P refer to charge-conjugate and parity transformations, respectively.

We review the mechanism of CP violation in B-meson system within the SM and

that the precise measurement of CP violation can probe the additional CP-violating

phase arising from physics beyond the SM (new physics, NP) [2].

1.1 CKM matrix and Unitarity triangle

The Standard Model (SM) of elementary particles is a chiral gauge field theory with

SU(3)C×SU(2)L×U(1)Y symmetry. The interactions are described by the gauge symme-

try. SU(3)C describes the strong interaction. Because of the nonzero vacuum expectation

value of the Higgs field, SU(2)L×U(1)Y spontaneously breaks to U(1)EM . Consequently,

the SU(2)L and U(1)Y gauge bosons are mixed into photon and weak bosons, which

respectively mediate the electromagnetic and weak interaction.

The SM contains three generations of up-type and down-type quarks with the quan-

tum numbers shown in Tab. 1.1. The left-handed fields form doublets of the SU(2)L
group and the right-handed fields are singlets. The quark fields bear different U(1)Y hy-

percharges Y . The coupling between the quarks and the Higgs field is called the Yukawa

interaction. Because the Higgs field has a nonzero vacuum expectation value v, the

Yukawa interaction gives rise to the quark mass terms:

Lm = −v u′LjY u
jku

′
Rk − vd

′
LjY

d
jkd

′
Rk + h.c. (1.1)

Here, u′L,Rj and d
′
L,Rj are weak eigenstates of the quark fields of jth generation, Y u and

1



Table 1.1: Quantum numbers of the quark fields. uL(R) and dL(R) represent left-handed

(right-handed) up-type and down-type quark fields, respectively. The index j = 1, 2, 3

denotes the generation. T3 is the third component of weak isospin, Y is hypercharge, Q

is electric charge of U(1)EM symmetry.

T3 Y Q(
uLj
dLj

)
+1

2

−1
2

+1
3

+2
3

−1
3

uRj 0 +4
3

+2
3

dRj 0 −2
3

−1
3

Y d are 3 × 3 complex Yukawa matrices, and h.c. stands for Hermitian conjugate. The

terms are summed over the repeated indices. The Yukawa matrices can be diagonalized

by unitary rotations of the quark fields in the generation space, S
u(d)
L(R):

u′L(R)j = Su
L(R)jkuL(R)k, (1.2)

d′L(R)j = Sd
L(R)jkdL(R)k, (1.3)

Lm = −vuLjSu†
LjlY

u
lmS

u
RmkuRk − vdLjS

d†
LjlY

d
lmS

d
Rmkd

′
Rk + h.c. (1.4)

= −uLjMu
jkuRk − dLjM

d
jkdRk + h.c.

= −
∑

q=u,d,s,c,b,t

mq(qLqR + qRqL)

= −
∑

q=u,d,s,c,b,t

mqqq

whereMu = Su†Y uSu = diag(mu,mc,mt) andM
d = Sd†Y dSd = diag(md,ms,mb) are the

diagonalized mass matrices, uL(R)1,2,3 = uL(R), cL(R), tL(R) and dL(R)1,2,3 = dL(R), sL(R), bL(R)

are the mass eigenstates of quarks, and q = qL + qR is the Dirac field of quarks.

Using the weak eigenstates, the charged current of weak interaction is expressed as

LW =
g2√
2

[
u′Ljγ

µd′LjW
+
µ + d

′
Ljγ

µd′LjW
−
µ

]
, (1.5)

where W±
µ is the W -boson field, γµ is gamma matrices, and g2 is the coupling constant of

SU(2)L. This is also transformed by the unitary rotation of the left-handed quark fields

Su,d
L :

LW =
g2√
2

[
uLjS

u†
Ljlγ

µSd
LlkdLkW

+
µ + dLkS

d†
Ljlγ

µSu
lkdLjW

−
µ

]
(1.6)

=
g2√
2

[
uLjVjkγ

µdLkW
+
µ + dLkV

∗
jkγ

µdLjW
−
µ

]
where V = Su†Sd is a 3 × 3 unitary matrix in the generation space called the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. We redefine the weak doublets of quarks as(
u

d′

)
L

,

(
c

s′

)
L

,

(
t

b′

)
L

, (1.7)
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where the weak eigenstates of the down-type quarks relate to the mass eigenstates via

the CKM matrix: d′

s′

b′

 = VCKM

 d

s

b

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d

s

b

 . (1.8)

A 3×3 unitary matrix is characterized by three rotation angles and six complex phases.

Since the mass terms and kinetic terms of quarks are invariant under the phase rotation of

the individual quark Dirac fields, five phases of the CKM matrix are absorbed by rotating

the relative phases between the six quark fields. Thus, four parameters are left free: three

angles θij(ij = 12, 13, 23) and one complex phase δ. Defining sij ≡ sin θij, cij ≡ cos θij,

we write the matrix as

V =

1 0 0

0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13

 c12 s12 0

−s12 c12 0

0 0 1

 (1.9)

=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 .

δ is the only source of CP violation in the SM. The Wolfenstein parametrization is often

used to explicitly show the hierarchy between the mixing angles 1 ≫ s12 ≫ s23 ≫
s13 [3][4]:

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, (1.10)

s23 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣ , (1.11)

s13e
iδ = V ∗

ub = Aλ3(ρ+ iη) =
Aλ3(ρ+ iη)

√
1− A2λ4√

1− λ2(1− A2λ4(ρ+ iη))
, (1.12)

V =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (1.13)

where, λ ≃ 0.22 and A, ρ, η = O(1).

The unitarity of the CKM matrix requires
∑

i VijV
∗
ik = δjk and

∑
j VijV

∗
kj = δik.

Among the unitarity conditions, the following equation is suitable for measurement since

all terms are of equal order, O(Aλ3):

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.14)

Divided by VcdV
∗
cb, the unitarity condition is expressed as the closure of the triangle shown

3
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in Fig. 1.1, called the “unitarity triangle”. Its interior angles are given by

ϕ1 = β = arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
ϕ2 = α = arg

(
− VtdV

∗
tb

VudV ∗
ub

)
(1.15)

ϕ3 = γ = arg

(
−VudV

∗
ub

VcdV ∗
cb

)
.

The unitarity has been intensively tested by various independent measurements of the

side lengths and angles as shown in Fig. 1.2.

Measurements of CP violation in B-meson system are sensitive to the interior angles.

ϕ1 is most precisely determined through the time-dependent CP asymmetry measurement

of B0 → J/ψK0
S as explained later. ϕ2 is determined by measuring the CP asymmetry of

b→ uud decays. The isospin analyses of B → ππ, ρρ, ρπ individually determine ϕ2. ϕ3

is extracted from the interference of b→ cus and b→ ucs transitions in B → DK decays.

Since the decay modes include no penguin contribution, they provide theoretically clean

measurement of ϕ3.

1.2 Time-dependent CP violation

For a final state f reachable from both B0 and B0, there are two paths in which B0

decays to f : either directly (B0 → f) or via mixing to B0 (B0 → B0 → f). Because the

B0 −B0 mixing involves a CP violating phase, the interference of the two paths leads to

time-dependent CP violation. [6]

1.2.1 CP violation induced by B0 −B0 mixing

We consider the time evolution of B-meson system, which is initially a superposition of

B0 and B0:

|ψ(0)⟩ = a(0) |B0⟩+ b(0) |B0⟩ , (1.16)

|ψ(t)⟩ = a(t) |B0⟩+ b(t) |B0⟩+
∑
i

ci(t) |fi⟩ , (1.17)

where fi denotes any final state to which B meson decays. Aiming to obtain the expres-

sions of only a(t) and b(t), we restrict |ψ(t)⟩ to the subspace of |B0⟩ and |B0⟩, and do not

argue the evolution of decay final states. Then the time evolution of |ψ(t)⟩ is described
by the following Schrödinger equation:

i
∂

∂t
ψ(t) = Hψ(t),

H =

(
⟨B0|H|B0⟩ ⟨B0|H|B0⟩
⟨B0|H|B0⟩ ⟨B0|H|B0⟩

)
(1.18)

= M − iΓ,
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Figure 1.3: Box diagrams of B0 −B0 mixing

where ψ(t) = (a(t), b(t))T , H is the effective Hamiltonian of weak interaction, M and

Γ are Hermitian matrices, and H is a non-Hermitian matrix. M and Γ correspond

to dispersive (via off-shell intermediate states) and absorptive (via on-shell intermediate

states) parts, respectively. The B0−B0 transition occurs via the box diagrams shown in

Fig. 1.3. Assuming CPT invariance (CPT)H(CPT)−1 = H, where T is the time-reversal

transformation, we obtain M11 =M22 and Γ11 = Γ22.

The mass eigenstates of the system is given by diagonalizing H :

|B1,2⟩ ≡ p |B0⟩ ± q |B0⟩ , (1.19)(
q

p

)2

=
M∗

12 − i
2
Γ∗
12

M12 − i
2
Γ12

, (1.20)

|p|2 + |q|2 = 1. (1.21)

(1.22)

The eigenvalues correspond to the masses and decay widths of B1,2:

m1,2 −
i

2
Γ1,2 = M11 −

i

2
Γ11 ±

q

p

(
M12 −

i

2
Γ12

)
. (1.23)

We define the mean and difference of them:

m ≡ (m1 +m2)/2,

Γ ≡ (Γ1 + Γ2)/2, (1.24)

∆md −
i

2
∆Γ ≡

(
m2 −

i

2
Γ2

)
−
(
m1 −

i

2
Γ1

)
= 2

√
M12 −

i

2
Γ12

√
M∗

12 −
i

2
Γ∗
12.

Eq. (1.18) is solved as:(
a(t)

b(t)

)
=

(
1
2p

1
2p

1
2q

− 1
2q

)(
e−im1t− 1

2
Γ1t 0

0 e−im2t− 1
2
Γ2t

)(
p q

q −q

)(
a(0)

b(0)

)
(1.25)

=

(
g+(t) − q

p
g−(t)

−p
q
g−(t) g+(t)

)(
a(0)

b(0)

)
,

where we define

g±(t) ≡
1

2

(
e−im2t− 1

2
Γ2t ± e−im1t− 1

2
Γ1t
)
. (1.26)

6



Now we consider the decay of initially pureB0 orB0 meson to a common CP eigenstate

f with its eigenvalue ηf . Using Eq. (1.25), we can write the states after a proper time t

as

|B0(t)⟩ = g+(t) |B0⟩ − q

p
g−(t) |B0⟩ , (1.27)

|B0(t)⟩ = g+(t) |B0⟩ − p

q
g−(t) |B0⟩ . (1.28)

Defining

x ≡ ∆md/Γ, y ≡ ∆Γ/(2Γ), (1.29)

A ≡ ⟨f |H|B0⟩ ,A ≡ ⟨f |H|B0⟩ , (1.30)

λf ≡ q

p

A
A
, (1.31)

we find the decay rates at t to be

Γ(B0 → f ; t) ∝
∣∣⟨f |H|B0(t)⟩

∣∣2 (1.32)

= e−Γt

[(
|A|2 +

∣∣∣∣qpA
∣∣∣∣2
)
cosh (yΓt) +

(
|A|2 −

∣∣∣∣qpA
∣∣∣∣2
)
cos (xΓt)

+ 2Re

(
q

p
A∗A

)
sinh (yΓt)− 2Im

(
q

p
A∗A

)
sin (xΓt)

]
, (1.33)

= e−Γt|A|2
[(

1 + |λf |2
)
cosh (yΓt) +

(
1− |λf |2

)
cos (xΓt)

+ 2Re (λf ) sinh (yΓt)− 2Im (λf ) sin (xΓt)

]
, (1.34)

Γ(B0 → f ; t) ∝
∣∣⟨f |H|B0(t)⟩

∣∣2 (1.35)

= e−Γt

[(∣∣∣∣pqA
∣∣∣∣2 + ∣∣A∣∣2

)
cosh (yΓt)−

(∣∣∣∣pqA
∣∣∣∣2 − ∣∣A∣∣2

)
cos (xΓt)

+ 2Re

(
p

q
AA∗

)
sinh (yΓt)− 2Im

(
p

q
AA∗

)
sin (xΓt)

]
, (1.36)

= e−Γt

∣∣∣∣pq
∣∣∣∣2 |A|2

[(
1 + |λf |2

)
cosh (yΓt)−

(
1− |λf |2

)
cos (xΓt)

+ 2Re (λf ) sinh (yΓt) + 2Im (λf ) sin (xΓt)

]
. (1.37)

For neutral B meson, ∆Γ ≪ Γ and |q/p| = 1 hold to a good approximation. Then

the asymmetry of the decay rates is written in a simple form:

asym(t) =
Γ(B0 → f ; t)− Γ(B0 → f ; t)

Γ(B0 → f ; t) + Γ(B0 → f ; t)
(1.38)

= S sin∆mdt+ A cos∆mdt, (1.39)
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where we define the CP asymmetries as

S ≡ 2Im(λf )

|λf |2 + 1
, A ≡ |λf |2 − 1

|λf |2 + 1
. (1.40)

S is called mixing-induced CP asymmetry and occurs via the interference between

decays with and without net B0 − B0 mixing. A is called direct CP asymmetry and

occurs only when |A| ̸= |A|. This requires that B0 → f proceeds in more than two

different diagrams whose CP-violating phases (weak phases) and CP-invariant phases

(strong phases) are both different between the diagrams. A and S are bounded in a unit

circle by definition:

S2 + A2 ≤ 1. (1.41)

B0 is suitable for CP violation measurement because the lifetime and mixing period are

on the same order: τB0 = 1.519± 0.004 ps and ∆md = 0.5065± 0.0019 ps−1 [7].

1.2.2 CP violation measurement at Belle II

At the Belle II experiment, B0B0 pair is coherently produced via Υ(4S) vector reso-

nance, e+e− → Υ(4S) → B0B0. Because the mass of Υ(4S) is only slightly above the

BB production threshold, it decays into B+B− or B0B0 with the branching fraction

of approximately 50% each. As the BB pair preserve the charge-conjugate eigenvalue

C = −1, they cannot be B0B0 or B0B0 at the same time while proceeding with B0 −B0

oscillation. At the moment when one B (Btag) decays into a final state that tells its flavor

(for example semileptonic decays), we can identify the flavor of the other B (BCP) to be

the opposite to that of Btag based on the quantum entanglement between them.

Let us consider the explicit expression for time evolution of BCP and Btag after proper

times tCP and ttag respectively from the production. They are in a C = −1 state at the

production time tCP = ttag = 0:

|BCPBtag(tCP = ttag = 0)⟩ = 1√
2

(
|B0

CPB
0

tag⟩ − |B0

CPB
0
tag⟩
)
. (1.42)

Using Eq. (1.25), ∆Γ = 0, t+ ≡ tCP + ttag, and ∆t ≡ tCP − ttag, we obtain

|BCPBtag(tCP , ttag)⟩ =
1√
2

{
p

q
[g−(tCP)g+(ttag)− g+(tCP)g−(ttag)] |B0

CPB
0
tag⟩ (1.43)

+ [g+(tCP)g+(ttag)− g−(tCP)g−(ttag)] |B0
CPB

0

tag⟩

+ [g−(tCP)g−(ttag)− g+(tCP)g+(ttag)] |B
0

CPB
0
tag⟩

+
q

p
[g+(tCP)g−(ttag)− g−(tCP)g+(ttag)] |B

0

CPB
0

tag⟩
}

=
1√
2
e−imt+e−

1
2
Γt+

{
i sin

∆md∆t

2

[
p

q
|B0

CPB
0
tag⟩ −

q

p
|B0

CPB
0

tag⟩
]

(1.44)

+ cos
∆md∆t

2

[
|B0

CPB
0

tag⟩ − |B0

CPB
0
tag⟩
]}
.
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Eq. (1.44) confirms that the BB pair cannot be B0B0 or B0B0 at the same time (∆t

= 0). We consider the probability that BCP decays into a CP eigenstate fCP and Btag

into a flavor specific state ftag or its conjugate f tag. We define A ≡ ⟨fCP |B0
CP⟩ ,A ≡

⟨fCP |B
0

CP⟩ , a ≡ ⟨ftag|B0
tag⟩ , a ≡ ⟨f tag|B

0

tag⟩ and assume ⟨ftag|B
0

tag⟩ = ⟨f tag|B0
tag⟩ = 0 so

that the tag-side final state tells the Btag flavor. Then we obtain

|⟨fCPftag|BCPBtag⟩|2 =
1

4
e−Γt+

∣∣∣∣pqAa
∣∣∣∣2 (1.45)

×
[
(1 + |λf |2) + (|λf |2 − 1) cos∆md∆t+ 2Im(λf ) sin∆md∆t

]
∣∣⟨fCPf tag|BCPBtag⟩

∣∣2 = 1

4
e−Γt+ |Aa|2 (1.46)

×
[
(1 + |λf |2) + (|λf |2 − 1) cos∆md∆t+ 2Im(λf ) sin∆md∆t

]
.

Using Eq. (1.40), |q/p| = 1, and |a| = |a|, and integrating over tCP , ttag ≥ 0, we obtain

the decay probability for B0
tag and B

0

tag events as

Γ(ftag; ∆t) ∝
1

4τB0

e
− |∆t|

τ
B0
[
1 + S sin(∆md∆t) + A cos(∆md∆t)

]
(1.47)

Γ(f tag; ∆t) ∝
1

4τB0

e
− |∆t|

τ
B0
[
1− S sin(∆md∆t)− A cos(∆md∆t)

]
. (1.48)

In reality we use b → cud process such as B0 → D+π− as one of signatures to

tag the B0 flavor. These final states are also reachable from B0 via b → ucd process

though it is doubly CKM suppressed compared to b→ cud. It violates the assumption of

⟨ftag|B
0

tag⟩ = ⟨f tag|B0
tag⟩ = 0 and give rise to additional interference terms that changes

the ostensible CP asymmetries at permille level (tag-side interference) [8].

1.3 Measurement of sin 2ϕ1

1.3.1 Measurement of sin 2ϕ1 using b→ ccs and b→ sqq decays

Let us consider more concrete expressions of S and A for particular decays. Because the

box diagrams involving top quarks in the loop dominate the B0 − B0 mixing due to its

heavy mass, we can approximate M12 ∝ (VtbV
∗
td)

2. |Γ12| ≪ |M12| also holds because Γ12

represents the transition via on-shell intermediate states and does not include top quarks.

Then we approximate the phase factor due to B0 −B0 mixing in Eq. (1.20) as

q

p
≃
√
M∗

12

M12

≃ V ∗
tbVtd
VtbV ∗

td

≃ e−2iϕ1 (1.49)

When the decay B0 → f proceeds via a single dominant diagram with a negligibly small

weak phase, we obtain λf = ηfe
−2iϕ1 and Eq. (1.40) leads to

S = −ηf sin 2ϕ1, A = 0. (1.50)
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Figure 1.4: Tree (left) and penguin (right) diagrams contributing to B0 → J/ψK0
S

Considering a subdominant contribution,

A = r1e
iθ1eiδ1 + r2e

iθ2eiδ2 , (1.51)

we find the CP asymmetries deviate from Eq. (1.50):

S = −ηf (sin 2ϕ1 + 2r sin θ2 cos δ21 cos 2ϕ1) +O(r2), (1.52)

A = 2r sin θ2 sin δ21 +O(r2), (1.53)

where r1,2, θ1,2, and δ1,2 are magnitude, weak phase, and strong phase of each contribution,

δ21 ≡ δ2 − δ1, r ≡ r2/r1 and we assume r2/r1 ≪ 1 and θ1 ∼ 0.

Being dominated by a tree-level diagram shown in Fig. 1.4, b → ccs transitions such

as B0 → J/ψK0
S , J/ψK

0
L, and ψ(2S)K

0
S are suitable for the precise measurement of ϕ1.

The subdominant contribution from penguin diagram shown in Fig. 1.4 is loop suppressed

and doubly CKM suppressed to less than one percent.

On the other hand, penguin-dominated decays b → sqq(q = u, d, s) such as B0 →
ϕK0

S , η
′K0

S , and K0
SK

0
SK

0
S shown in Fig. 1.5 work as a probe for new physics. The

branching fraction of these decays are suppressed by the loop in the diagram to be

B(B0 → ϕK0) = (7.3 ± 0.7) × 10−5, B(B0 → η′K0) = (6.6 ± 0.4) × 10−5, and B(B0 →
K0

SK
0
SK

0
S) = (6.0± 0.5)× 10−6 compared to tree-level decays such as B(B0 → J/ψK0) =

(8.91± 0.21)× 10−4 [7]. Within the SM, they also exhibit the same CP asymmetries as

b → ccs up to small correction. However, potential interference with a NP contribution

would change the CP asymmetries as in Eq. (1.52). Thanks to loop suppression in the SM

penguin amplitude, they are sensitive to new physics. If we significantly observe either a

deviation of S from the measurements in ccs decays, a deviation of S between b → sqq

decays, or a nonzero A, it is an evidence of new physics.

As can be seen in Eq. (1.52), the presence of new physics does not necessarily change

the CP asymmetries but it depends on the phase difference from the SM contribution.

Therefore it is important to collect as many decay modes as possible to increase the

sensitivity.

Figure 1.6 summarizes the latest measurements of S and A in b→ sqq decays. While

such a signature of new physics is not yet observed, most of the measurements are still

statistically limited and leave large room for improvement.

Among the b → sqq decays, the ones involving q = u are polluted by b → u tree

process. Theoretical prediction of CP-violating parameters for these decays accompany

10



Figure 1.5: Penguin diagram contributing to B0 → K0
SK

0
SK

0
S

additional uncertainties due to the pollution. On contrary, b → sqq(q = d, s) decays like

B0 → K0
SK

0
SK

0
S are theoretically clean without the tree pollution so the CP asymmetry

is precisely predicted within the SM. For example the difference of S ≡ sin 2ϕeff
1 in

B0 → K+K−K0
S , K

0
SK

0
SK

0
S from sin 2ϕ1 is predicted to be [9]

∆ sin 2ϕeff
1 K+K−K0

S
= 0.025+0.084

−0.017
+0.004
−0.015, (1.54)

∆ sin 2ϕeff
1 K0

SK
0
SK

0
S
= 0.024+0.000

−0.000
+0.007
−0.018. (1.55)

Here, the uncertainty arising from that of ϕ3 = (58.6 ± 7)◦ is factored out and shown

separately as the second uncertainty. ϕ3 is sensitive to the CKM elements in the penguin

diagram. While B0 → K+K−K0
S involves a relatively large theoretical uncertainty due to

the color-allowed tree process, the uncertainty on B0 → K0
SK

0
SK

0
S is negligibly small. The

remaining small uncertainty will be reduced in future by improvement in ϕ3 measurement.

Experimentally, the CP violation measurement of B0 → K0
SK

0
SK

0
S is difficult because

only neutral particles emerge from the B0 decay vertex. The Belle II experiment has a

unique sensitivity to the decay because its collision energy is moderate enough to let the

K0
S ’s decay inside its vertex detector. Thanks to the large volume of upgraded vertex

detector, the reconstruction efficiency of B0 → K0
SK

0
SK

0
S decays are expected to improve

significantly.

1.3.2 SUSY phenomenology in b→ sqq

We review a supersymmetric extension of SM (SUSY) conserving R parity as an ex-

ample of new physics model. In SUSY, b → sqq acquires an additional contribution

from the diagram shown in Fig. 1.7, where the gluon-quark loop is replaced with the

gluino-squark loop. The mass matrix for squark is not flavor diagonal in general, which

allows flavor violating transitions between sbottom and sstrange in the diagram. In the

framework of mass insertion approximation, where the off-diagonal element of the squark

mass matrix is small compared to the average squark mass, the flavor-violating coupling

is described by mass insertion parameters (δdAB)23, where A,B = L,R indicates the he-

licity of corresponding quarks [11]. There are four types of mass insertion parameters:
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Figure 1.6: Measurements of CP asymmetries, S (left) and C(= −A) (right) in b → sqq

decays [10]

Figure 1.7: SUSY diagram contributing to B0 → K0
SK

0
SK

0
S

AB = LL,LR,RL,RR. As the mass insertion parameters are complex in general, it

introduces an additional source of CP violation.

Among the four types of mass insertion, (δdLR)23 and (δdRL)23 are particularly interesting

for b→ sqq. Because they require chirality flip on the gluino line, their contributions are

enhanced by the gluino mass compared to RR and LL contributions where chirality is

flipped on the quark line. Due to the enhancement, b → s transitions such as b → sqq,

b → sℓℓ, and b → sγ are sensitive to (δdLR)23 and (δdRL)23 while Bs − Bs mixing cannot

effectively constrain the parameters [12]. The enhancement also implies that the SUSY

contribution does not decouple, or it is not suppressed even if the SUSY particles are

heavy. As of today direct searches at the LHC have excluded gluino and squark masses

up to around 2 TeV but indirect searches using b → s transition could shed light to

them [13].
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Though the experimental input are not up-to-date, the deviation in the CP asymme-

tries of B0 → ϕK0
S , π

0K0
S , η

′K0
S , and ωK

0
S due to SUSY was predicted to be potentially as

large as O(0.1) [12]. Interplay with CP violation measurements of Bs → ϕϕ,Bs → ϕη′,

and B0 → K0
SK

0
S can also provide probes to the SUSY [14].

1.3.3 Status of measurements of CP violation in B0 → K0
S
K0

S
K0

S

Belle, BaBar, and Belle II have measured the CP violation in B0 → K0
SK

0
SK

0
S to obtain

the following results:

S = −0.71± 0.23± 0.05

A = 0.12± 0.16± 0.05

}
Belle (711 fb−1) [15] (1.56)

S = −0.94+0.24
−0.21 ± 0.06

A = 0.17± 0.18± 0.04

}
BaBar (426 fb−1) [16] (1.57)

S = −0.82± 0.85± 0.07

A = −0.21± 0.28± 0.06

}
Belle II (63 fb−1) [17], (1.58)

where the first and second uncertainties are statistical and systematic respectively and the

size of the data set used in each analysis is specified in the parentheses. By integrating

the data set of 50 ab−1 at Belle II, the uncertainty on S is expected to be reduced to

0.04 by the previous work [17]. As the theoretical uncertainties of ∆ sin 2ϕeff
1 K0

SK
0
SK

0
S
and

the measurement uncertainty of sin 2ϕ1 in B0 → J/ψK0
S expected at 50 ab−1 (0.006)

are negligible, the potential deviation of O(0.1) in ∆ sin 2ϕeff
1 will be detectable [18].

The sensitivity will become even higher by combining the measurements of S and A as

they probe the additional CP-violating phase complementarily in terms of strong phase

difference.

1.3.4 Target of this thesis

In this thesis, we present a measurement of CP-violating parameters in B0 → K0
SK

0
SK

0
S

decays by using a data set corresponding to 189.3 fb−1 collected at Belle II. We aim

to explore the NP in b → s transition by the measurement and to refine the analysis

procedure anticipating a high-precision measurement with the unprecedentedly large data

set of 50 ab−1 to be taken at Belle II.
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Chapter 2

The Belle II experiment

Belle II is a B factory experiment operating at the SuperKEKB asymmetric-energy

e+e− collider at the High Energy Accelerator Research Organization (KEK), in Tsukuba,

Japan. The e+e− collision data are recorded by the Belle II detector mainly at Υ(4S)

resonance, which subdominantly decays into BB pair. The main physics targets are

precision measurements in flavor physics using B,D, and τ and searches for dark-sector

particles.

The Belle II experiment aims to accumulate 50 ab−1 of integrated luminosity, which is

50 times as large as the data set recorded by the Belle experiment at the KEKB collider.

2.1 SuperKEKB

Figure 2.1 shows the main components of SuperKEKB. It consists of a linear accelerator, a

positron damping ring, and the two main storage rings: the 7GeV electron ring called the

High Energy Ring (HER) and the 4GeV positron ring called the Low Energy Ring (LER).

The beams collide at an interaction point (IP) where the Belle II detector is located. The

center-of-mass energy is set to the Υ(4S) resonance, 10.58GeV, to selectively produce

BB pairs. The center-of-mass system is boosted due to the asymmetric beam energy by

the boost factor of βγ = 0.287. The boost factor has been reduced by a factor of 2/3

from KEKB to reduce the Touschek effect and maintain the beam lifetime for LER.

The SuperKEKB aims to achieve the instantaneous luminosity of 6 × 1035 cm−2 s−1

and to accumulate 50 ab−1. The thirty-fold higher luminosity than KEKB comes from

increasing the beam currents and adopting a so-called nano-beam scheme. The nano-

beam scheme is characterized by a large beam crossing angle of 83mrad and extremely

small vertical beta functions of 0.3mm at the IP. The large crossing angle allows to

effectively increase the luminosity inversely proportional to the beta function by avoiding

the deterioration of luminosity due to an hourglass effect.

The higher beam currents, smaller beam sizes, and higher luminosity all leads to

severer beam background rate. The Belle II detector is required to record the collision
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Figure 2.1: SuperKEKB

Figure 2.2: Coordinate system seen from the top

data at 30 times higher event rate and to tolerate the severe background. From the

perspective of time-dependent CP violation analyses, the smaller boost factor than KEKB

is a challenge since it deteriorates the decay time resolution. It is also notable that the IP

size has been significantly reduced, which allows a new vertex reconstruction technique.

2.1.1 Coordinate system

We define (x, y, z) coordinates using a right-handed Cartesian system whose origin is at

the nominal position of the IP. As shown in Fig. 2.2, the z axis is defined as the median

line of the HER and LER, and the z direction points toward the HER direction. The

y axis points toward the vertically upper direction and the x axis toward the outside

of the main ring. We also define the distance from the z axis and the polar angle by

r =
√
x2 + y2 and θ = arccos (z/

√
x2 + y2 + z2), respectively.
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2.2 Belle II detector

The Belle II detector is a 4π general-purpose detector surrounding the IP. It consists of

the following subdetectors:

• Vertex Detector (VXD)

• Central Drift Chamber (CDC)

• Time of Propagation counter (TOP)

• Aerogel Ring Imaging Cherenkov counter (ARICH)

• Electromagnetic Calorimeter (ECL)

• K0
L and µ detector (KLM)

Figure 2.3 shows the cross section of the detector seen from the top. To effectively catch

the particles boosted forward, it has an asymmetric coverage in polar angle, 17◦ < θ <

150◦. The subdetectors other than the KLM is in a superconducting solenoid magnet,

which generates a 1.5T magnetic field along the z direction.

The Belle II detector mainly records e+e− → qq(q = u, d, s, c), BB, and τ+τ− events

and other signatures of interest for dark-sector searches. Charged particles in the final

states, e±, µ±, π±, K±, p, and p̄, are reconstructed as trajectories (tracks) in the track-

ing system, the VXD and CDC. A track in the magnet field draws a helix, which is

parameterized by the following five helix parameters,

• d0: the signed distance of the point of closest approach (POCA) to the z axis;

• ϕ0: the angle defined by the x axis and the track transverse momentum at the

POCA;

• ω: track curvature signed with the particle charge;

• z0: the z coordinate of the POCA; and

• tanλ: the tangent of the dip angle.

The definition of the helix parameters on x-y plane is illustrated in Fig. 2.4. Neutral

particles such as photons and K0
L’s are reconstructed as the clusters of energy detected

in the ECL and KLM that are not associated to any tracks.

2.2.1 VXD

Figure 2.5 shows the innermost subdetector, the VXD. It consists of six layers of cylin-

drical arrays of silicon sensors based on two different technologies. The inner two layers

(Layer 1,2) are called the Pixel Detector (PXD) and uses DEPFET (Depleted P-channel

Field Effect Transistor) silicon pixel sensors. The outer four layers (Layer 3–6) are called

the Silicon Vertex Detector (SVD) using DSSDs (Double-sided Silicon Strip Detectors).

The geometry of the sensors are summarized in Tab. 2.1.

The six VXD layers are aligned in a windmill structure shown in Fig. 2.6 at the radii

of 14mm, 22mm, 39mm, 80mm, 104mm, and 135mm. There are currently only two
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Figure 2.3: Cross-sectional top view of the Belle II detector

Figure 2.4: Definition of helix parameters, d0, ϕ0, and ω, on x-y plane. The arc is the

trajectory of a charged particle.
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Figure 2.5: 3D drawing of the VXD

Layer-2 modules installed. In the long shutdown period starting in summer 2022, the

current PXD is going to be replaced with a new PXD fully equipped with 12 Layer-2

modules.

The VXD plays an crucial role in measuring the position of charged particles, and thus

the measurement of B0 decay vertex position necessary for time-dependent CP violation

analyses. Layer 1 is closer to the IP compared to its predecessor, the Belle SVD2, which

was 20mm apart [19]. It is achieved by reducing the radius and thickness of the beam

pipe. Being closer to the IP is advantageous for better vertex position resolution while

hit rate increases. To cope with the high hit rate, the pixelated sensor is adopted for the

inner layers. To reduce the data size below a bandwidth requirement, the PXD data are

read out only within the region of interest which we determine by extrapolating tracks

from the SVD onto the PXD. Using the PXD, the resolution of d0 and z0 is measured to

be 13.64 ± 0.08µm and 14.92 ± 0.07µm for tracks which come from Bhabha scattering

and fulfill |θ− π/2| < 0.5, pT > 1GeV/c and pβ(sin θ)3/2 > 2GeV/c [20]. Here, p(T ) is the

transverse momentum of the particle, θ is the polar angle, and β is the velocity divided

by the speed of light.

The SVD is essential for the precise measurement of K0
S decay vertex position. We

expect the improvement in the K0
S reconstruction efficiency thanks to the larger coverage

volume than the Belle SVD2. The z (r-ϕ) position resolution on the SVD sensors is

measured to be around 25(16)µm on Layer 3 and 34(17)µm on Layer 4–6 for tracks of

perpendicular incidence [21].

Other important roles of the SVD are the tracking of low-momentum tracks that do

not reach the CDC and the identification of the particle species (PID) for them by the

measurement of energy loss per unit passage length dE/dx.
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Figure 2.6: Cross sections of the VXD on z-r and x-y planes

Table 2.1: Geometry of the VXD sensors [22]

Component Layer Radius Pitch (z) Pitch (r-ϕ) Thickness

(mm) (µm) (µm) (µm)

PXD 1 14 55–60 50 75

2 22 70–85 50 75

SVD 3 39 160 50 320

4 80 240 50–75 300–320

5 104 240 50–75 300–320

6 135 240 50–75 300–320
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Figure 2.7: Layer configuration of the Belle and Belle II CDCs viewed on x-y plane [23]

2.2.2 CDC

The CDC is a drift chamber filled with the gas mixture of 50% He and 50% C2H6. It

contains 14,336 sense wires arranged in 56 layers. The layers are grouped into nine parts

called superlayers as shown in different colors in Fig. 2.7. There are five superlayers

of axial wires along the z axis and four superlayers of stereo wires in skewed positions.

Combination of the signals from axial and stereo wires provides 3-dimensional position

information. Compared to the Belle, the outer radius of the CDC is extended from

880mm to 1,130mm, and a finer cell size is adopted in the innermost superlayer to cope

with higher hit rate.

The CDC measures the trajectories and energy losses of charged particles for three

purposes: measurement of the momenta of the tracks, trigger generation using the track

information, and PID using dE/dx. The PID is important especially for low-momentum

tracks that do not reach the TOP and ARICH.

Using cosmic rays, the transverse momentum resolution is measured to be (0.127 ±
0.001)pT ⊕(0.321±0.003)% (pT in GeV/c) and impact parameter resolution to be around

120µm for tracks with pT > 5GeV/c, as shown in Fig. 2.8.
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Figure 2.8: Transverse momentum and impact parameter resolution of the CDC [23]

2.2.3 TOP and ARICH

The TOP and ARICH are ring-imaging Cherenkov counters built to identify mainly π±

and K±.

The TOP covers the barrel part of the CDC with 16 modules. A TOP module consists

of 2.6m-long quartz radiator with a focusing mirror on one end and micro channel plate

photomultipliers (MCP-PMTs) on the other end, as shown in Fig. 2.9. When a charged

particle traverses the quartz radiator with a velocity exceeding the speed of light in the

medium, it emits Cherenkov photons, which are reflected on the quartz surface and the

mirror and detected by the MCP-PMTs. 20–40 photons are typically detected [24]. The

MCP-PMTs have timing resolution better than 100 ps, enabling the TOP to also supply

the event timing information to the trigger system. Provided with the information of

track incident from the inner tracking detectors, the probability density function (PDF) of

temporal and spatial hit pattern at the MCP-PMTs is calculated on different hypotheses

of particle types. PDFs on pion and kaon hypotheses for a kaon track is shown as an

example in Fig. 2.10. Then the likelihood for each hypothesis is calculated based on the

PDF and measured hit pattern. Using only the TOP, the K± selection efficiency of 85%

is achieved, with π± fake rate of 10% [24].

The ARICH covers the forward endcap region. It uses aerogel as the Cherenkov

radiator and detects Cherenkov light by hybrid avalanche photon detectors (HAPDs)

placed 160mm apart from the aerogel tiles as shown in Fig. 2.11. The radiator consists

of two layers of aerogel with different refractive indices to increase the number of radiated

Cherenkov photons without blurring the Cherenkov ring. The ARICH provides a good

K/π separation for tracks from 0.4GeV/c to 4.0GeV/c. The K± selection efficiency of

93.5± 0.6% with π± fake rate of 10.9± 0.9% is confirmed using D∗+ → D0(→ K−π+)π+

decays [26].
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Figure 2.9: Schematic drawing of a TOP module [25]

Figure 2.10: Hit pattern PDFs for a kaon track traversing the TOP based on pion and

kaon hypotheses, overlaid with the actual hit pattern [25]

2.2.4 ECL

The ECL is a scintillation counter consisting of array of CsI(Tl) crystals. The scintillation

light is read out by PIN-photodiodes attached to the crystals. The size of each crystal is

about 6× 6 cm2 in cross section and 30 cm (16.1X0) in length. The ECL is used for the

following purposes:

• detect photons and measure their energy and angular coordinates,

• identify electrons from other hadrons using E/p, which is defined as deposited

energy divided by track momentum,

• provide information for trigger generation, and

• measure luminosity from the rate of e+e− → e+e−, γγ events.

Most of the detector components, CsI(Tl) crystals, preamplifiers, and support struc-

tures, are reused from Belle, where the energy resolution was evaluated to be 4% (1.6%)

at 100MeV (8GeV) and angluar resolution to be 13mrad (3mrad) at low (high) ener-

gies [27]. Because of the relatively long decay time of scintillations in Cs(Tl), large pile-up

noise is expected at the higher background level of Belle II. To deal with the pile-up noise,

readout electronics has been renewed to enable wave form analysis.
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Figure 2.11: Working principle of ARICH counter [26]

2.2.5 KLM

The KLM is used to detect and identify K0
L mesons and muons. It consists of alternating

layers of 4.7 cm-thick iron plates and detectors: resistive plate chamber (RPC) or plastic

scintillator. It surrounds the solenoid and all other subdetectors. Muons and K0
L’s are

detected through the interactions with the KLM material. The iron plates also serve as

the return yoke for the magnetic field.

The RPC has been inherited from the Belle KLM. Due to its long dead time, it is used

only in the barrel part where the background hit rate is moderate. In the endcap part

and the two innermost layers in the barrel, scintillator strips with wavelength shifting

fibers embedded and silicon photomultipliers are used.

Muons are identified as hits in the KLM associated with the CDC tracks, while K0
L’s

are detected as isolated hits in the KLM.

2.2.6 Trigger and Data Acquisition System

The level-1 trigger system continuously processes signals from four subdetectors in parallel

to detect physics events of interest. The occurrence of the physics events are mainly

detected using the CDC and ECL, while the TOP and KLM assist to estimate precise

event timings and to identify muons, respectively. The signals from the subdetectors are

combined in Global Reconstruction Logic (GRL) and are examined in Global Decision

Logic (GDL) to judge if the corresponding event is to be recorded. On detecting such

an event, the system sends a trigger to the data acquisition (DAQ) system to start data

readout from all subdetectors.

The expected event rates from main physics processes are listed in Tab. 2.2. Here, the

instantaneous luminosity of 8× 1035 cm−2 s−1 is assumed. The trigger system is required

by the DAQ to reduce the level-1 trigger rate below 30 kHz. As the physics processes
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Table 2.2: Estimated cross sections and trigger rates from various physics processes at

the Υ(4S) resonance. Bhabha and γγ rates are prescaled by a factor of 1/100.

Process σ [nb] Rate [Hz]

Υ(4S) 1.2 960

qq 2.8 2,200

µ+µ− 0.8 640

τ+τ− 0.8 640

Bhabha 44 350

γγ 2.4 19

Two-photon 12 10,000

Total 67 ∼ 15, 000

Figure 2.12: Schematic view of DAQ system [30]

amount to 15 kHz, fake trigger rate issued by background particles should be suppressed

to 15 kHz by the GDL. The whole trigger decision process should be completed within

5µs latency to meet a requirement from the ASICs used for the frontend readout of the

SVD data.

The schematic view of the DAQ system is shown in Fig. 2.12. The signals from each

subdetectors are digitized by dedicated frontend electronics and sent to common readout

modules called COPPER except for the PXD. Then data from different subdetectors

are combined in the network switches and sent to the computing nodes called high level

triggers (HLTs). In the HLT, the data are reconstructed by the same software used for

offline analysis called Belle II Analysis Software Framework (BASF2) [28][29]. Using the

result of full event reconstruction, the event rate is suppressed to 1/5. The PXD data

size is also reduced to 1/10 by selecting only the region of interest where charged tracks

are extrapolated from the SVD. The HLT suppresses the maximum data rate to storage

to 1.8GB/s.
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Figure 2.13: History of integrated luminosity in the Belle II experiment. The histogram

shows the daily recorded luminosity and the line shows its integral.

2.3 Experiment status

The Belle II experiment has accumulated 428 fb−1 since the start of physics data tak-

ing in 2019 until summer 2022 as shown in Fig. 2.13. SuperKEKB has achieved the

instantaneous luminosity of 4.7 × 1034 cm−2 s−1. In the following analysis we use a data

set corresponding to 190 fb−1 taken at the Υ(4S) resonance until summer 2021, which

contains (198.0± 3.0)× 106 BB pairs.

Figure 2.14 shows the long-term projection of instantaneous and integrated luminosity.

From the summer 2022, the experiment plans a long shutdown for about 1.5 years to

replace the current PXD with a new one equipped with the full Layer 2. Another long

shutdown is planned around 2027 for modification of the final beam focusing system

around the interaction region, which is required to achieve the target luminosity.
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Figure 2.14: Projection of instantaneous and integrated luminosity in the Belle II exper-

iment. The red (blue) lines show the instantaneous (integrated) luminosity as a function

of data-taking year.
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Chapter 3

Analysis Strategy

As discussed in Sec. 1.2.2, to measure the time-dependent CP asymmetry in B0 →
K0

SK
0
SK

0
S using e+e− → Υ(4S) → B0B0 events, we need to:

1. reconstruct one B (BCP) decaying into the target final state K0
SK

0
SK

0
S ,

2. identify the flavor of the other B (Btag) from its decay products, and

3. measure the difference of proper decay time ∆t between the pair of B’s.

Figure 3.1 illustrates the above procedure. The ideal PDF of ∆t and the Btag flavor

q (= +1 for B0
tag,−1 for B

0

tag) is given by

PTD
sig (∆t, q) =

1

4τB0

e
− |∆t|

τ
B0
[
1 + q(S sin(∆md∆t) + A cos(∆md∆t))

]
. (3.1)

Figure 3.1: Overview of time-dependent CP violation measurement
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Figure 3.2: Illustration of event topology for qq (left) and BB events (right)

3.1 Reconstruction

We reconstruct the B0 → K0
SK

0
SK

0
S decays where all three K0

S ’s decay into π+π−. K0
S

candidates are formed by combining two oppositely charged tracks. Having the lifetime

of cτ = 2.7 cm, most of K0
S ’s decay at significantly displaced position from the IP. That

signature makes it easy to discriminate K0
S from fake candidates formed by random

combination of tracks originating from the IP. We select K0
S candidates using a boosted-

decision-tree (BDT) classifier and the π+π− invariant mass [31].

Based on B(K0
S → π+π−) = 0.692, we expect the 3(π+π−) final state to cover

33% of all B0 → K0
SK

0
SK

0
S decays. Although allowing one K0

S → π0π0 decay would

potentially release 44% in addition to that, this final state suffers from worse purity

due to fake π0 candidates. For example, the latest BaBar analysis reconstructed the

2K0
S(π

+π−)K0
S(π

0π0) mode with 0.3 times smaller signal yield and 2.3 times more back-

ground than the 3K0
S(π

+π−) mode. [16] In addition, the ∆t resolution of the 2K0
S(π

+π−)K0
S(π

0π0)

mode is worse than the 3K0
S(π

+π−) mode. Therefore, we put the first priority on the

3(π+π−) final state and concentrate on it in this analysis.

B0 candidates are reconstructed from the combination of three K0
S candidates and

selected using its invariant mass and beam-energy-constrained mass.

Background candidates arise from e+e− → qq (q = u, d, s, c) events and e+e− → BB

events. Despite of similar cross sections, qq events dominate over BB because of relatively

higher track momentum of them. As the light quark pair is largely boosted by the collision

energy, the momenta of final-state particles in qq events tend to distribute in a jet-like

shape in the center-of-mass frame as shown in Fig. 3.2. In contrary, BB event tend to

have an isotropic momentum distribution. We discriminate the qq events based on a BDT

classifier using event-topology variables (continuum suppression).

3.2 Flavor tag

We identify the Btag flavor from the charge of its decay products. Leptons from semilep-

tonic decays b → cℓ−ν (ℓ = e, µ) and kaons from CKM-favored b → c → s decays
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Table 3.1: Flavor tagger performance parameters ε, w, µ, and ∆w in % measured in

different bins of r [1]. The first and second uncertainties are statistical and systematic,

respectively.
r ε w µ ∆w

0–0.1 19.0± 0.3± 0.1 47.1± 1.6± 0.5 4.4± 3.2± 0.9 8.8± 2.0± 0.6

0.1–0.25 17.1± 0.3± 0.1 41.3± 1.7± 0.5 3.9± 3.3± 0.9 6.1± 2.1± 0.6

0.25–0.5 21.3± 0.3± 0.1 30.3± 1.4± 0.4 6.8± 2.9± 0.8 2.7± 1.9± 0.6

0.5–0.625 11.3± 0.3± 0.1 22.9± 1.8± 0.6 3.2± 4.0± 1.1 5.5± 2.6± 0.8

0.625–0.75 10.7± 0.3± 0.1 12.4± 1.8± 0.5 −0.5± 4.1± 1.1 0.7± 2.9± 0.7

0.75–0.875 8.2± 0.2± 0.1 9.4± 1.9± 0.5 10.8± 4.3± 1.1 7.7± 3.2± 0.9

0.875–1 12.4± 0.2± 0.1 2.3± 1.3± 0.4 −3.7± 3.2± 1.0 0.6± 2.4± 0.7

are particularly discriminative because of the large branching fraction of these decays.

Negatively charged leptons and kaons indicate B0 and vice versa.

We use a BDT-based software called flavor tagger in the BASF2 [1]. The flavor tagger

estimates the flavor q and its credibility r ranging from 0 (ambiguous tag) to 1 (obvious

tag) for each Btag candidate. The performance of the flavor tagger is expressed by

ε ≡ εB0 + εB0

2
, (3.2)

w ≡ wB0 + wB0

2
, (3.3)

µ ≡ εB0 − εB0

εB0 + εB0

and, (3.4)

∆w ≡ wB0 − wB0 , (3.5)

where εB0(B0) and wB0(B0) are the tagging efficiency of B0 (B0) and the probability to

misidentify B0 (B0) as B0 (B0) (wrong-tag fraction). µ and ∆w represent the difference

in tagging efficiency and wrong-tag fraction between B0 and B0. These quantities are

functions of r in general. Instead of using continuous r, we use a rough binning with the

following bin edges and call the binned r as r bin:

(0, 0.1, 0.25, 0.5, 0.625, 0.75, 0.875, 1). (3.6)

The flavor tagger performance is calibrated by the measurement of the time-integrated

mixing probability using B0 → D(∗)−h+ (h = π, ρ, a1) decays [1]. The calibration is

based on a data set corresponding to 62.8 fb−1, which was collected before summer 2020.

Table 3.1 shows ε, w, µ, and ∆w measured in each r bin. The statistical uncertainty for

CP asymmetry is proportional to 1/
√
εeff , where εeff ≡

∑
rbin ε(1−2w)2 is called effective

tagging efficiency and is estimated to be 30.0± 1.2(stat)± 0.4(syst)%.
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3.3 ∆t measurement

The absolute value of the proper decay time difference ∆t is typically so short around

τB0 = 1.519 ps that it is hard to directly measure. To overcome the difficulty, the center-

of-mass system is boosted by the asymmetric beam energies with βγ = 0.287 at the

Belle II experiment. As the BB pair is almost at rest with momentum of only 0.3GeV/c

in the center-of-mass system, we approximate the boost factor of B mesons as that of

Υ(4S) and measure ∆t as the difference of decay vertex positions of BB,

∆t =
ℓCP − ℓtag

βγc
, (3.7)

where ℓCP and ℓtag are the decay vertex position of BCP and Btag, which is projected to

the boost direction. The approximation of the boost factor is corrected by a response

function described in Sec. 5.3.1.

The decay vertex position is measured by kinematic fit using charged tracks in the

final state. The vertex position resolution is typically tens of micrometers and thus can

never be neglected compared to the average flight length of B0, 130µm. Moreover, the

resolution varies from around 10µm to 100µm depending on the situation such as the

number of K0
S having VXD hits for BCP vertex and the number of available tracks for

Btag. Therefore, precise understanding of the vertex resolution on the event-by-event

basis is a key to the time-dependent CP violation measurement.

We classify the reconstructed events into two categories based on the quality of ∆t

measurement: time-differential (TD) events and time-integrated (TI) events. For TI

events, where we cannot measure ∆t with good quality, we do not use the ∆t information

but only the flavor information q. Therefore we integrate the PDF of Eq. (3.1) over ∆t:

PTI
sig(q) =

1

2

(
1 + qA

1

1 + x2d

)
, (3.8)

where xd = ∆mdτB0 . As explicitly shown by Eq. (3.8), TI events are sensitive to only A

through the dilution factor of 1/(1 + x2d). The classification criteria are summarized in

Tab. 4.3.

3.4 Control sample

We use B+ → K0
SK

0
SK

+ decays as the control channel for the analysis of B0 → K0
SK

0
SK

0
S .

The branching fraction for the decay is B(B+ → K0
SK

0
SK

+) = (1.05 ± 0.04) × 10−5 so

the expected number of signals are twice larger than B0 → K0
SK

0
SK

0
S , whose branching

fraction is B(B0 → K0
SK

0
SK

0
S) = (6.0± 0.5)× 10−6 [7].

Because of the similarity in decay kinematics and vertex resolution between B+ →
K0

SK
0
SK

+ and B0 → K0
SK

0
SK

0
S , we use the control sample to model the background shapes

for B masses and the continuum suppression classifier, and to validate our knowledge of

vertex resolution obtained from simulation.
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Chapter 4

Event Reconstruction and Selection

4.1 Data and simulation samples

4.1.1 Data sample

We use the e+e− collision data taken at the Υ(4S) resonance at the Belle II experiment

from 2019 to summer 2021, which corresponds to 189.3 fb−1 and contains (198.0±3.0)×106

BB pairs. As we are interested in hadronic qq and BB events with high track multiplicity,

we select events with three or more “clean” tracks. The clean tracks are required to have

high transverse momentum (pT > 0.2GeV/c) and to originate from the IP (|d0| < 2 cm

and |z0| < 4 cm) to be discriminated from beam background tracks. We veto Bhabha

scattering events that would otherwise increase the data size. Bhabha events are identified

by fulfilling all of following conditions:

• two or more clean tracks that are back to back in the center-of-mass system (the

opening angle larger than 2.88 radian),

• one or more tracks identified as electron (p∗ > 5GeV/c and E/p > 0.8),

• two tracks with p∗/Ebeam > 0.35, and

• total energy of ECL clusters larger than 4GeV,

where p∗ and Ebeam are the track momentum and beam energy in the center-of-mass

system.

4.1.2 Simulation sample

We generate the Monte Carlo (MC) simulation samples of the following event types:

• B0 → K0
SK

0
SK

0
S signal MC, where one B from e+e− → Υ(4S) → B0B0 is forced to

decay into B0 → K0
SK

0
SK

0
S ,

• B+ → K0
SK

0
SK

+ signal MC, where one B from e+e− → Υ(4S) → B+B− is forced

to decay into B+ → K0
SK

0
SK

+ or its charge conjugate, and
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• generic MC, which includes one of qq(q = u, d, s, c), B0 B0, and B+B− events.

The generic MC sample is equivalent to 700 fb−1. We use the EvtGen package to simulate

the decay of hadrons and the KKMC and Pythia for qq [32][33][34]. The detector response

to the generated particles are simulated with the Geant4 [35]. The digitization in the

detectors is simulated with BASF2.

The digitized detector signals in data and simulation samples are both analyzed with

BASF2.

4.2 K0
S reconstruction

We reconstruct K0
S candidates from combinations of oppositely charged tracks assumed

to be pions. Unlike ordinary tracks originating from the IP, K0
S daughters are often

produced far away from the IP because of the long K0
S lifetime (cτ = 2.7 cm) and are

not affected by multiple scattering through the beam pipe and detector materials if K0
S

decays outside of them. Therefore, if a K0
S decay vertex is located outside the inner radius

of the beam pipe (r > 1 cm), we re-fit its daughter tracks removing the extra material

effect. We then determine the K0
S decay vertex by a kinematic fit using the refitted tracks

and calculate the π+π− invariant mass at the decay vertex.

We multiply scale factors to the covariance matrix of helix parameters of pions to

correct an underestimation of the helix parameter uncertainties. The scale factors are

determined using cosmic tracks (see Appendix F).

We select K0
S candidates based on the invariant mass Mπ+π− and a BDT classifier

OK0
S
. The candidates should fulfill

(457.6MeV/c2 < Mπ+π− < 537.6MeV/c2) ∧ (OK0
S
> 0.75), (4.1)

so as to maximize the figure of merit for B0 reconstruction (see Sec. 4.11).

4.2.1 K0
S
BDT selection

We train a BDT to discriminate true K0
S using the following 22 input variables listed

in Tab. 4.1, which include those of kinematics, PID, and number of hits in the VXD

associated to the pion tracks. Particularly discriminating are the variables related to

characteristic decay topology of K0
S such as the consistency of K0

S momentum and decay

vertex directions (cosVertexMomentum and ImpactXY) and the displacement of K0
S decay

vertex (flightDistance and significanceOfDistance). decayAngle D1,D2 should be

essentially equivalent to cosHelicityAngleMomentum but in reality slightly differ from it

and from each other.

We sample 100,000 true K0
S from signal MC and 100,000 fake K0

S from generic MC

within a wide mass range 450MeV/c2 < Mπ+π− < 550MeV/c2 to form a training sample
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Table 4.1: Input variables of K0
S BDT

name explanation

cosVertexMomentum cosine of angle betweenK0
S decay vertex and momentum

vectors seen from IP

flightDistance signed K0
S flight distance along the momentum direction

significanceOfDistance significance of K0
S flight distance

ImpactXY impact parameter of K0
S on the x-y plane

cosHelicityAngleMomentum cosine of angle between the momentum difference of K0
S

daughters in the K0
S rest frame and K0

S momentum in

the lab frame

decayAngle D1,D2 angle between π+,− momentum and reverted beam mo-

mentum in the K0
S rest frame

px,py,pz K0
S momentum in x, y, and z direction

p D1,D2 momentum magnitude of π+,−

muonID NaNm1 D1,D2 muon PID variable for π+,−. 0,1, and −1 correspond to

not-muon-like, muon-like, and no information.

pionID NaNm1 D1,D2 pion PID variable for π+,−. 0,1, and −1 correspond to

not-pion-like, pion-like, and no information.

daughtersDeltaZ z0 difference between π+ and π−

daughterAngle2body angle between π+ and π− momenta

nPXDHits D1,D2 number of PXD hits associated to π+,− track

nSVDHits D1,D2 number of SVD hits associated to π+,− track. r-ϕ and

z hits are counted separately.

for the BDT. We make a testing sample in the same manner using the same amount of

independent K0
S candidates. Figures 4.1 and 4.2 show the distribution of the variables for

true and fake K0
S candidates in the testing sample. As shown in Fig. 4.3, the distributions

of the BDT classifier for the training and testing samples agree with each other, which

indicates no overtaining.

The list of input variables are inherited from a previous work with some modifica-

tion [17]. In particular, we remove K0
S invariant mass variables and vertex position in

absolute coordinates. By avoiding to use the mass, the BDT classifier does not bias the

mass distribution as shown in Fig. 4.4. If we train a BDT with the K0
S mass, it biases the

K0
S mass distribution as shown in Fig. 4.5. Removing the decay vertex coordinates does

not result in visible change in performance for MC samples but the change may make the

classifier more robust against the shift of IP observed in the real data.

Figure 4.6 show the signal efficiency and background rejection rate for the testing

sample, which we calculate by scanning the threshold for the BDT selection and applying

three different mass window denoted by the legend. The efficiency is defined as the

probability for a true K0
S from the signal decay to survive the selection and the rejection

rate is that for a fake K0
S candidate in generic MC. Our selection (Eq. (4.1)) provides the
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efficiency of 95 % and rejection rate of 0.59 %.
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Figure 4.1: Distributions of K0
S BDT input variables for true and fake K0

S candidates in

the testing sample (1)
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Figure 4.2: Distributions of K0
S BDT input variables for true and fake K0

S candidates in

the testing sample (2)

36



0.0

0.2

0.4

0.6

0.8
# 

En
tri

es
 p

er
 B

in
 / 

# 
En

tri
es

Overtraining check for KsFinderWeight_FBDT_ver3.root
Test-Signal
Test-Background
Train-Signal
Train-Background

0.010
0.005
0.000
0.005
0.010

Di
ffe

re
nc

e

signal (train - test) difference p = 0.69

0.0 0.2 0.4 0.6 0.8 1.0
Classifier Output

0.010
0.005
0.000
0.005
0.010

Di
ffe

re
nc

e

background (train - test) difference p = 0.54
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Figure 4.4: K0
S invariant mass distribution of true (left) and fake (right) K0

S candidates

in the testing sample. Different selections about K0
S BDT classifier are applied.
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4.2.2 Off-diagonal K0
S

We introduce a characteristics of K0
S candidates that indicate a probable contamination

by a fake PXD hit and thus could lead to degradation of vertex resolution. We focus on

which VXD layer has the innermost hit associated to a K0
S daughter track.

Figure 4.7 shows the fraction (in %) of true K0
S obtained from signal MC sample

whose π+ daughter have the innermost hit in the VXD layer in the row and π− in the

column. The true K0
S daughters should share the innermost layer, entering the diagonal

elements of the matrix.

However there are considerable fraction of true K0
S in the off-diagonal elements, es-

pecially in (1, 3), (3, 1), (1, 4), and (4, 1). We call the K0
S candidates in these elements

off-diagonal K0
S . As shown in Fig. 4.8, this signature indicates a fake or missed Layer-1

hit. Because the fake Layer-1 hit lead to the deterioration of B0 vertex resolution and

incorrect estimation of the resolution, we classify the events including an off-diagonal K0
S

as TI events and use them only for the time-integrated analysis.
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Figure 4.7: Matrix of innermost VXD layer of π+ hit (column) and π− (row) for true

K0
S in signal MC. “L1” to “L6” denotes the layer numbers. The matrix element is the

fraction of K0
S candidates whose π+ daughter have the innermost hit in the VXD layer

in the row and π− in the column.
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Figure 4.8: Illustration of off-diagonal K0
S . The grey quarter circles represent the first

and third VXD layers. The solid lines are the trajectories of pions produced from K0
S .

The filled (empty) circles are VXD hits assigned (not assigned) to the pions by the track

reconstruction.

4.3 B0 reconstruction

We reconstruct BCP candidates from all possible combinations of three K0
S candidates,

and select them using the invariant mass M and the beam-energy-constrained mass Mbc.

Mbc is defined as

Mbc =
√

(Ebeam/2)2 − p2
B, (4.2)

where Ebeam and pB are the beam energy and momentum of BCP in the center-of-mass

system. We select candidates within (5.2GeV/c2 < Mbc < 5.29GeV/c2) ∧ (5.08GeV/c2 <

M < 5.48GeV/c2). Figure 4.9 shows the distributions of Mbc and M for signal and

background events in MC.

We reconstruct Btag as the combination of the remaining tracks and clusters passing

the following requirement to be discriminated from beam background. The tracks are

required to be in the CDC acceptance 17◦ < θ < 150◦, and to fulfill |d0| < 0.5 cm and

|z0| < 3 cm. We apply the correction to the helix parameter uncertainties of the tracks

on the tag side as we do on the CP side. The clusters in forward ECL region are required

to have an energy greater than 80MeV; in barrel 30MeV; and in backward 60MeV.
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Figure 4.9: Mbc (left) and M (right) distributions of selected MC events. The stacked

histograms show the background events from generic MC, which are separated according

to its event type. The signal MC distributions are scaled arbitrarily.

4.4 Vertex reconstruction

We measure the decay vertex positions of BCP and Btag by performing kinematic fits

with event-by-event constraints derived from the IP information. The profile of the IP

is defined as three-dimensional Gaussian distribution and thus parametrized by a 3 × 3

covariance matrix and the center position. The IP profile is continuously measured using

e+e− → µ+µ− events. The size and position of the IP are updated every around two

hours and 30 minutes, respectively.

4.4.1 CP-side vertex reconstruction

For BCP , we use the knowledge of the IP profile to define a virtual BCP track to provide an

additional constraint to determine the BCP vertex position. The virtual track originates

from the IP and points toward the reconstructed BCP momentum as shown in Fig. 4.10.

We perform a least squares fitting to determine the vertex position. There are 53

parameters to be determined in the decay chain Υ(4S) → B0 → K0
SK

0
SK

0
S → 3(π+π−):

• Υ(4S) decay vertex xΥ(4S) — (3),

• decay vertex position x, energy E, momentum p, and flight distance d of four

intermediate states (B0 and three K0
S ’s) — (8× 4), and

• momentum p of six pions in the final state — (3× 6),

where the number of parameters are shown in the parentheses. On the other hand we

have 61 constraints and measurements in total:

• IP position and covariance xIP ,VIP — (3),
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Figure 4.10: Concept of IP constraint

• geometric constraint for the flight of intermediate states f produced by i,

xi + df
pf

|pf |
= xf (4.3)

— (3× 4),

• energy and momentum conservation in B0 and K0
S decays — (4× 4)

• measurement of helix parameters and their covariance matrix for six pions h,Vh —

(5× 6),

where the number of constraints and measurements are shown in the parentheses. The

number of degrees of freedom (ndf) in the fit is 8 (= 61− 53).

We define χ2 as the compatibility of all kinematic variables on the CP side listed

above. It is the sum of

• the measurement constraints for the helix parameters(
hπ − h(xK0

S
,pπ)

)T
V −1

h

(
hπ − h(xK0

S
,pπ)

)
, (4.4)

where h(xK0
S
,pπ) is the helix parameters calculated from the fit parameters xK0

S

and pπ,

• the measurement constraint for the IP

(xΥ(4S) − xIP )
TV −1

IP (xΥ(4S) − xIP ), (4.5)

and

• the exact constraints g(y) = 0 about flight and energy conservation implemented

by the method of Lagrange multiplier as 2λg(y), where λ is the Lagrange multiplier

and y represents the parameters involved in the constraint. For example, the flight

condition of Eq. (4.3) is implemented as g(y = {xi, df ,pf ,xf}) = xi+df
pf

|pf |
−xf =

0
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We minimize χ2 with a Kalman filter to simultaneously determine all parameters [36].

We determine the B-meson decay vertex position and its uncertainty by minimizing

χ2, where the procedure is called a “vertex fit” For the time-dependent CP violation

analysis, we are interested in the decay position projected onto the boost direction ℓCP

and its uncertainty σCP
ℓ . We apply quite a loose selection on the uncertainty σCP

ℓ <

500µm. Calculating the p-value from χ2 and ndf, we find the distribution is not flat

and events with bad fit quality concentrate at zero as shown in Fig 4.11. We require

p > 0.001(χ2/ndf < 3.27) for TD events.

0.0 0.5 1.0

p-value

0

2

4

6

×104

Figure 4.11: Distribution of p-value of BCP vertex fit for signal MC events

Figure 4.12 shows the residual of the fitted vertex position from the true value in the

signal MC, separating the candidates according to the number of K0
S having VXD hits.

The IP constraint improves the vertex position resolution especially when only one K0
S

have VXD hits. The fraction of B0 candidates with zero, one, two, and three K0
S ’s having

VXD hits are 0.4%, 8.0%, 37.7%, and 54.0% respectively.

4.4.2 Tag-side vertex reconstruction

Unlike the CP side we do not know the decay chain or proper kinematic constraints

among the tag-side particles. We perform a kinematic fit assuming all tracks are pions

and originate from a single Btag vertex. Here, we exclude tracks without a PXD hit

and pairs of tracks whose invariant mass is within 10MeV from the K0
S mass from the

fit. The K0
S daughters should be removed because they do not originate from the Btag

vertex so they clearly violate the above assumption and bias the measurement. A similar

inevitable bias arises from the daughters of charmed intermediate states, whose lifetimes

are comparable to that of B0 (cτ = 310µm for D+, cτ = 123µm for D0). We take into

account the bias by a dedicated response function (see Sec. 5.3).
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Figure 4.12: Distributions of BCP vertex position residual δℓCP for signal MC events

(a). The vertex fit is performed with or without the IP constraint for comparison. The

distributions are separated according to the number of K0
S having associated VXD hits

(b–d).

Similarly to the CP side we define a constraint as a virtual Btag track called Btube

using the IP profile. As illustrated in Fig. 4.13, we extrapolate back the BCP track toward

the IP to find the Υ(4S) decay vertex and expand it in the Btag flight direction. The

resulted long ellipsoid is regarded as the virtual track. The Btag direction is calculated

from the momenta of BCP and beams.

Figure 4.14 shows the distributions of vertex position residual and the number of

tracks used in the vertex fit for the signal MC events where the vertex fit is successful.

The fit is performed with and without the Btube constraint. The Btube constraint does

not only improve the resolution but also helps to save events where only one track is

available for the vertex fit, which amounts to around 5% of the reconstructed events.

The asymmetry in the resolution arises from the charmed intermediate states.
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Figure 4.13: Concept of Btube constraint. The orange rectangle is the trimmed ellipsoid

representing Btube.
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Figure 4.14: Distribution of Btag vertex position residual (left) and the number of tracks

used in vertex fit (right) for the signal MC events. The vertex fit is repeated with and

without the Btube constraint. Only the candidates with successful vertex fit are shown.

We select candidates based on the tag-side vertex fit quality, requiring:

• success of the fit,

• σtag
ℓ < 500µm, and

•
(

χ2

ndf

)tag
< 100,

where σtag
ℓ and

(
χ2

ndf

)tag
are the vertex position uncertainty and reduced χ2 estimated by

the fit. The success of tag-side fit also requires that of the CP -side fit which is necessary

for the construction of Btube.

Figure 4.15 shows the distribution of σCP
ℓ and σtag

ℓ . The first peak in the σCP
ℓ distri-

bution is formed by events where at least one K0
S has PXD hits in its daughter tracks. In

such a case, the vertex resolution is comparable between BCP and Btag. Otherwise, the

BCP resolution is worse in most of the cases.
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Figure 4.15: Distribution of σCP
ℓ and σtag

ℓ for signal MC events

4.5 Flavor tag

As briefly mentioned in Sec. 3.2, we identify the Btag flavor from its decay products using

the flavor tagger. The flavor tagger adopts 13 categories of Btag flavor signatures as shown

in Fig. 4.16. Each category aims to catch the signature of a particle or correlation between

particles which characterize the CKM-favored b → c → s cascade decay or leptons from

semileptonic decays of mesons. The flavor tagger software is implemented as BDTs in two

steps as shown in Fig. 4.17. The first-step BDTs correspond to the 13 tagging categories.

They use the particle identification information and kinematic variables of the tag-side

tracks reconstructed on the hypothesis of the corresponding particle type to extract the

Btag flavor. Some categories also use the output from other categories. Then the second-

step BDT combines the outputs from the first-step BDTs to get the final estimate of Btag

flavor q and its credibility r.

Figure 4.18 shows the distribution of the flavor tagger output qr in the signal MC. We

confirm the tagging performance in the signal MC agrees with that of the independent

measurement, from which we quote the values of w and ∆w. The flavor tagging fails only

if there is no track from Btag. Since our Btag candidates are required to have at least one

track for the success of vertex fit, the flavor tagger always estimate some results.
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Figure 4.16: Flavor tagging categories and corresponding decay modes [1]

Figure 4.17: Concept of category-based flavor tagger [1]
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Figure 4.18: Distributions of flavor tagger output qr in selected signal MC events. The

events are classified according to the true Btag flavor. The dashed lines indicate the edges

of r bin.

4.6 Continuum suppression

We use a BDT classifier OCS to suppress the dominant qq background events using the

different event topology between qq and BB events. The input discriminating variables

are the following.

• 14 modified Fox-Wolfram moments called KSFW [27]

The Fox-Wolfram moments are the moments of spherical harmonics for the momen-

tum distribution in an event. For B physics, we use modified Fox-Wolfram moments

that are computed using subsets of particles in the event, which are categorized ac-

cording to their side (BCP or Btag) and types (charged, neutral, or missing). Here,

missing momentum is defined as an additional virtual particle. The moments are

defined as

Hso
xl =

∑
i

∑
jx

|pjx|Pl(cos θi,jx) (x = 0, 1, 2; l = 0, 2, 4), (4.6)

Hoo
l =

∑
j

∑
k

QjQk|pj||pk|Pl(cos θj,k) (l = 1, 3), and (4.7)

Hoo
l =

∑
j

∑
k

|pj||pk|Pl(cos θj,k) (l = 0, 2, 4), (4.8)

where i runs over the BCP daughters, j(x) and k runs over the Btag (x=0:charged,

1:neutral, 2:missing) daughters, Pl(cos θi,j) is the lth order Legendre polynomial of

the cosine of the angle between ith and jth particles, and Qi = ±1 is the charge of

ith particle.
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• transverse energy and missing mass squared

ET =
∑
i

(pT )i, (4.9)

M2
miss =

(
Ebeam −

∑
i

Ei

)2

−
∑
i

p2
i , (4.10)

where i runs over all particles in the events.

• magnitude of thrust of Btag (thrustOm)

T =

∑
i |t · pi|∑
i |pi|

, (4.11)

where t is a unit vector called thrust axis that maximizes T and i runs over the

Btag daughters.

• cosine of the angle between the thrust axes of BCP and Btag (cosTBTO)

We sample 100,000 events each from the signal and qq MC to form training and testing

samples. We do not apply the K0
S selection to the qq sample to keep a large number of

events enough for training. Although this may slightly degrade the sensitivity of the BDT

if the event topology changes through the K0
S selection, it should not introduce any bias

on the measurement. Figure 4.19 shows the distribution of the discriminating variables

for the signal and qq events. We find the jet-like feature of the qq events: large thrust,

aligned thrust axes of B candidates, and large higher-order moments.

The distribution of the output BDT classifier OCS is shown in Fig. 4.20 for the train-

ing and testing samples. The consistency of the distributions indicates no significant

overtraining. We apply a loose selection, OCS > 0.1, which rejects half of qq and retain

98% of signal. We then define a modified classifier,

O′
CS = log

OCS − 0.1

1−OCS

, (4.12)

and use it for signal extraction fit after selecting events within −10 < O′
CS < 10 (see

Sec. 5.2). Figure 4.21 shows the distribution of O′
CS for signal and background MC events

with different event types.
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Figure 4.19: Distributions of input variables for continuum suppression BDT. The dis-

tributions are shown separately for signal and qq events in the testing sample.
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Figure 4.20: Distributions of continuum suppression BDT classifier OCS. The distribu-

tions are shown separately for signal and qq (“background”) events in the testing and

training samples. The middle and bottom plots show the difference between the testing

and training samples.
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Figure 4.21: O′
CS distribution of selected MC events. The stacked histograms show the

background events from generic MC, which are separated according to its event type.

The signal MC distributions are scaled arbitrarily.
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4.7 Best candidate selection

Figure 4.22 shows the distribution of candidate multiplicity for signal MC after we apply

all selections described so far. The average candidate multiplicity is as small as 1.030. For

events with multiple candidates we choose the candidate with the smallest BCP vertex

fit χ2. After the best candidate selection, 98.3% of the reconstructed candidates in the

signal MC are correctly reconstructed.
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Figure 4.22: Distribution of candidate multiplicity for signal MC events that contain

selected candidates

4.8 χc0 veto

Apart from the non-resonant B0 → K0
SK

0
SK

0
S decay, there are contributions from quasi-

two-body decays B0 → X(→ K0
SK

0
S)K

0
S . Because our goal is to explore the NP ef-

fect in CP violation of b → s transition, we regard the f resonances such as X =

f0(980), f0(1710), f0(2010) to be signal considering they originate from b→ s and are CP

even. On the other hand, b→ c decays are problematic. The expected branching fraction

or its upper limit for these decays are listed in Tab. 4.2. We expect the largest contri-

bution from χc0K
0
S , whose contribution is measured to be around 5% of B0 → K0

SK
0
SK

0
S .

Being CP even, it does not affect sin 2ϕ1 measurement within the SM but it would dilute

the possible NP effect in b→ s transition. The dilution effect would be complicated due

to the strong phase difference with respect to B0 → K0
SK

0
SK

0
S .

We veto the χc0K
0
S decays by rejecting B0 candidates if the invariant mass of any

combination of two K0
S fulfills

3378.8MeV/c2 < MK0
SK

0
S
< 3447.1MeV/c2, (4.13)
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Table 4.2: Branching ratio or its upper limit of resonant background decays [7]. The

numbers in the parentheses are the uncertainties of the last digit(s) or confidence level

of the upper limits. The rightmost column shows the ratio of the branching fraction of

B0 → X(K0
SK

0
S)K

0
S to that of B0 → K0

SK
0
SK

0
S .

X B(B0 → XK0) B(X → K0
SK

0
S) B(B0 → XK0)/2 ratio to signal

×B(X → K0
SK

0
S)

D0 5.2(7)× 10−5 1.41(5)× 10−4 3.7× 10−9 6.2× 10−4

χc0 1.9(4)× 10−4 3.16(17)× 10−3 3.0× 10−7 5.0× 10−2

χc1 3.95(27)× 10−4 < 6× 10−5 (90%) < 1.2× 10−8 < 2.0× 10−3

χc2 < 1.5× 10−5 (90%) 5.2(4)× 10−4 < 3.9× 10−9 < 6.5× 10−4

ηc 8.0(1.1)× 10−4 < 3.1× 10−4 (90%) < 1.2× 10−7 < 2.0× 10−2

J/ψ 8.91(21)× 10−4 < 1.4× 10−8 (95%) < 6.2× 10−12 1.0× 10−6

ψ(2S) 5.8(5)× 10−4 < 4.6× 10−6 (95%) < 1.3× 10−9 2.2× 10−4

which covers 90% of a relativistic Breit-Wigner function,

f(MK0
SK

0
S
) =

k

(M2
K0

SK
0
S
−m2

χc0
)2 +m2

χc0
Γ2
, (4.14)

where

k =
2
√
2mχc0Γγ

π
√
m2

χc0
+ γ

, (4.15)

γ =
√
m2

χc0
(m2

χc0
+ Γ2), (4.16)

mχc0 = 3414.71MeV/c2, and (4.17)

Γ = 10.8MeV/c2 [7]. (4.18)

The χc0 veto rejects around 7.5 % of the reconstructed signal MC events.

We neglect the decays via the other resonances because the rates are lower than

the signal decay by three orders of magnitude or the decays are prohibited by P,CP

conservation laws.

4.9 Background sources

Let us consider the sources of background events. As shown in Fig. 4.9, qq dominates

the background and distributes gently in Mbc and M . The rest, BB background events,

are classified into BB combinatorial and BB peaking. The BB combinatorial are the

events where the BCP candidate is reconstructed from the combination of decay products

of both B mesons. In the BB peaking events the BCP candidate is reconstructed solely

from the decay products of either B meson. The Mbc-M scatter plot of BB background

events is shown in the left of Fig. 4.23. The BB combinatorial distribution is flat and
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qq-like while the BB peaking forms a peak in the low-M region. The BB peaking comes

mostly from B → K0
SK

0
SK

∗ decays. We will exclude the region contaminated by BB

peaking, (5.265GeV/c2 < Mbc < 5.29GeV/c2) ∧ (5.08GeV/c2 < M < 5.1814GeV/c2),

when estimating the signal yield to avoid biasing the result. The region is shown as red

× in the right plot of Fig. 4.23.

As the remaining BB combinatorial are similar to the dominant qq component in

terms of Mbc and M , we treat all background together. Though the OCS distribution is

different between qq and BB, it does not affect the signal yield extraction. We determine

the background OCS PDF shape using the control sample data B+ → K0
SK

0
SK

+, where

we expect the same fraction of BB combinatorial to qq as B0 → K0
SK

0
SK

0
S based on the

generic MC.
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Figure 4.23: (left) Mbc-M scatter plot of BB background events in the 700 fb−1 generic

MC that pass our selection. The events are classified to combinatorial background, peak-

ing background from B0B0, and peaking background from B+B−. (right) peaking BB

background events in the generic MC (red dots) are overlaid to the signal MC events (his-

togram). The signal MC is arbitrarily scaled. The red × indicates the region excluded

when we estimate the signal yield.

4.10 Summary of selection criteria

As explained in Chapter 3, we classify the reconstructed events into TD and TI after

applying common selection criteria. Table 4.3 summarizes the baseline selection criteria

required for both TD and TI events and the TD classification criteria additionally required

for TD events.

Table 4.4 shows the cumulative and relative efficiencies of the baseline selection for

signal MC, background MC, and data sample. The cumulative efficiency is normalized

by the number of generated events for signal MC and by the number of events after

selections on K0
S candidate, Mbc, and M for background MC and data. The difference in

the expected and observed events should come from the imperfection of qq simulation.
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Table 4.3: Summary of baseline selection and TD classification criteria
purpose criteria

457.6 < Mπ+π− < 537.6MeV/c2

OK0
S
> 0.75

5.2 < Mbc < 5.29GeV/c2

5.08 < M < 5.48GeV/c2

tag-side vertex fit succeeds

baseline selection σtag
ℓ < 500µm(
χ2

ndf

)tag
< 100

OCS > 0.1

−10 < O′
CS < 10

highest CP-side vertex fit χ2

MK0
SK

0
S
< 3378.8MeV/c2 or 3447.1MeV/c2 < MK0

SK
0
S

none of K0
S from BCP is off-diagonal

at least one of K0
S from BCP has VXD hits

TD-event classification σCP
ℓ < 500µm(
χ2

ndf

)CP
< 3.27

−30 < ∆t < 30 ps

Table 4.4: Relative (cumulative) efficiency (%) of baseline selections for B0 → K0
SK

0
SK

0
S

decays. The efficiency is shown in separate columns for signal MC, background MC,

and data sample. The cumulative efficiency is normalized to the number of all generated

events for signal MC and to the number of events after the first selection for background

MC and data. The last row shows the expected and observed number of events.
selection signal MC background MC data

acceptance,

K0
S selection, Mbc, M 34.10 (34.10) - (100.00) - (100.00)

OCS > 0.1 98.14 (33.47) 50.52 (50.52) 52.61 (52.61)

−10 < O′
CS < 10 100.00 (33.47) 99.97 (50.50) 100.00 (52.61)

tag vertex fit success 98.94 (33.11) 97.67 (49.32) 97.39 (51.24)(
χ2

ndf

)tag
< 100 92.05 (30.48) 89.16 (43.98) 90.90 (46.58)

σtag
ℓ < 500µm 99.90 (30.45) 99.74 (43.86) 99.71 (46.44)

best candidate selection 98.54 (30.00) 96.42 (42.29) 98.11 (45.56)

χc0 veto 92.62 (27.79) 95.63 (40.44) 94.11 (42.88)

expected/observed 110.5 2523 1903

number of events

 qq : 2458

BB comb : 49.1

BB peak : 16.3
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Table 4.5: Relative (cumulative) efficiency (%) of TD classification criteria for B0 →
K0

SK
0
SK

0
S decays. The efficiency is shown in separate columns for signal MC, background

MC, and data sample. The cumulative efficiency is normalized to the number of events

after the baseline selection. The last two rows show the expected and observed number

of TD and TI events.
selection signal MC background MC data

reject off-diagonal K0
S 86.65 (86.65) 81.47 (81.47) 72.99 (72.99)

at least one K0
S with VXD hits 99.57 (86.27) 99.80 (81.31) 99.78 (72.83)(

χ2

ndf

)CP
< 3.27 76.53 (66.02) 67.02 (54.49) 60.03 (43.72)

σCP
ℓ < 500µm 99.85 (65.92) 99.84 (54.40) 99.64 (43.56)

−30 ps < ∆t < 30 ps 99.95 (65.89) 99.90 (54.35) 100.00 (43.56)

TD fraction 65.89 54.35 43.56

expected/observed 72.8 1372 829

number of TD events

 qq : 1344

BB comb : 21.4

BB peak : 6.5


expected/observed 37.7 1152 1074

number of TI events

 qq : 1114

BB comb : 27.7

BB peak : 9.8


The cumulative and relative efficiencies of the TD classification criteria are summa-

rized in Tab. 4.5. The cumulative efficiency is normalized by the number of events after

the baseline selection. While the most of the above selections are loose, the ones about

off-diagonal K0
S and

(
χ2

ndf

)CP
downgrade 35% of events to TI in the signal MC (See Ap-

pendix E for details).

The overall signal reconstruction efficiency including detector acceptance is 27.79%,

for TD events 18.3% and for TI events 9.5% in the signal MC. With 200 × 106 BB, we

expect 110.5 (72.8 TD + 37.7 TI) events assuming the same fraction of B0B0 and B+B−,

B(B0 → K0
SK

0
SK

0
S) = 6× 10−6, and B(K0

S → π+π−) = 0.692. As for background events,

we expect 2523 (1372 TD + 1152 TI) events with 190 fb−1.

In the data the fraction of TD is lower than the MC expectation, because of lower

efficiencies in
(

χ2

ndf

)CP
and off-diagonal K0

S rejection. The data-MC difference of off-

diagonal K0
S fraction is attributed to the difference of PXD efficiency and fake hit rate.

4.11 Figure of merit

The K0
S selection thresholds, (457.6MeV/c2 < Mπ+π− < 537.6MeV/c2) ∧ (OK0

S
> 0.75),

are determined to maximize the figure of merit FOM = S/
√
S +B. Here, S and B are

the expected numbers of signal and background events scaled to 200 fb−1 in a tentative
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Table 4.6: Breakdown of background events using the number of true K0
S . Background

BCP candidates are classified according to the number of true K0
S in BCP (0, 1, 2, 3)

and the fraction of each class is shown in %. The fraction is shown before and after K0
S

selection.
number of true K0

S before K0
S selection after K0

S selection

0 65.0 0.2

1 29.4 3.8

2 5.2 26.2

3 0.3 69.7

signal region (5.27GeV/c2 < Mbc < 5.29GeV/c2) ∧ (5.18GeV/c2 < M < 5.38GeV/c2) ∧
(OCS > 0.5) with all the baseline selections applied except for the ones regarding K0

S ,

best candidate selection, and the χc0 veto.

We calculate FOM while changing theOK0
S
threshold and the width ofMπ+π− window

in steps of 0.01 and 5MeV as shown in Fig. 4.24. The OK0
S
threshold of 0.75–0.9 and

Mπ+π− window of 20–50 MeV/c2 are favored within the statistical fluctuation.

To see the performance of the determined K0
S selection criteria, we count the number

of true K0
S out of three K0

S candidates in each selected background events. As shown in

Tab. 4.6, 78% of background BCP candidates surviving K0
S selection are reconstructed

from random combinations of three true K0
S and thus irreducible.

0.0 0.2 0.4 0.6 0.8 1.0
K0

S
 threshold

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

S/
√
S
+
B

± 15.0 MeV/c2
± 20.0 MeV/c2
± 25.0 MeV/c2
± 30.0 MeV/c2

± 35.0 MeV/c2
± 40.0 MeV/c2
± 45.0 MeV/c2
± 50.0 MeV/c2

Figure 4.24: Result of FOM scan. Curves show the FOM as a function of OK0
S
threshold

with different Mπ+π− window widths denoted in the legend.
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4.12 Data-MC comparison of variables

We compare the distribution of variables between data and MC. For the comparison we

mix the background and signal MC samples equivalent to 700 fb−1 with the expected rate

and normalize the distributions by area. Figure 4.25 and 4.26 provides the comparison

for TD events, and Fig. 4.27 for TI events.

In general the distributions agree well within the statistical uncertainty while we

find discrepancies in qr and σtag
ℓ distributions. These discrepancies should arise from

the background component, which dominates the distributions. Considering that, we

use data sideband rather than MC sample to estimate the PDF of r distribution of

background events in the following analysis (see Sec. 5.2.1) We attribute the discrepancy

in σtag
ℓ distribution to the difference in PXD efficiency and fake hit rate, which is also

indicated by the data-MC difference in off-diagonal K0
S fraction. The imperfectness in

qq simulation can be another reason of the discrepancy. In the following analysis we use

σtag
ℓ to estimate tag-side vertex resolution on an event-by-event basis but do not have to

know the PDF of its distribution (see Sec. 5.3). Therefore, the discrepancy in the σtag
ℓ

distribution does not affect the analysis as long as σtag
ℓ is estimated correctly. The same

tendencies are seen in the control channel, which provide a larger data set and thus more

decisive comparison (see Appendix. A.3).
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Figure 4.25: Data-MC comparison of distributions of B0 → K0
SK

0
SK

0
S TD events (1). The

distributions are normalized by area. Pull is defined as the difference of data and MC

distributions normalized by the statistical uncertainty.
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Figure 4.26: Data-MC comparison of distributions of B0 → K0
SK

0
SK

0
S TD events (2). The

distributions are normalized by area. Pull is defined as the difference of data and MC

distributions normalized by the statistical uncertainty.
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Figure 4.27: Data-MC comparison of distributions of B0 → K0
SK

0
SK

0
S TI events. The

distributions are normalized by area. Pull is defined as the difference of data and MC

distributions normalized by the statistical uncertainty.
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Chapter 5

Estimation of CP asymmetries

5.1 Maximum likelihood fit

We estimate the CP violation parameters by an unbinned maximum likelihood fit (“CP

fit”) using events within the signal region defined as

(5.2708GeV/c2 < Mbc < 5.2882GeV/c2)∧
(5.1814GeV/c2 < M < 5.3661GeV/c2)∧ (5.1)

(−3.945 < O′
CS < 5.807).

The likelihood function to be maximized is

L =
∏
i

PTD(∆ti, qi)
∏
j

PTI(qj), (5.2)

where i runs over TD events and j over TI events. The likelihood for a TD event is given

by

PTD(∆t, q) = fsig

∫
d∆t′PTD

sig (∆t′, q)R(∆t−∆t′) + (1− fsig)Pbkg(∆t), (5.3)

PTD
sig (∆t, q) =

1

4τB0

e
− |∆t|

τ
B0
[
1− q∆w + q(1− 2w)(S sin(∆md∆t) + A cos(∆md∆t))

]
,

(5.4)

and for a TI event,

PTI(q) = fsigP
TI
sig(q) +

1− fsig
2

, (5.5)

PTI
sig(q) =

1

2

[
1− q∆w + q(1− 2w)A

1

1 + x2d

]
. (5.6)

Here,

• fsig is the signal probability calculated on an event-by-event basis called signal

fraction,
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Table 5.1: Parameters in the CP fit and the methods to determine them
parameters method

fsig



Fsig

signal PDF (Mbc,M,O′
CS, r)

background PDF (Mbc,M,O′
CS)

background PDF (r)

signal/background PDF (cos θ∗B)

signal extraction fit to data

fit to signal MC

signal extraction fit to control channel data

Mbc-sideband data of control channel

theoretical assumption

R(δ∆t) fit to signal MC

Pbkg(∆t) fit to Mbc-sideband data

w,∆w calibration using B0 → D(∗)−h+ decays [1]

τB0 ,∆md world average from PDG [7]

• R(δ∆t) is the response function of ∆t measurement called resolution function, and

• Pbkg(∆t) is the PDF of measured ∆t for background events.

In the CP fit, S and A are the only free parameters. We fix the lifetime and mixing

parameters to the world average and consider their uncertainties as a source of systematic

uncertainty [7]. For testing purpose, we sum the PDF over q = ±1 and perform a fit

to determine the lifetime τB0 (“lifetime fit”). Table 5.1 summarizes how the parameters

other than S and A in the CP fit are fixed. We describe the details in the following

sections.

One can include the flavor tagging asymmetry µ as well as ∆w in the PDF to correct

the bias. We rather ignore the effect in the fit model and consider it as a source of

systematic uncertainty in this analysis because the uncertainty of the µ parameters are

still large and µ is not significantly observed for most of r bin.

We use the MIGRAD and MINOS functions from the MINUIT package for the mini-

mization of negative log likelihood and estimation of fit uncertainty [37].

5.2 Signal fraction

The signal fraction fsig is calculated using the fraction of signal events in a given data set

Fsig and five variables that discriminate signal and background:

x⃗ = (Mbc,M,O′
CS, cos θ

∗
B, rbin), (5.7)

fsig(x⃗) =
FsigPsig(x⃗)

FsigPsig(x⃗) + (1− Fsig)Pbkg(x⃗)
, (5.8)

where cos θ∗B is the cosine of the angle between BCP momentum and the boost direc-

tion at the center-of-mass frame and Psig(bkg)(x⃗) is the PDF of x⃗ for signal (background)

component. We describe the one-dimensional PDFs P x
sig(bkg)(x) in Sec. 5.2.1. We de-

fine the five-dimensional PDF as the product of the one-dimensional PDFs assuming no
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Figure 5.1: Signal extraction region on Mbc-M plane

[Region used for signal extraction fit shown on Mbc-M plane (green). The signal region

is shown in blue.]

correlation between them:

Psig(x⃗) = PMbc
sig (Mbc)P

M
sig(M)P

O′
CS

sig (O′
CS)P

cos θ∗B
sig (cos θ∗B)P

rbin
sig (rbin), (5.9)

Pbkg(x⃗) = PMbc
bkg (Mbc;Ebeam)P

M
bkg(M)P

O′
CS

bkg (O′
CS)P

cos θ∗B
bkg (cos θ∗B)P

rbin
bkg (rbin). (5.10)

We determine the overall signal fraction Fsig by an unbinned maximum likelihood fit

(signal extraction fit) to the three-dimensional distribution of Mbc, M , and O′
CS using

the following PDF:

P (Mbc,M,O′
CS;Ebeam) = FsigP

Mbc
sig (Mbc)P

M
sig(M)P

O′
CS

sig (O′
CS)+

(1− Fsig)P
Mbc
bkg (Mbc;Ebeam)P

M
bkg(M)P

O′
CS

bkg (O′
CS), (5.11)

In the signal extraction fit we use the events within

(5.2GeV/c2 < Mbc < 5.29GeV/c2)∧ (5.12)

(5.08GeV/c2 < M < 5.48GeV/c2)∧ (5.13)

(−10 < O′
CS < 10), (5.14)

while excluding the region contaminated by the BB peaking background,

(5.265GeV/c2 < Mbc < 5.29GeV/c2) ∧ (5.08GeV/c2 < M < 5.1814GeV/c2). (5.15)

Figure 5.1 shows the fit region on the Mbc-M plane. We normalize the PDFs of Mbc and

M appropriately within the region. Fsig is defined as the fraction of signal events within

the same region.

We estimate Fsig separately for TD and TI events because MC samples predict sig-

nificantly different Fsig and signal M distribution between them.
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Table 5.2: PDF models of Mbc, M , O′
CS, cos θ

∗
B, and r bin distributions. The number of

free parameters are shown in parentheses.
variable signal background

Mbc Gaussian (3) ARGUS (1)

M double Gaussian (5) 1D Chebyshev polynomial (1)

O′
CS bifurcated Gaussian (3) bifurcated Gaussian + Gaussian (6)

cos θ∗B 1− cos2 θ∗B uniform

r bin histogram histogram

5.2.1 1D PDFs

We model the PDFs for Mbc, M , and O′
CS as

PMbc
sig (Mbc) = G(Mbc;µ

Mbc
sig , σMbc

sig ), (5.16)

PMbc
bkg (Mbc;Ebeam) = ARGUS(Mbc; a

Mbc
bkg , Ebeam/2), (5.17)

PM
sig(M) = fM

1,sigG(M ;µM
1,sig, σ

M
1,sig) + (1− fM

1,sig)G(M ;µM
2,sig, σ

M
2,sig), (5.18)

PM
bkg(M) = 1 + cMbkg

2M −Mmax −Mmin

Mmax −Mmin

, (5.19)

P
O′

CS
sig (O′

CS) = bifG(O′
CS;µ

O′
CS

sig , σ
O′

CS
L,sig , σ

O′
CS

R,sig), (5.20)

P
O′

CS
bkg (O′

CS) = f
O′

CS
1,bkgG(O

′
CS;µ

O′
CS

1,bkg, σ
O′

CS
1,bkg)

+ (1− f
O′

CS
1,bkg)bifG(O′

CS;µ
O′

CS
2,bkg, σ

O′
CS

2L,bkg, σ
O′

CS
2R,bkg), (5.21)

where Mmax = 5.48GeV/c2 and Mmin = 5.08GeV/c2 are the upper and lower limits of

M , the other parameters are free parameters, and functions G, ARGUS, and bifG are

defined as

G(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (5.22)

ARGUS(x; a, c) = x
√

1− (x/c)2ea(1−(x/c)2) [38], and (5.23)

bifG(x;µ, σL, σR) =

{
2σL

σL+σR
G(x;µ, σL) (x < µ)

2σR

σL+σR
G(x;µ, σR) (x ≥ µ)

(5.24)

We determine the parameters of signal PDFs of Mbc, M , and O′
CS by an unbinned

maximum likelihood fit to 1000 events sampled from the signal MC sample. We keep

the number of events only one order of magnitude higher than the expected number

in data so that we can reasonably simplify the PDF models. Because M distribution

for TI events have a larger and broader tail than TD, we define a separate parameter

set for M . Figure 5.2 shows the distributions and fitted functions. The signal region

in Eq. (5.1) retains 99.73% of the signal PDF in each dimension. We determine the

background PDF parameters by a signal extraction fit to the control sample B+ →
K0

SK
0
SK

+ simultaneously with its signal fraction (see Appendix A). The parameters of

Mbc, M , and O′
CS PDFs are summarized in Tab. 5.3.
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Figure 5.2: Mbc, M , and O′
CS distributions for signal MC events. M distributions are

shown separately for TD and TI events. The red curves show the fitted PDFs.
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Table 5.3: Parameters of Mbc, M , and O′
CS PDFs

parameter value

µMbc
sig 5.27951± 0.00009 GeV/c2

σMbc
sig 0.002899± 0.000065GeV/c2

fM
1,sig(TD) 0.833± 0.021

µM
1,sig(TD) 5.27962± 0.00034GeV/c2

σM
1,sig(TD) 0.00853± 0.00032 GeV/c2

µM
2,sig(TD) 5.2737± 0.0031GeV/c2

σM
2,sig(TD) 0.0384± 0.0027GeV/c2

fM
1,sig(TI) 0.574± 0.024

µM
1,sig(TI) 5.27845± 0.00057GeV/c2

σM
1,sig(TI) 0.01081± 0.00063GeV/c2

µM
2,sig(TI) 5.2641± 0.0038GeV/c2

σM
2,sig(TI) 0.0740± 0.0035GeV/c2

µ
O′

CS
sig 2.53± 0.10

σ
O′

CS
L,sig 2.160± 0.075

σ
O′

CS
R,sig 1.091± 0.062

aMbc
bkg −23.3± 1.3

cMbkg −0.208± 0.019

f
O′

CS
1,bkg 0.869± 0.033

µ
O′

CS
1,bkg −1.118± 0.041

σ
O′

CS
1,bkg 1.780± 0.038

µ
O′

CS
2,bkg 2.25± 0.30

σ
O′

CS
2L,bkg 4.61± 0.38

σ
O′

CS
2R,bkg 0.74± 0.21
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Figure 5.3: Distributions of cos θ∗B in signal MC (a), background MC (b), and Mbc-

sideband data (c). The red curve shows the signal (a) and background (b,c) PDFs.

We define the PDFs of cos θ∗B as

P
cos θ∗B
sig (cos θ∗B) =

3

4
(1− cos2 θ∗B) and (5.25)

P
cos θ∗B
bkg (cos θ∗B) = 0.5 . (5.26)

The signal PDF is the theoretical distribution where two pseudoscalar mesons are pro-

duced from a transversely polarized vector meson. Figure 5.3 shows the PDFs together

with cos θ∗B distributions for signal and background MC samples and Mbc-sideband data

defined as Mbc < 5.265GeV/c2.

We use histogram PDFs for r bin. The signal PDF is sampled from MC. Because we

find a disagreement in the rbin distributions between data and MC as shown in Fig. 5.4,

we use the r bin distribution in theMbc sideband (Mbc < 5.265GeV/c2) of control sample

data B+ → K0
SK

0
SK

+ as the background PDF. We also confirm that TD and TI events
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have similar r bin distribution as shown in Fig. 5.5 since we keep the same tag-side vertex

cut for both categories.
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Figure 5.4: r bin distributions in Mbc-sideband data and background MC. The distribu-

tions are shown each for B0 → K0
SK

0
SK

0
S (a) and B+ → K0

SK
0
SK

+ (b).
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Figure 5.5: r bin distributions of TD and TI events from B0 → K0
SK

0
SK

0
S signal MC (a)

and background MC (b)

5.2.2 Results of signal extraction fit

Figure 5.6 and 5.7 shows the fit result of three-dimensional fits to TD and TI events.

Table 5.4 summarizes the obtained values of Fsig and purity in the signal region.

The total number of observed events, 103+12
−11, is consistent with our expectation,

106± 9, which is based on:

• NBB = (198± 3.0)× 106,
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Table 5.4: Results of signal extraction fit to B0 → K0
SK

0
SK

0
S data. Nsig is the number of

signal events.
TD events TI events total

Number of events in the fit 788 1005 1793

Fsig 0.067603+0.010114
−0.009328 0.049967+0.008149

−0.007487 -

Nsig 53.27+8.19
−7.59 50.22+8.34

−7.69 103.49+11.69
−10.80

Nsig in signal region 52.9 48.1 101.0

purity in signal region 53.7 % 44.7 % 49.0 %

• B(Υ(4S) → B0B0) = 0.486± 0.006,

• B(B0 → K0
SK

0
SK

0
S) = (6.0± 0.5)× 10−6,

• B(K0
S → π+π−) = 0.692, and

• reconstruction efficiency of 27.8 % in MC,
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Figure 5.6: Results of signal extraction fit to TD events in B0 → K0
SK

0
SK

0
S data. The

black dots with error bars show the distribution. The black line shows the fitted PDF.

The red and blue lines show the signal and background components of the PDF. In the

right column, projections to the signal region ofM orMbc are shown. The step structure

in (a,c) originates from the non-rectangular fit region shown in Fig. 5.1.
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Figure 5.7: Results of signal extraction fit to TI events in B0 → K0
SK

0
SK

0
S data. The

black dots with error bars show the distribution. The black line shows the fitted PDF.

The red and blue lines show the signal and background components of the PDF. In the

right column, projections to the signal region ofM orMbc are shown. The step structure

in (a,c) originates from the non-rectangular fit region shown in Fig. 5.1.
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5.3 Resolution function

We define the resolution function as the convolution of four functions [39],

R = Rk ⊗Rrec ⊗Rasc ⊗Rnp, (5.27)

where

• Rk corrects an approximation of boost factor,

• Rrec stands for the detector resolution of BCP vertex position,

• Rasc stands for the detector resolution of Btag vertex position, and

• Rnp stands for the bias on Btag vertex position due to secondary tracks from long-

lived intermediate states including a charm quark.

The correction of boost factor requires estimation of cos θ∗B and Ebeam. The detector

resolution and the secondary-track bias strongly depend on χ2/ndf and σℓ of the vertex

fit, so we use them as conditional variables of Rrec, Rasc, and Rnp to describe the resolution

well and to eventually improve the sensitivity to CP violation.

In this section we use TD events from the signal MC but with a loose cut,
(

χ2

ndf

)CP
<

100, to determine the parameters of resolution function. As the parameter determination

fully relies on the MC, we validate the parameters using B+ → K0
SK

0
SK

+ data, for which

we set most of the resolution function parameters common to B0 → K0
SK

0
SK

0
S . Although

the resolution function works fine for B0 → K0
SK

0
SK

0
S up to

(
χ2

ndf

)CP
< 100, we find

that the common parameters cannot describe the resolution for B+ → K0
SK

0
SK

+ when(
χ2

ndf

)CP
is large (see Appendix A). Therefore we conservatively apply the tight selection

of
(

χ2

ndf

)CP
< 3.27 to TD events in the CP fit. Within the

(
χ2

ndf

)CP
range, the common

resolution function parameters work for both B+ → K0
SK

0
SK

+ and B0 → K0
SK

0
SK

0
S .

5.3.1 Kinematic approximation

In Eq. (3.7) we approximate the boost factors of B mesons by that of Υ(4S) as the B’s

are almost at rest at the center-of-mass frame. They are correctly expressed as:

(βγ)CP = βγ
E∗

B

mB

+ γ
p∗B cos θ∗B
mB

≡ (ak + ck)βγ (5.28)

(βγ)tag = βγ
E∗

B

mB

− γ
p∗B cos θ∗B
mB

≡ (ak − ck)βγ, (5.29)

where E∗
B and p∗B are the energy and momentum magnitude of B meson at the center-

of-mass frame calculated from Ebeam:

E∗
B = Ebeam/2, (5.30)

p∗B =
√

(Ebeam/2)2 −m2
B. (5.31)
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Without vertex resolution, measured ∆t would be

∆t =
ℓCP − ℓtag

βγ
(5.32)

=
(βγ)CP

βγ
tCP − (βγ)tag

βγ
ttag (5.33)

= ak∆t
true + ck(tCP + ttag), (5.34)

where tCP and ttag are the true proper decay time of BCP and Btag. ak ∼ 1.002 accounts

for a relativistic effect and ck ∼ 0.22 cos θ∗B for correction due to nonzero B momentum

at the center-of-mass system. We calculate ak from the beam energy calibration and

measure ck on an event-by-event basis.

The PDF for the measured ∆t is given by

P (∆t) =

∫
d∆ttrueEf(∆t

true)Rk(∆t−∆ttrue) (5.35)

=
1

2akτB
exp

(
− |∆t|
(ak ± ck)τB

)
(+for ∆t ≥ 0,− for ∆t < 0), (5.36)

where Ef ≡ 1
2τB

exp
(
− |∆ttrue|

τB

)
is the true PDF for ∆t. The expression of Rk is in

Ref. [39].

5.3.2 CP-side resolution function

We define the CP-side resolution function Rrec as

Rrec

(
δℓCP ;

( χ2

ndf

)CP
, σCP

ℓ

)
= (1− fCP

tail )G

(
δℓCP ;µ = 0, σ = (sCP,0

main + sCP,1
main

( χ2

ndf

)CP
)σCP

ℓ

)
+fCP

tailG

(
δℓCP ;µ = 0, σ = (sCP,0

tail + sCP,1
tail

( χ2

ndf

)CP
)σCP

ℓ

)
,

(5.37)

where δℓCP is the residual of measured vertex position from the true position and fCP
tail

and s
CP,0(1)
main(tail) are free parameters. We determine the parameters by fitting Rrec to the

distribution of δℓCP ,
(

χ2

ndf

)CP
, and σCP

ℓ in the signal MC. The parameters are shown

in Tab. 5.5. Figure 5.8 shows the δℓCP distribution and the fitted function. Dividing

the distribution in bins of σCP
ℓ and

(
χ2

ndf

)CP
as in Figs. 5.9 and 5.10, we find that the

resolution strongly depends on these variables and Rrec describe the dependence well.

Rrec can also cover well the difference in number of PXD hits on the CP side (See

Appendix D).
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Figure 5.8: δℓCP distribution of signal MC events and Rrec fitted to the distribution. The

bottom plot shows the difference of the distribution and the fit curve normalized by the

statistical uncertainty.
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ℓ < 38µm
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ℓ

Figure 5.9: δℓCP distribution of signal MC events shown in bins of σCP
ℓ . Rrec is overlaid

to the distribution, whose parameters are fixed by the fit shown in Fig. 5.8. The bottom

plot shows the difference of the distribution and the fit curve normalized by the statistical

uncertainty.
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Figure 5.10: δℓCP distribution of signal MC events shown in bins of
(

χ2

ndf

)CP
. Rrec is

overlaid to the distribution, whose parameters are fixed by the fit shown in Fig. 5.8. The

bottom plot shows the difference of the distribution and the fit curve normalized by the

statistical uncertainty.

Table 5.5: CP-side resolution function parameters fixed by the fit to signal MC shown in

Fig. 5.8
parameter value

sCP,0
main 0.9344± 0.0060

sCP,1
main 0.0448± 0.0019

sCP,0
main 1.126± 0.026

sCP,1
main 0.6619± 0.020

fCP
tail 0.2030± 0.0073

76



5.3.3 tag-side resolution functions

We describe the tag-side resolution by the convolution of two functions, Rasc and Rnp.

Rasc takes the same form as Rrec but with independent parameters:

Rasc

(
δℓtag;

( χ2

ndf

)tag
, σtag

ℓ

)
= (1− f tag

tail )G

(
δℓtag;µ = 0, σ = (stag,0main + stag,1main

( χ2

ndf

)tag
)σtag

ℓ

)
+f tag

tailG

(
δℓtag;µ = 0, σ = (stag,0tail + stag,1tail

( χ2

ndf

)tag
)σtag

ℓ

)
.

(5.38)

We define Rnp as the sum of a delta function and asymmetric exponential tails:

Rnp

(
δℓtag;

( χ2

ndf

)tag
, σtag

ℓ

)
= fδδ(δℓ

tag) + (1− fδ)fpEp(δℓ
tag; τ = τ ′σtag

ℓ )

+ (1− fδ)(1− fp)En(δℓ
tag; τ = τ ′σtag

ℓ ), (5.39)

where Ep and En are one-sided exponential functions:

Ep(x; τ) =

{
1
τ
exp (−x

τ
) (x > 0)

0 (x ≤ 0)
(5.40)

En(x; τ) =

{
0 (x > 0)
1
τ
exp (+x

τ
) (x ≤ 0)

, (5.41)

and fδ, fp, and τ
′ are expressed as

fδ =


0 (f 0

δ + f 1
δ

(
χ2

ndf

)tag
< 0)

f 0
δ + f 1

δ

(
χ2

ndf

)tag
(0 ≤ f 0

δ + f 1
δ

(
χ2

ndf

)tag ≤ 1)

1 (f 0
δ + f 1

δ

(
χ2

ndf

)tag
> 1)

, (5.42)

fp =


0 (f 0

p + f 1
pσ

tag
ℓ < 0)

f 0
p + f 1

pσ
tag
ℓ (0 ≤ f 0

p + f 1
pσ

tag
ℓ ≤ 1)

1 (f 0
p + f 1

pσ
tag
ℓ > 1)

, (5.43)

τ ′ =

{
τ 0 + τ 1

(
χ2

ndf

)tag
(τ 0 + τ 1

(
χ2

ndf

)tag ≤ τmax)

τmax (τ 0 + τ 1
(

χ2

ndf

)tag
> τmax)

, (5.44)

using seven free parameters f 0,1
δ , f 0,1

p , and τ 0,1,max.

As well as Rrec, we determine the 12 parameters by fitting Rasc ⊗Rnp to the tag-side

distribution. The parameters are shown in Tab. 5.6. Figures 5.11, 5.12 and 5.13 shows

the δℓtag distribution and the fitted function over entire range and in bins of σtag
ℓ and(

χ2

ndf

)tag
.

77



1000− 800− 600− 400− 200− 0 200 400 600 800 1000
TagVLBoost residual [um]

1

10

210

3
10

nEntries = 79887
s0_main = 1 +/- 0.0078

s1_main = 0.0675 +/- 0.0032
s0_tail = 9.49 +/- 0.68
s1_tail = 0.236 +/- 0.14

f_tail = 0.00455 +/- 0.00071
tau0 = 0.955 +/- 0.022
tau1 = 0.203 +/- 0.0044
taumax = 5.24 +/- 0.14

f0_pos = 0.875 +/- 0.0058
f2_pos = -0.00185 +/- 0.00016

f0_delta = 0.706 +/- 0.011
f1_delta = -0.164 +/- 0.0045

fmin_delta = 0 +/- 0

TagVLBoost residual [um]

1000− 800− 600− 400− 200− 0 200 400 600 800 1000
TagVLBoost residual [um]

5−
4−
3−
2−
1−
0
1
2
3
4
5

P
ul

l

Figure 5.11: δℓtag distribution of signal MC events and Rasc⊗Rnp fitted to the distribution.

The bottom plot shows the difference of the distribution and the fit curve normalized by

the statistical uncertainty.
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(a) σtag
ℓ < 17µm
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(b) 17µm < σtag
ℓ < 22µm
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(c) 22µm < σtag
ℓ < 30µm
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(d) 30µm < σtag
ℓ

Figure 5.12: δℓtag distribution of signal MC events shown in bins of σtag
ℓ . Rasc ⊗ Rnp is

overlaid to the distribution, whose parameters are fixed by the fit shown in Fig. 5.11.

The bottom plot shows the difference of the distribution and the fit curve normalized by

the statistical uncertainty.
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< 1.85

1000− 800− 600− 400− 200− 0 200 400 600 800 1000
TagVLBoost residual [um]

1

10

210

3
10

nEntries = 19984
s0_main = 1 +/- 0.0078

s1_main = 0.0675 +/- 0.0032
s0_tail = 9.49 +/- 0.68
s1_tail = 0.236 +/- 0.14

f_tail = 0.00455 +/- 0.00071
tau0 = 0.955 +/- 0.022
tau1 = 0.203 +/- 0.0044
taumax = 5.24 +/- 0.14

f0_pos = 0.875 +/- 0.0058
f2_pos = -0.00185 +/- 0.00016

f0_delta = 0.706 +/- 0.011
f1_delta = -0.164 +/- 0.0045

fmin_delta = 0 +/- 0

TagVLBoost residual [um] (1.85159 < chi2/ndf < 4.35771)

1000− 800− 600− 400− 200− 0 200 400 600 800 1000
TagVLBoost residual [um]

5−
4−
3−
2−
1−
0
1
2
3
4
5

P
ul

l

(c) 1.85 <
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Figure 5.13: δℓtag distribution of signal MC events shown in bins of

(
χ2

ndf

)tag
. Rasc ⊗ Rnp

is overlaid to the distribution, whose parameters are fixed by the fit shown in Fig. 5.11.

The bottom plot shows the difference of the distribution and the fit curve normalized by

the statistical uncertainty.

Table 5.6: Tag-side resolution function parameters fixed by the fit to signal MC shown

in Fig. 5.11
parameter value

stag,0main 1.0000± 0.0078

stag,1main 0.0675± 0.0032

stag,0main 9.49± 0.68

stag,1main 0.24± 0.14

f tag
tail 0.00455± 0.00071

τ 0 0.955± 0.022

τ 1 0.2025± 0.0044

τmax 5.24± 0.14

f 0
p 0.8748± 0.0058

f 1
p −0.00185± 0.00016µm−1

f 0
δ 0.706± 0.011

f 1
δ −0.164± 0.045
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5.3.4 Lifetime fit

To confirm that the resolution function correctly describes the ∆t resolution in MC we

extract B0 lifetime using about 60,000 TD events from the signal MC sample, where the(
χ2

ndf

)CP
selection is loose:

(
χ2

ndf

)CP
< 100. We calculate ∆t-like variables using MC infor-

mation to incorporate the resolution effects step by step: ∆ttrue,
ℓtrueCP −ℓtruetag

βγc
,
ℓCP−ℓtruetag

βγc
,
ℓtrueCP −ℓtag

βγc
,

and ∆t. For each variable, B0 lifetime is determined by maximizing the appropriate PDF:

P
(
∆ttrue

)
= Ef , (5.45)

P

(
ℓtrueCP − ℓtruetag

βγc

)
= Ef ⊗Rk, (5.46)

P

(
ℓCP − ℓtruetag

βγc

)
= Ef ⊗Rk ⊗Rrec, (5.47)

P

(
ℓtrueCP − ℓtag

βγc

)
= Ef ⊗Rk ⊗Rasc ⊗Rnp, and (5.48)

P (∆t) = Ef ⊗Rk ⊗Rrec ⊗Rasc ⊗Rnp. (5.49)

Table 5.7 summarizes the results. The lifetimes agree with each other, which indicates

the resolution function works appropriately to take into account each effect.

However, the overall results seem slightly shorter than the MC input 1.519 ps. We

consider this to be a bias that occurs owing to K0
S BDT selection in the following mecha-

nism. The BDT relies on the variables about the flight length and direction of K0
S which

assumes that K0
S is produced at the IP. When B0 flies for long distance, the assumption

is violated and the K0
S selection efficiency slightly gets worse. We leave the bias as it is

so small and does not affect the CP violation measurement.

Table 5.7: Results of lifetime fits to signal MC events using ∆t variables with partial

resolution effects
variable τB0 [ps]

∆ttrue 1.509± 0.006
ℓtrueCP −ℓtruetag

βγc
1.510± 0.006

ℓCP−ℓtruetag

βγc
1.507± 0.007

ℓtrueCP −ℓtag
βγc

1.517± 0.007

∆t 1.513± 0.008

5.4 Background ∆t distribution

Considering the background events are dominated by qq events, we regard the true ∆t

distribution for them is similar to a delta function so define the ∆t PDF in a similar form

as Rrec and Rasc:
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Pbkg(∆t;X
2, σ∆t) = (1− fbkg

tail )G
(
∆t;µ = µbkg

main, σ = (sbkg,0main + sbkg,1mainX
2)σ∆t

)
+fbkg

tail G
(
∆t;µ = µbkg

tail , σ = (sbkg,0tail + sbkg,1tail X2)σ∆t

)
, (5.50)

where X2 ≡ 1
2

(
χ2

ndf

)CP
+ 1

2

(
χ2

ndf

)tag
, σ∆t ≡

√
(σCP

ℓ )2 + (σtag
ℓ )2/(βγ) is the ∆t uncertainty,

and the function has seven free parameters,
{
fbkg
tail , µ

bkg
main(tail), s

bkg,0(1)
main(tail)

}
.

We determine the background ∆t PDF parameters by a fit to sideband data Mbc <

5.265GeV/c2. The fit results are shown in Fig. 5.14 and the parameters are in Tab. 5.8.

We compare the background ∆t distributions within different Mbc ranges in the MC as

shown in Fig. 5.15. No visible correlation between ∆t andMbc supports the extrapolation

of the ∆t distribution in the Mbc sideband to the signal region.
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Figure 5.14: ∆t distribution of sideband data and fitted Pbkg(∆t). The bottom plot

shows the difference of the distribution and the fit curve normalized by the statistical

uncertainty.

Table 5.8: Background ∆t PDF parameters
parameter value

fbkg
tail 0.304± 0.074

µbkg
main 0.049± 0.079

µbkg
tail −0.09± 0.21

sbkg,0main 0.989± 0.075

sbkg,0tail 0.68± 0.35

sbkg,1main 0.079± 0.030

sbkg,1tail 1.0± 0.29
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Figure 5.15: ∆t distributions of background MC events shown in different bins of Mbc

5.5 Validation

We perform various tests of the analysis procedure as follows:

• ensemble test

to examine the fit program,

• linearity test of CP fit using high-statistics signal MC

to examine the resolution function and flavor tagger output,

• lifetime fit and CP fit using 700 fb−1 generic MC

to examine the PDF models for signal fraction and to spot overlooked effects

such as unknown background components, correlations between variables (Punzi

effect [40]), etc.,

• lifetime fit and CP fit using control sample data B+ → K0
SK

0
SK

+

to spot a bias due to data-MC difference of resolution function, flavor tagger, PDF

shapes etc.,

• lifetime fit using B0 → K0
SK

0
SK

0
S data

to spot a bias due to data-MC difference of resolution function, PDF shapes etc.

5.5.1 Ensemble test

We generate “toy MC” samples to perform an ensemble test of the fitter in the following

procedure:

1. choose input CP asymmetries (Sinput, Ainput)

2. fix the equivalent statistics and calculate the expected number of events for each

event type (signal/background and TD/TI) by scaling the yields obtained in MC
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3. fix randomly the observed number of signal and background events based on the

Poisson statistics and the expected values

4. generate randomly a set of variables (Mbc, M , O′
CS, cos θ

∗
B, r bin, q, ∆t,

(
χ2

ndf

)CP
,

σCP
ℓ ,

(
χ2

ndf

)tag
, σtag

ℓ ) for each event based on the PDF of corresponding event type.

Here, χ2/ndf and σℓ are sampled from the MC distributions: we sort the values in

the MC sample, randomly choose two consecutive values, and take a random value

within the interval between the two.

The toy MC samples are generated in the following configurations:

• expected number of signal and background events are set to 200 fb−1 equivalent or

2 ab−1, and

• CP asymmetries are varied:

(Sinput, Ainput) = (−1, 0), (−0.8, 0), ..., (+1, 0), and (0,−1), (0,−0.8), ...(0,+1).

For each configuration we generate 10,000 samples for 200 fb−1 equivalent and 500 samples

for 2 ab−1. We assume flavor symmetry of the flavor tagging efficiency by setting µ = 0

in all r bins in the event generation.

We estimate S and A for each experiment and fit a Gaussian function to the pull

distribution of them for each configuration. Here, the pull is defined as the differ-

ence of the estimated value from the true value divided by the estimation uncertainty:

Spull ≡ (Sfit−Sinput)/δS, Apull ≡ (Afit−Ainput)/δA. Figure 5.16 show the mean and stan-

dard deviation of the fitted Gaussian functions as a function of input CP asymmetries.

With the larger statistics, the pull distributions are consistent with the standard normal

distribution.

With the lower statistics, we observe a bias in the pull mean especially for configura-

tions with large CP violation. We also find the underestimation of fit uncertainty as the

pull width larger than unity. We consider this bias to be a specific issue with low statis-

tics as it is not significant in the 2 ab−1 sample. We use a frequentist approach [41] [42]

to estimate the confidence interval for the CP asymmetries, taking into account the bias

(See Appendix G).

5.5.2 Linearity test of CP fit using signal MC

We generate signal MC samples with nonzero CP asymmetries to test the linearity of

the CP fit results. For each of the following parameter sets 20000 events are simulated,

which is roughly equivalent to 10 ab−1:

(Sinput, Ainput) = (−1, 0), (−0.8, 0), ..., (+1, 0), and (0,−1), (0,−0.8), ...(0,+1). (5.51)

We determine CP asymmetries for each sample, using only the signal events. Figure 5.17

shows the fit results. The good linearity indicates no issue in the resolution function or

flavor tagger that would dilutes or exaggerates CP violation.
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Figure 5.16: Results of ensemble test for CP fit. For 2 ab−1-equivalent (a) and 200 fb−1-

equivalent (b) toy MC samples, the mean (µ) and standard deviation (σ) of pull distri-

bution of the fitted CP asymmetries are shown as functions of input CP asymmetries.

The error bars indicate the uncertainty of Gaussian fits to the pull distributions. A linear

function is fitted to each plot by the method of least squares.
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Figure 5.17: Results of linearity test of CP fit. Each data point shows the result of CP

fit using signal MC generated with the input CP asymmetry in the horizontal axis. The

error bar indicates the uncertainty of each CP fit. A linear function is fitted to each plot

by the method of least squares. In the upper (lower) plots Ainput (Sinput) is fixed to be

zero while Sinput (Ainput) is varied.

However, a small offset is seen in the Afit vs Ainput plot. We attribute the offset to

the small asymmetry of the flavor tagging efficiency µ. Such an offset is not seen in the

toy MC study with µ = 0 described in the previous subsection. The bias due to µ is

considered as a systematic uncertainty.

5.5.3 Lifetime fit and CP fit using 700 fb−1 generic MC

We apply the whole analysis procedure using the 700 fb−1 generic MC sample as follows:

1. perform signal extraction fit on B+ → K0
SK

0
SK

+ sample to determine Fsig and

background PDF shapes for Mbc, M , and O′
CS,

2. perform signal extraction fit to B0 → K0
SK

0
SK

0
S sample using the background PDFs,

3. obtain background r bin PDF from B+ → K0
SK

0
SK

+ sideband,

4. perform background ∆t fit to B+ → K0
SK

0
SK

+ and B0 → K0
SK

0
SK

0
S sideband, and

5. perform lifetime fit and CP fit to B+ → K0
SK

0
SK

+ and B0 → K0
SK

0
SK

0
S .
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Relevant distributions are shown in Appendix I. The resulted lifetimes and CP asym-

metries are consistent with the MC input as shown in Tab. 5.10. Fsig values shown in

Tab. 5.9 are also consistent with the true value calculated from MC information.

Note that the branching fraction of B+ → K0
SK

0
SK

+ and B0 → K0
SK

0
SK

0
S are almost

doubled by a mistake in the generic MC sample, so Fsig is larger than what we expect

in the real data. We also eliminate B → X(→ K0
SK

0
S)K(X = ηc, ηc(2S), J/ψ) decays,

which are prohibited but exist in the MC, from the sample beforehand.

Table 5.9: Results of signal extraction fits to generic MC. N true
sig and N true

bkg is the number

of signal (true B+ → K0
SK

0
SK

+ events for B+ → K0
SK

0
SK

+ sample) and background

events in the fit region. F true
sig is defined as N true

sig /(N true
sig +N true

bkg ).

mode parameter fitted value F true
sig N true

sig N true
bkg

aMbc
bkg −28.07± 0.52

cMbkg −0.2473+0.0077
−0.0076

f
O′

CS
1,bkg 0.567+0.081

−0.125

µ
O′

CS
1,bkg −1.470+0.084

−0.137

B+ → K0
SK

0
SK

+ σ
O′

CS
1,bkg 1.558+0.075

−0.127

µ
O′

CS
2,bkg 0.78+0.22

−0.32

σ
O′

CS
2L,bkg 3.15+0.17

−0.22

σ
O′

CS
2R,bkg 1.314+0.089

−0.073

Fsig 0.03107± 0.00085 0.0300 1579 50996

B0 → K0
SK

0
SK

0
S TD event Fsig 0.1094+0.0045

−0.0044 0.1065 585 4908

B0 → K0
SK

0
SK

0
S TI event Fsig 0.0594+0.0042

−0.0041 0.0529 232 4150

Table 5.10: Results of lifetime and CP fits to generic MC. MC input values are shown in

parentheses.
mode τB [ps] S A

B+ → K0
SK

0
SK

+ 1.586+0.052
−0.050 −0.014± 0.088 fixed at 0

(1.638) (0) (0)

B0 → K0
SK

0
SK

0
S 1.435+0.075

−0.073 0.05± 0.16 0.001± 0.087

(1.519) (0) (0)

5.5.4 Lifetime fit and CP fit using control sample

We extract B+ lifetime and ostensible mixing-induced CP asymmetry from the B+ →
K0

SK
0
SK

+ data by separate fits. The fit results are as expected and exhibit no issue in

the analysis procedure.

The extracted lifetime,

τB+ = 1.53+0.19
−0.17 ps, (5.52)
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(b) sPlot for signal and signal PDF

Figure 5.18: Results of lifetime fit to B+ → K0
SK

0
SK

+ data. The left plot shows the

∆t distribution and the fitted PDF. The right plot shows the signal component of ∆t

distribution using the sPlot technique and the signal PDF.

is consistent with the world average 1.638±0.004 ps[7]. Figure 5.18 shows the ∆t distribu-

tion and the distribution for the signal component extracted with the sPlot technique [43].
The sPlot is a technique to reweight the data sample to decompose its distribution of a

control variable using the information of variables that discriminate the components. We

calculate the weight (sWeight) for the sPlot using Mbc, M , O′
CS, r bin, and cos θ∗B as the

discriminating variables. The sPlot is shown only to visualize the signal component and

is not used for any analysis.

We then perform a CP fit to determine S while fixing A to be zero. Because charged B

mesons do not mix with each other, the ostensible mixing-induced asymmetry is expected

to be zero. We fix the lifetime and mixing parameters to be τB+ = 1.638 ps and ∆md =

0.507 ps−1 in the fit. We fix w and ∆w to the values determined by Ref. [1].

The obtained value,

S = 0.37+0.31
−0.33, (5.53)

is consistent with null asymmetry in 1.1 σ. Figure 5.19 shows the ∆t distributions of

q = +1 and q = −1 events and their asymmetry as well as the fitted PDF for each

flavor and the asymmetry of the PDFs. The error bars of the asymmetry plot show the

Clopper-Pearson interval of 68% confidence level. Figure 5.20 shows the sPlot for the

signal component and signal PDFs. We calculate the error bars of the asymmetry plot

by propagating the uncertainty of sWeights.
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Figure 5.19: Result of CP fit to B+ → K0
SK

0
SK

+ data (1). The upper plots show the ∆t

distribution and fitted PDF separately for q = +1 and q = −1 events. The lower plots

show the asymmetry of them between the different flavors. The right plots show only the

events fulfilling r > 0.5.
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Figure 5.20: Result of CP fit to B+ → K0
SK

0
SK

+ data (2). The upper plots show the

signal component of ∆t distribution extracted with the sPlot technique and signal PDF

separately for q = +1 and q = −1 events. The lower plots show the asymmetry of them

between the different flavors. The right plots show only the events fulfilling r > 0.5.
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5.5.5 Lifetime fit using B0 → K0
S
K0

S
K0

S
data

We determine the B0 lifetime using the B0 → K0
SK

0
SK

0
S data to be

τB0 = 1.90+0.35
−0.29 ps, (5.54)

which is consistent with the world average 1.519± 0.004 ps at 1.3σ level. The lifetime fit

results are shown in Fig. 5.21.
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(b) sPlot for signal and signal PDF

Figure 5.21: Results of lifetime fit to B0 → K0
SK

0
SK

0
S data. The left plot shows the

∆t distribution and the fitted PDF. The right plot shows the signal component of ∆t

distribution using the sPlot technique and the signal PDF.

5.6 Fit results

We determine the CP asymmetries in B0 → K0
SK

0
SK

0
S data as

S = −1.86+0.60
−0.52(MINOS), and (5.55)

A = −0.22+0.22
−0.21(MINOS), (5.56)

where the uncertainties are estimated by MINOS. Figures 5.22 and 5.23 show the fit

results in the same manner as in Sec. 5.5.4. Only TD events are shown in the plots.

Figure 5.24 shows the negative log likelihood function normalized by its minimum value

−2 log(L/Lmin) as functions of S and A.

Although the central value is far beyond the physical boundary of Eq. (1.41), the

results are not extremely unlikely. Performing pseudo experiments on the assumption of

(Sinput, Ainput) = (−0.7, 0), which is expected in the SM, we find that the probability to ob-

tain a result less frequent than our result, P (Sfit, Afit) < P (Sfit = −1.86, Afit = −0.22), is

15%. Here, P (Sfit, Afit) is the PDF of S and A obtained by the pseudo experiments and de-

fined as P (Sfit, Afit) = P (Sfit, Afit|Sinput = −0.7, Ainput = 0) using P (Sfit, Afit|Sinput, Ainput)

given in Appendix G. The reason of such a large value is that there are no high-r events
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Figure 5.22: Result of CP fit to B0 → K0
SK

0
SK

0
S data (1). The plots contain only TD

events. The upper plots show the ∆t distribution and fitted PDF separately for q = +1

and q = −1 events. The lower plots show the asymmetry between the different flavors.

The right plots show only the events fulfilling r > 0.5.

with unfavored flavor in the region where the asymmetry curve oscillates the largest

(|∆t| ∼ 4 ps). We determine the most probable values within the physical region to be

S = −0.98 and A = −0.18 by maximizing a likelihood function of S and A obtained from

toy MC samples (see Appendix G).

As we find the underestimation of the fit uncertainty from the ensemble test, we

estimate statistical uncertainties in a parametric bootstrap method. We generate pseudo

experiments using the most probable values as input. Figure 5.25 shows the distributions

of S and A obtained in the pseudo experiments. We define the distance between the

input value and 18 (84) percentile of the distribution as the upper (lower) uncertainty.

With this method, we update the result to be

S = −1.86+0.91
−0.46, and (5.57)

A = −0.22+0.30
−0.27. (5.58)

If we use only TD events in the fit, we obtain S = −1.84+0.60
−0.51 and A = −0.07+0.30

−0.28,

where the uncertainties are estimated by MINOS. Comparing the MINOS uncertainties

to Eqs. (5.55) and (5.56), we find the inclusion of TI events improves the uncertainty for

A by a factor 0.75.
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Figure 5.23: Result of CP fit to B0 → K0
SK

0
SK

0
S data (2). The upper plots show the

signal component of ∆t distribution extracted with the sPlot technique and signal PDF

separately for q = +1 and q = −1 events. The plots contain only TD events. The lower

plots show the asymmetry of them between the different flavors. The right plots show

only the events fulfilling r > 0.5.
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Figure 5.24: Negative log likelihood function normalized by its minimum value as func-

tions of S (left) and A (right). A (S) is fixed to the optimal value in Eq. (5.56)((5.55))

in the left (right) plot.
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red dashed lines are 18 and 84 percentiles of the distribution.
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5.7 Systematic uncertainties

Tab. 5.11 summarizes the systematic uncertainties in our measurement. We estimate

systematic uncertainties in different methods depending on their sources as follows.

• parameter uncertainty

In the CP fit, many parameters are fixed by independent measurements on real data

or MC. To take into account the uncertainty of the parameters, we repeat CP fits

adding a random Gaussian deviation to these parameters. The standard deviation

of the Gaussian is determined by the uncertainty of the corresponding parameter.

For a parameter fixed by MC, we conservatively double the Gaussian deviation.

We fit a Gaussian function to the distribution of S and A obtained by the repeated

CP fits and regard the standard deviation of the fitted function as a systematic

uncertainty. Another approach is to perform a CP fit using an alternative parameter

sets obtained by yet another measurement. We take the deviation of S and A from

those obtained with the nominal parameters as a systematic uncertainty.

• reconstruction uncertainty

Some sources of uncertainty are in the reconstruction process such as event selection

and ∆t measurement. We reconstruct the data in different configurations consid-

ering the uncertainty and take the deviation of CP fit results from the original

result.

• model uncertainty

Our measurement relies on the resolution function model that we arbitrarily choose.

We perform CP fits using alternative models to evaluate the deviation of fit results

from the original model.

• bias due to effects not considered in fit model

Some known effects are not considered in our fit model, which may results in bias

in the measurement. To evaluate the possible bias, we generate toy MC samples

with and without simulating such effects and examine the difference of fit results

between the ensembles.

Vertex reconstruction We consider reconstruction uncertainties due to beam param-

eter calibration, helix uncertainty correction, and vertex quality selection.

Beam parameters We vary the following beam parameters according to the cali-

bration uncertainty: the size, position, and angle of ellipsoid defining the IP profile, and

the magnitude and angle of boost vector.

Helix uncertainty correction We use a data sample reconstructed without the

correction. CP fit is done with the same resolution function parameters as default.
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Table 5.11: Systematic uncertainties
source δS δA

Vertex reconstruction 0.0255 0.0221

Detector misalignment 0.0022 0.0036

Flavor tagging 0.0789 0.0308

Fit bias 0.0031 0.0017

Physics parameters 0.0080 0.0002

Signal fraction 0.0112 0.0067

Background ∆t 0.0106 0.0012

Resolution function parameter 0.0124 0.0057

Resolution function model 0.0011 0.0026

Tag-side interference 0.0139 0.0150

total 0.0868 0.0420

Vertex quality selection We vary the thresholds for the selection about vertex

quality as follows:

• χ2/ndf < 100 → χ2/ndf < 80, 120 for tag side,

• χ2/ndf < 3.27 → χ2/ndf < 3.1, 3.4 for CP side,

• σℓ < 500µm → σℓ < 400, 600µm, and

• |∆t| < 30 ps → |∆t| < 20, 50 ps.

The motivation for this item is to evaluate the effect due to possible data-MC difference

in the selection variables. Because some events are added or removed to the data sample

by the changes, the deviation of the fit results involves also a statistical fluctuation,

which is critical for our analysis because of low statistics. The cut on the CP-side χ2

especially gives large statistical fluctuation because the cut threshold lies in the bulk of the

distribution, not the tail. We use B+ → K0
SK

0
SK

+ data sample instead of B0 → K0
SK

0
SK

0
S

to mitigate the statistical fluctuation and quote the results for B0 → K0
SK

0
SK

0
S . The

statistical fluctuation will be less significant with more statistics in future.

Detector misalignment We consider the reconstruction uncertainty due to detector

misalignment. We generate signal decays and simulate the detector response to them

using four different configurations of misaligned detector geometry. The detector mis-

alignment can significantly change the ∆t uncertainty and thus the event weight for each

event, so the deviation in the fit results also involves statistical fluctuation. Therefore

we use high-statistics signal MC for the evaluation of this uncertainty to suppress the

fluctuation.

Flavor tagging We consider parameter uncertainty of w and ∆w and the bias due to

µ.
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Parameter uncertainty of w and ∆w Not only adding Gaussian deviations to

the parameters, we also consider a possible time evolution of the flavor tag performance

because the flavor tag performance was calibrated using only one third (63.8 fb−1) of our

data set. We use alternative set of parameters determined by a recent measurement of τB0

and ∆md to evaluate the time evolution [44]. This is the largest systematic uncertainty

in our measurement because of large statistical uncertainty on the measured w and ∆w.

It will be reduced by a calibration using a larger data set.

Bias due to µ We generate toy MC with random µ within its measured uncertainty

and evaluate the bias.

Fit bias We consider the bias from two known correlations between variables, M and(
χ2

ndf

)CP
, and O′

CS and r bin. The correlation might result in under- or overestimation of

fsig and thus dilution or exaggeration of CP asymmetries. We simulate these effects in

toy MC and found the deviation of fit results as a function of input CP asymmetries as

shown in Fig. 5.26. We observe a significant slope only for A with correlation between

O′
CS and r bin. When we do not observe a significant slope, we take the fit uncertainty

as the potential size of systematic uncertainty.

Physics parameters We consider the parameter uncertainties of τB0 = 1.519±0.004 ps

and ∆md = 0.5065± 0.0019 ps−1 fixed at the world average [7]. Taking into account the

small bias on τB0 due to our K0
S BDT selection, we assume a large uncertainty of 0.016 ps

on τB0 .

Signal fraction We consider the parameter uncertainties of Fsig and PDF parameters

of Mbc, M , O′
CS, and r bin.

Background ∆t We consider the parameter uncertainty of the background ∆t PDF.

Resolution function parameter We consider the parameter uncertainties of resolu-

tion function parameters.

Resolution model We define alternative resolution function models for which we turn

off the χ2/ndf dependence by setting sCP,1
main = sCP,1

tail = stag,1main = stag,1tail = f 1
δ = τ 1 = 0 and

introduce mean parameters µtag
main and µtag

tail to the Gaussian functions of Rasc. Therefore
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the alternative functions are expressed as:

R′
rec(δℓ

CP ;σCP
ℓ ) = (1− fCP

tail )G(δℓ
CP ;µ = 0, σ = sCP,0

mainσ
CP
ℓ )

+fCP
tailG(δℓ

CP ;µ = 0, σ = sCP,0
tail σ

CP
ℓ ), (5.59)

R′
asc(δℓ

tag;σtag
ℓ ) = (1− f tag

tail )G(δℓ
tag;µ = µtag

mainσ
tag
ℓ , σ = stag,0mainσ

tag
ℓ )

+f tag
tailG(δℓ

tag;µ = µtag
tailσ

tag
ℓ , σ = stag,0tail σ

tag
ℓ ), and (5.60)

R′
np(δℓ

tag;σtag
ℓ ) = f 0

δ δ(δℓ
tag)+(1− f 0

δ )fpEp(δℓ
tag; τ = τ 0σtag

ℓ )

+(1− f 0
δ )(1− fp)En(δℓ

tag; τ = τ 0σtag
ℓ ), (5.61)

where

fp =


0 (f 0

p + f 1
pσ

tag
ℓ < 0)

f 0
p + f 1

pσ
tag
ℓ (0 ≤ f 0

p + f 1
pσ

tag
ℓ ≤ 1)

1 (f 0
p + f 1

pσ
tag
ℓ > 1)

, (5.62)

and the functions have 12 free parameters, fCP
tail , s

CP,0
main, s

CP,0
tail , f

tag
tail , µ

tag
main, s

tag,0
main, µ

tag
tail, s

tag,0
tail ,

f 0
δ ,f

0
p , f

1
p , and τ

0. We determined the parameters by fitting R′
rec and R

′
asc ⊗ R′

np to δℓCP

and δℓtag distributions from signal MC as shown in Fig. 5.27.

We simulate 50,000 signal events with CP violation S = −0.7, A = 0 to evaluate the

model uncertainty.
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Figure 5.26: Possible bias due to correlation between O′
CS and r bin (a), and between

M and
(

χ2

ndf

)CP
(b). For every data point, we generate 8000 toy MC samples using the

input CP parameter on the horizontal axis and obtain the mean of fitted CP parameters

by fitting Gaussian functions. The toy MC samples are generated with and without the

correlation and the difference of the mean between the two ensembles is plotted. In the

left (right) plot Ainput(Sinput) is fixed to be zero while Sinput(Ainput) is varied. A linear

function without an offset is fitted to each plot.
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asc ⊗R′

np fitted to MC δℓtag distribution

Figure 5.27: CP-side (a) and tag-side (b) vertex position residual distribution of signal

MC events and alternative resolution functions R′
rec and R′

asc ⊗ R′
np. The resolution

functions are fitted to the residual distributions. The bottom plot shows the difference

of the distribution and the fit curve normalized by the statistical uncertainty.
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Tag-side interference We consider the possible bias due to tag-side interference de-

scribed in Sec. 1.2.2.

We simulate the tag-side interference (TSI) effect in toy MC modifying the ∆t PDF

of Eq. (3.1) as [45, 8]

P (∆t, q = ±1) =
1

4τB0

e
− |∆t|

τ
B0

1 + |λf |2

2

[
(1− S ′ · C∓) + (qS − A · S∓) sin(∆md∆t) (5.63)

+ (qA+ S · S∓) cos(∆md∆t))
]
,

where S ′ ≡ 2Re(λf )/(1+|λf |2), S± ≡ 2r′ sin (2ϕ1 + ϕ3 ± δ′), C± ≡ 2r′ cos (2ϕ1 + ϕ3 ± δ′),

and r′ (δ′) is the effective value of amplitude ratio (strong phase difference) of doubly

CKM-suppressed transition b→ ucd relative to CKM-favored transition b→ cud.

We use the following input values for the simulation:

• ϕ1 = 22.14+0.69
−0.67 degrees [5],

• ϕ3 = 72.1+5.4
−5.7 degrees [5],

• S+ = 0.0096± 0.0073 [46], and

• S− = −0.0067± 0.0073 [46].

Here we use the measurement of S± by the Belle neglecting the difference of flavor tag-

ging efficiency between Belle II and Belle. In each toy MC sample we pick a set of

(ϕ1, ϕ3, S+, S−) with random Gaussian deviations according to the size of the uncertain-

ties.

Figure 5.28 shows the deviation of fit results as a function of input CP asymmetries

and its uncertainty due to limited statistics of the toy MC samples. We conservatively

take the largest deviation over the whole physical region as the systematic uncertainty

because the statistical uncertainties of S and A are large in the current analysis and the

TSI effect should significantly change within the allowed region. In future with more data

we will be able to precisely estimate the input parameters and include the TSI effect in

the fit model.
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Figure 5.28: Bias of CP asymmetries due to TSI (left) and its uncertainty (right) shown

on the plane of input CP asymmetries. For every data point, we generate 8000 toy MC

samples without TSI and 5000 with TSI using the corresponding input CP parameters,

and obtain the mean of fitted CP parameter (S in the upper plots, A in the lower plots)

by fitting a Gaussian function. The difference of the mean between the two ensembles

and its uncertainty are indicated by the color in left and right plots, respectively.
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Chapter 6

Discussion

6.1 Significance of the measurement

We determine the CP asymmetries in B0 → K0
SK

0
SK

0
S to be

S = −1.86+0.91
−0.46(stat)± 0.09(syst), and (6.1)

A = −0.22+0.30
−0.27(stat)± 0.04(syst). (6.2)

Figure 6.1 shows the confidence region calculated based on the fit results using a fre-

quentist approach based on the Feldman-Cousins likelihood-ratio ordering [41] [42] (see

Appendix G). Here, the systematic uncertainties are also taken into account. Our re-

sult is consistent with the SM expectation (S,A) = (− sin 2ϕ1, 0) = (−0.7, 0) at around

1σ confidence level, and confirms CP violation at 96.6%. It is also consistent with the

previous measurements by Belle, BaBar, and Belle II [15][16][17]:

S = −0.71± 0.23(stat)± 0.05(syst) (1.2σ)

A = 0.12± 0.16(stat)± 0.05(syst) (1.0σ)

}
Belle (6.3)

S = −0.94+0.24
−0.21(stat)± 0.06(syst) (1.0σ)

A = 0.17± 0.18(stat)± 0.04(syst) (1.1σ)

}
BaBar (6.4)

S = −0.82± 0.85(stat)± 0.07(syst) (0.8σ)

A = −0.21± 0.28(stat)± 0.06(syst) (0.0σ)

}
Belle II (6.5)

Here, the values in the parentheses are the difference from our result in the unit of

uncertainties summed in quadrature. For the calculation of the summed uncertainties,

we ignore the correlation with the previous measurement by Belle II, which is based on

a part of our data set.

Let us now interpret the result to derive a model-independent constraint on possible

NP contribution. We consider a NP decay amplitude contributing to B0 → K0
SK

0
SK

0
S

decay so that Eq. (1.31) becomes

λf = e−2iϕ1
rSMe

−iϕSMeiδSM + rNPe
−iϕNPeiδNP

rSMeiϕSMeiδSM + rNPeiϕNPeiδNP
, (6.6)
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Figure 6.1: Confidence region of S and A from this measurement. The solid, dashed, and

dotted lines enclose the region where the true values of S and A in B0 → K0
SK

0
SK

0
S decays

should exist with the probability of 68.27%, 95.45%, and 99.73% given the constraint of

physical region S2 + A2 ≤ 1. The cross indicates the world average of (S,A) in B0 →
K0

SK
0
SK

0
S measured by Belle and BaBar and their uncertainties. The open circle indicates

the SM expectation (S,A) = (− sin 2ϕ1, 0) based on measurements in B0 → (cc)K0[10].

where rSM(NP ), ϕSM(NP ) and δSM(NP ) are the magnitude, weak phase, and strong phase

of SM (NP) decay amplitude. Defining δ ≡ δNP − δSM and using ϕSM ≃ 0, we obtain the

constraint on {rNP/rSM, ϕNP, δ} shown in Fig. 6.2. As long as sinϕNP is large, the result

put a constraint of rNP/rSM ≲ 0.15–0.25 with 90% confidence level at best depending on

the strong phase difference.

We combine our result with the world average in the Bayesian method, where we

define the prior PDF of S and A as a 2D Gaussian function representing the world

average, S = −0.83 ± 0.17 and A = 0.15 ± 0.12 with 7% correlation [10], and update

it with the likelihood function from our measurement given in Appendix G. Figure 6.3

shows contours of the resulting posterior PDF. The PDF is normalized in the physical

region. The central value moves to S = −0.91 and A = 0.09.

6.2 Comparison with Belle

We compare the performance of the measurement with Belle to evaluate and understand

the source of improvement.
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Figure 6.2: Confidence level to exclude parameters of new physics decay amplitude

(rNP/rSM, ϕNP, δ) derived by the measured CP asymmetries in B0 → K0
SK

0
SK

0
S decays.

Each plot shows the confidence level on (rNP/rSM)-ϕNP plane for fixed δ.
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Figure 6.3: Posterior PDF of S and A from the combination of the world average and

this measurement. The solid, dashed and dotted lines are contours of equal probability

density which enclose 68.27%, 95.45%, and 99.73% of the PDF. The cross indicates the

world average of (S,A) in B0 → K0
SK

0
SK

0
S measured by Belle and BaBar and their

uncertainties. The open circle indicates the SM expectation (S,A) = (− sin 2ϕ1, 0) based

on measurements in B0 → (cc)K0[10].

Table 6.1: Fraction of signal MC events in Belle [47] and Belle II divided according to

NVXDK0
S

NVXDK0
S

Belle Belle II

0 12% 0.4%

1 35% 8%

2 39% 38%

3 14% 54%

6.2.1 VXD acceptance

∆t resolution in B0 → K0
SK

0
SK

0
S decays largely depends on the number of K0

S ’s that have

associated hits in the vertex detector (NVXDK0
S
). Table 6.1 compares the fraction of signal

MC events with NVXDK0
S
= 0, 1, 2, 3 between Belle and Belle II. At Belle II, over 99% of

signal events have at least one K0
S in the VXD and thus potentially provides sufficient

∆t resolution for time-dependent CP violation analysis. On average, NVXDK0
S
is 2.46 in

Belle II and 1.55 in Belle. We confirm 1.6 times higher K0
S reconstruction efficiency in

the Belle II vertex detector thanks to the enlarged detector volume.
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Table 6.2: Comparison of signal reconstruction performance with Belle [15]. N
TD(TI)
sig is

the signal yield for TD(TI) events. Signal yield and purity are calculated within the

signal region.
Belle Belle II

NBB [106] 772 197

Nsig/NBB [10−6] 0.46 0.51

NTD
sig /NBB[10

−6] 0.33 0.27

NTI
sig/NBB[10

−6] - 0.24

purity for TD events 74% 54%

purity for TI events - 45%

6.2.2 Signal yield

The signal yield and purity in the signal region at Belle and Belle II are shown in Tab. 6.2.

The improvement in the signal yield per number of BB pair and the degradation in the

purity is attributed to the looser continuum suppression selection in our analysis. Our

reconstruction efficiency for TD events is slightly worse than Belle because of the tight

selection on χ2 and off-diagonal K0
S to assure good validation of ∆t measurement per-

formance. At Belle, events with good ∆t quality were used for time-dependent fit and

the other events were discarded without being used for time-integrated fit. Most of the

discarded events were intrinsically unusable for time-dependent analysis because none of

K0
S in the event had SVD hits. On the other hand, in our case the TI events have poten-

tially good ∆t resolution. We expect most of them will be retrieved for time-dependent

use in near future by improvements in the analysis procedure (see Appendix. E).

6.2.3 Flavor tag and ∆t resolution

As for the flavor tagging performance, the effective tagging efficiencies are measured to be

the same within uncertainty between Belle (30.1± 0.4%) and Belle II (30.0± 1.3%) [1].

However, although it is not yet reflected in our analysis, we expect around 1.1 times

higher effective efficiency in future analysis thanks to recent updates in the flavor tagger.

Concerning ∆t resolution, Belle II should benefit from the larger and finer vertex

detector to compensate the degradation due to 1.5 times smaller boost factor. At first we

compare the vertex resolution in signal MC selecting good-resolution events that fulfill

NVXDK0
S
≥ 2. Then, considering the smaller boost factor, we multiply a scale factor of

1.5 to the vertex resolution of Belle II to effectively compare the ∆t resolution.

Fig. 6.4 shows the distributions of CP-side and tag-side vertex position residual

δℓCP , δℓtag, and the residual of vertex position difference δℓCP − δℓtag in signal MC of

Belle and Belle II. On both CP and tag sides, the vertex resolution in Belle II has been

clearly improved from Belle. Then comparison of ℓCP − ℓtag distribution between Belle

and scaled Belle II indicates that the ∆t distribution is almost the same for the selected
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(a) CP-side vertex resolution (b) tag-side vertex resolution (c) vertex-position-difference

resolution

Figure 6.4: Comparison of vertex position resolution between Belle and Belle II [47]. The

distributions of CP-side (left) and tag-side (center) vertex position residual δℓCP , δℓtag,

and the residual of vertex position difference δℓCP − δℓtag (right) are shown. The red

histogram shows the Belle II distribution scaled by 1.5 to take into account the smaller

boost factor. Signal MC events fulfilling NVXDK0
S
≥ 2 are shown. In Belle, the boost

direction is equivalent to z direction. All distributions are normalized to have the same

area.

events. Recalling that the selection NVXDK0
S
≥ 2 picks up only 53% of Belle sample and

92% of Belle II as can be seen from Tab. 6.1, we conclude the ∆t resolution has been

improved on the whole sample.

6.2.4 Expected statistical uncertainty

Figure 6.5 shows the statistical uncertainties for S and A from Belle results and expected

values in our analysis. Room for improvement in Belle II is shown as “all TD”, for which

we assume that all reconstructed events are usable for time-dependent fit. The expected

uncertainties are derived by generating toy MC samples and fitting a Gaussian function

to the distribution of the fit results. The width of the Gaussian is taken as the expected

uncertainty. It should be noted that the expected uncertainty of S shown in the figure

is smaller than that obtained by the parametric bootstrap method. This is because the

latter assumes input CP asymmetries at the physics boundary, which results in a broad

tail in the distribution of fitted S.

Extrapolating the current Belle II analysis, we expect similar and better sensitivities

per statistics for S and A, respectively, as the consequence of the similar TD-event yield

and the inclusion of TI events for extra time-integrated use. If we succeed in promoting all

TI events to TD events in future, 1.3 times smaller statistical uncertainties are expected
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Figure 6.5: Comparison of expected statistical uncertainty in Belle II with the Belle

results as a function of NBB [48][49][15]. The solid lines are drawn to guide eyes and are

proportional to 1/
√
NBB. The red numbers indicates the year when the corresponding

Belle analysis was published.

for both S and A at the same statistics as Belle.

6.3 Prospect

Based on the knowledge learnt from our analysis, we discuss on possible improvements

in the analysis to be done in the near term and expected sensitivity with 50 ab−1, the

target integrated luminosity at Belle II.

6.3.1 Retrieval of TI events

Large room for improvement lies in the treatment of TI events. Currently roughly half

of the signal events are not used for time-dependent fit but only for time-integrated fit

as TI events because of the presence of off-diagonal K0
S or large χ2 of the CP-side vertex

fit.

As we discuss in Appendix E, we expect both problems can be overcome in the near

future by improving the reconstruction algorithm. Off-diagonal K0
S can be recovered by

modifying the K0
S reconstruction software so that it identifies obvious fake hits associated

to K0
S daughter tracks and repeats track reconstruction after removing them. Regarding

large-χ2 events, we have revealed that the large χ2 originates from poorly reconstructed

K0
S . By removing such K0

S from the vertex fit, we can properly estimate the vertex

position uncertainty and χ2 for these events without degrading the resolution. Such

modification to the analysis tools is possible in short term and will retrieve most of the

TI events as TD events.
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Table 6.3: Projection of uncertainties
190 fb−1 50 ab−1

Source δS δA δS δA

Vertex reconstruction 0.025 0.022 0.018 0.005

Detector misalignment 0.002 0.004 0.002 0.004

Flavor tagging 0.079 0.031 0.026 0.010

Fit bias 0.003 0.002 0.003 0.002

Physics parameters 0.008 0.000 0.008 0.000

Signal fraction 0.011 0.007 0.001 0.000

Background ∆t 0.011 0.001 0.001 0.000

Resolution function parameter 0.012 0.006 0.012 0.006

Resolution function model 0.001 0.003 0.001 0.003

Tag-side interference 0.014 0.015 0.000 0.004

Systematic uncertainty 0.087 0.042 0.035 0.014

Statistical uncertainty (TD+TI) +0.91
−0.46

+0.30
−0.27 0.027 0.016

Statistical uncertainty (all TD) - - 0.022 0.014

Total uncertainty (TD+TI) +0.91
−0.47

+0.30
−0.27 0.045 0.021

Total uncertainty (all TD) - - 0.042 0.020

6.3.2 Projection of uncertainties

Table 6.3 shows the projection of uncertainties. We argue the reason of the improvements

below.

Statistical uncertainty The expected statistical uncertainties at 50 ab−1 are esti-

mated in the same method as Sec. 6.2.4. We consider two scenarios: assuming no im-

provement in the treatment of TI event (“TD+TI”), and assuming all TI events are

retrieved as TD events (“all TD”).

Vertex reconstruction The systematic uncertainty due to vertex reconstruction is

currently dominated by helix uncertainty correction and vertex quality selection. While

the former is irreducible, we expect the latter to be reduced because it involves statis-

tical fluctuation as mentioned in Sec. 5.7. Therefore, we assume the helix uncertainty

correction dominates this systematic uncertainty source.

Flavor tagging The systematic uncertainties due to flavor tagging currently come

from large statistical uncertainties in the measurement of w and ∆w. We assume that

the systematic uncertainties of w and ∆w are irreducible and the uncertainties of w and

∆w will be reduced to one third of the current values. Consequently, the corresponding

systematic uncertainties will be reduced by the same rate.
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Signal fraction and background ∆t The parameters describing the shape of Mbc,

M , O′
CS and background ∆t PDFs are currently determined by a fit to the data sample

or MC sample of similar statistics to the data. We expect the uncertainties will scale by

1/
√
L with the integrated luminosity L.

Tag-side interference In the current analysis we take the largest deviation of CP

asymmetries within the physical region as the systematic uncertainty. However, with

more precise input parameters we will be able to incorporate the TSI into our fit model

and correct the effect. Then, instead of the deviation due to TSI itself, we consider

the uncertainty of the correction, which arises from the precision of input parameters

{ϕ1, ϕ3, S+, S−}. The dominant uncertainty sources, S+ and S−, are measured using

semileptonic decays of B0, where the TSI does not exist. Assuming that the measurement

uncertainties scale by 1/
√
L, the uncertainties on the correction will be negligible.

Resolution function parameter As we already use high-statistics signal MC sample

to determine the resolution function parameters in the current analysis, we do not expect

the uncertainties to be reduced by higher statistics. However, in the future the larger

data set will enable data-driven validation of the resolution function such as the lifetime

fits and CP fit in the control channel and self validation of 2K0
S resolution discussed in

Appendix B. These validations will make us more confident about the resolution function

or allow us to introduce data-driven correction. It may also be possible to determine the

resolution function parameters based on yet another control channel.

Remarks There should also be improvements in the items that we do not mention

above. For example, more precise determination of τB0 , ∆md, and ϕ3 will further reduce

the uncertainties about physics parameters and tag-side interference. Yet these will not

significantly change the total uncertainties in Tab. 6.3.

Table 6.3 tells us that the systematic uncertainties will be comparable or larger than

the statistical uncertainties with 50 ab−1. We briefly review the prospect for other b→ sqq

decays, B0 → ϕK0
S and η′K0

S , which have larger branching ratios than B0 → K0
SK

0
SK

0
S .

The size of systematic uncertainties for these decays should be similar to B0 → K0
SK

0
SK

0
S .

For B0 → ϕK0
S decays, we expect the statistical uncertainties of δS = 0.025 and

δA = 0.017, which are similar to B0 → K0
SK

0
SK

0
S , at 50 ab

−1 by extrapolating the 5 ab−1

expectation in Ref. [18] with 1/
√
L. For B0 → η′K0

S decays, the statistical uncertainties

are expected to be as small as δS = 0.04 and δA = 0.03 already at 5 ab−1 so the sensitiv-

ity will be limited by the systematic uncertainties much earlier than B0 → K0
SK

0
SK

0
S [18].

The saturation of the sensitivity will increase the relative importance of B0 → K0
SK

0
SK

0
S

in the future. Here we consider only the main decay modes ϕK0
S → (K+K−)(π+π−) and

η′K0
S → (ργ)(π+π−) for simplicity.
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Figure 6.6: Expected sensitivity to new physics parameters with 50 ab−1. Confidence

level to exclude parameters of new physics decay amplitude (rNP/rSM, ϕNP, δ) is shown.

Each plot shows the confidence level on (rNP/rSM)-ϕNP plane for fixed δ.

6.3.3 Constraints on new physics

Based on the discussions in the previous subsections, we expect the total uncertainties

of δS = 0.042 and δA = 0.020 at 50 ab−1. Let us update the NP constraints in Sec. 6.1

using the uncertainties. Figure 6.6 shows the constraints we will obtain in the case we

observe no deviation from the SM prediction. As long as the NP has a sizeable sinϕNP,

the measurement will be sensitive to NP contributions whose amplitude is 2–7% of the

SM amplitude at 90% confidence level.

It would be interesting to reinterpret the model-independent constraint to constrain

parameters in specific models such as the mass insertion parameters in the SUSY model

introduced in Sec. 1.3.2. However, we do not find a theoretical study about the SUSY

contribution to B0 → K0
SK

0
SK

0
S decays while there are some for B0 → ϕK0

S and B0 →
η′K0

S . Here, we refer to a calculation for B0 → ϕK0
S assuming a similar contribution

to B0 → K0
SK

0
SK

0
S . If we assume the same uncertainty for B0 → ϕK0

S as expected for

B0 → K0
SK

0
SK

0
S and follow the calculation in Ref. [50], the model-independent constraint

is translated to |(δdRL(LR))23| < O(10−3) when the masses of squark and gluino are 3TeV.

We hope for progress in the calculation of NP contributions in B0 → K0
SK

0
SK

0
S decays in

the future.
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Chapter 7

Conclusion

B0 → K0
SK

0
SK

0
S decay is mediated by b → sqq penguin transition within the Standard

Model. Comparison of CP-violating parameters between the penguin-dominated decays

and b → ccs decays such as B0 → J/ψK0
S provides a probe for new physics which

contributes to the b → s transition. We report a measurement of time-dependent CP

violation in B0 → K0
SK

0
SK

0
S decays, using a data set containing 198 × 106 BB pairs

collected at the Belle II experiment from 2019 to 2021. We obtain

S = −1.86+0.91
−0.46(stat)± 0.09(syst), and

A = −0.22+0.30
−0.27(stat)± 0.04(syst).

The result is consistent with the SM expectation (S,A) = (−0.70± 0.02, 0) based on the

measurements in B0 → (cc)K0 and previous measurements at Belle, BaBar, and Belle II.

We have established the analysis procedure anticipating the high-precision measure-

ment using 50 ab−1 data to be taken at the Belle II experiment. Below we list major im-

provements from the previous work. We have revealed that uncertainties of fundamental

track parameters are underestimated and developed a method to correct the uncertainties

as described in Appendix F. For the validation of the resolution function parameters, we

have developed a technique to emulate the vertex resolution of B0 → K0
SK

0
SK

0
S decays

using B+ → K0
SK

0
SK

+ as a control channel. We have improved the reconstruction effi-

ciency and thus the sensitivity to CP violation by including the TI events characterized by

poor vertex reconstruction performance and the events contaminated by qq background.

These events were discarded in the previous analysis. Accordingly, the signal fraction

is extended by adding the continuum suppression BDT classifier as a conditional vari-

able to take into account the qq contamination. We have also resolved possible small

biases in the measurement. The improvement includes the use of r and cos θ∗B in signal

fraction estimation to avoid the bias due to assuming the same distributions for these

variables between signal and background components, and the removal of the peaking

BB background component that was neglected in the previous analyses.
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Appendix A

Control channel B+ → K0
SK

0
SK

+

We use a control channel of B+ → K0
SK

0
SK

+ decays. The main purposes of the control

channel study are to determine the background PDFs for signal extraction fit and to

validate the resolution function by lifetime fit and CP fit. We intend to make as many

parameters common between the two decay modes as possible, which are

• Mbc, M , O′
CS, and r bin PDF parameters for background events,

• Rrec parameters,

• Rasc parameters, and

• a part of Rnp parameters.

In the CP fit to the control sample, we determine only S and fix A to be zero. We in-

tentionally leave the direct CP violation unmeasured, which is not our target. The results

of lifetime fit and CP fit using the control channel is described in Sec. 5.5. We describe

the reconstruction algorithm, signal extraction, resolution function and background ∆t

distribution of B+ → K0
SK

0
SK

+ in the following sections.

A.1 Event selection and vertex reconstruction

We keep the reconstruction flow and selection criteria for B+ → K0
SK

0
SK

+ the same as

B0 → K0
SK

0
SK

0
S except that

• we select K+ based on its PID variable requiring kaonID > 0.5,

• we do not veto B+ → X(K0
SK

0
S)K

+ decays,

• we discard TI events and only use TD events,

• we scale up d0 and z0 uncertainties of K+ by a factor of 1000, and

• we convert
(

χ2

ndf

)CP
to correct the difference of ndf between B+ → K0

SK
0
SK

+ and

B0 → K0
SK

0
SK

0
S .

We determine the PID selection criteria by maximizing the figure of merit. We do not

need to care the contamination by the resonance because the CP-violating parameter S
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in B+ → K0
SK

0
SK

+ is not physically meaningful. As we fix A to be zero, the TI events

would not contribute to the measurement. The latter two prescriptions are to emulate

the vertex fit performance of B0 → K0
SK

0
SK

0
S . B

+ → K0
SK

0
SK

+ vertex fit without K+

track would emulate that of B0 → K0
SK

0
SK

0
S where one or more K0

S do not have VXD

hits and thus do not contribute to the fit. However, in this way we cannot use the IP

constraint as it requires the BCP to be fully reconstructed. As a workaround we spoil the

K+ track by setting extremely large position uncertainties. The spoiled track does not

directly contribute to the vertex fit but only provides the momentum information needed

to define the IP constraint. The effective ndf of such vertex fit is then smaller by 2 than

the ostensible value, 7 − 2 = 5. For comparison with B0 → K0
SK

0
SK

0
S vertex fit where

ndf is 8, we convert the χ2 as

χ2 → F−1(F (χ2; 5); 8), (1.1)

where F (x;n) is a cumulative χ2 distribution with ndf of n.

Table A.1 shows the efficiency of each selection and expected number of events for

signal and background events. The cumulative efficiency is normalized by the number of

generated events for signal and by the number of events after selections on K0
S candidate,

Mbc, and M for background. The expected signal yield does not include B+ → XK0
S

and assumes 200× 106BB, the equal fraction of B0B0 and B+B−, B(B+ → K0
SK

0
SK

+) =

1.08 × 10−6, and B(K0
S → π+π−) = 0.691. The expected background yield is scaled to

200 fb−1.

We observe a significant data-MC discrepancy in the kaonID efficiency. Since we do

not need to know the reconstruction efficiency we leave the discrepancy as it is. We do

not expect either that the difference in the kaonID performance can significantly affect

∆t resolution as we only use the momentum information of K+ for the vertex fit.

A.2 Similarity to B0 → K0
SK

0
SK

0
S

We use the B+ → K0
SK

0
SK

+ decays to determine background PDFs parameters of Mbc,

M , O′
CS, and r bin. The agreement of the distributions between B+ → K0

SK
0
SK

+ and

B0 → K0
SK

0
SK

0
S shown in Fig. A.1 verifies the strategy. The figure shows the Mbc,

M , and O′
CS distributions from MC sample and r bin distribution from data sideband,

Mbc > 5.265GeV/c2.

We confirm that the r distribution is not correlated with Mbc in the background MC

for both of B+ → K0
SK

0
SK

+ and B0 → K0
SK

0
SK

0
S as shown in Fig. A.2.

The vertex fit performance is also reproduced well as shown in Figs A.3 and A.4,

where we compare σCP
ℓ distribution and the core part of

(
χ2

ndf

)CP
distribution. The

samples are divided according to the number of K0
S ’s with VXD hits. However, we

observe a discrepancy in the tail part of
(

χ2

ndf

)CP
as shown in Fig. A.5, which we do not

use for the time-dependent analysis.
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Figure A.1: Comparison of background Mbc, M , and O′
CS distributions between B0 →

K0
SK

0
SK

0
S and B+ → K0

SK
0
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+. Background MC samples are shown for Mbc, M , and

O′
CS, and sideband data for r bin.
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Table A.1: Relative (cumulative) efficiency [%] for B+ → K0
SK

0
SK

+

selection signal MC background MC data

K0
S selection, Mbc, M – (100.00) – (100.00) – (100.00)

kaonID > 0.5 90.39 (90.39) 73.43 (73.43) 65.82 (65.82)

OCS > 0.1 97.93 (88.52) 49.19 (36.12) 51.77 (34.08)

−10 < O′
CS < 10 100.00 (88.52) 99.98 (36.11) 99.98 (34.07)

tag vertex fit success 99.02 (87.65) 98.70 (35.64) 97.96 (33.38)(
χ2

ndf

)tag
< 100 93.35 (81.82) 90.71 (32.33) 91.54 (30.55)

σtag
ℓ [µm] < 500 99.91 (81.75) 99.85 (32.28) 99.81 (30.49)

flavor tag success 100.00 (81.75) 100.00 (32.28) 100.00 (30.49)

best candidate selection 98.97 (80.91) 95.25 (30.74) 96.90 (29.55)

reject off-diagonal K0
S 91.17 (73.77) 87.05 (26.76) 82.38 (24.34)

at least one K0
S with VXD hits 96.29 (71.03) 96.87 (25.92) 96.39 (23.46)

BCP vertex fit success 100.00 (71.03) 100.00 (25.92) 100.00 (23.46)(
χ2

ndf

)CP
< 3.27 83.52 (59.32) 77.31 (20.04) 71.42 (16.76)

σCP
ℓ [µm] < 500 99.44 (58.99) 99.27 (19.89) 99.33 (16.65)

−30 < ∆t[ ps] < 30 99.97 (58.97) 99.93 (19.88) 99.92 (16.63)

TD fraction 72.89 64.67 56.29

Expected/Observed yield with 190 fb−1 208 14800 9214
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A.3 Data-MC comparison

Thanks to its larger data set than the signal channel, the control channel provides more

detailed comparison of distributions between data and MC. Figures A.6 and A.7 compares

important distributions between data and MC samples for B+ → K0
SK

0
SK

+. For the

comparison we mix the background and signal MC samples equivalent to 700 fb−1 with

the expected rate and normalize the distributions by area.

As we observe a significant discrepancy in the r bin distribution, we take the back-

ground r bin distribution from the sideband data for signal fraction estimation. We also

find the discrepancy inMbc endpoint, which is due to slightly lower beam energy in data.

The number of tracks used in the tag-side vertex fit differs between data and MC, which

could one of the causes of small discrepancies in
(

χ2

ndf

)tag
and σtag

ℓ . Because we require a

PXD hit for tracks in the tag-side vertex fit, lower Layer-1 efficiency in data may change

the distribution. However, it cannot fully explain the behavior, for example, the equal

fraction of single-track events so we suspect the imperfect qq simulation as another cause.

120



0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

no
rm

al
iz

ed
by

ar
ea

data

MC

5.20 5.22 5.24 5.26 5.28 5.30

Mbc [GeV/c2]

−5

0

5

pu
ll

(a) Mbc

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

no
rm

al
iz

ed
by

ar
ea

data

MC

5.1 5.2 5.3 5.4

M [GeV/c2]

−5

0

5

pu
ll

(b) M

0.00

0.01

0.02

0.03

0.04

0.05

no
rm

al
iz

ed
by

ar
ea

data

MC

−10 −5 0 5 10

O′CS
−5

0

5

pu
ll

(c) O′
CS

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

no
rm

al
iz

ed
by

ar
ea

data

MC

−1.0 −0.5 0.0 0.5 1.0

qr

−5

0

5

pu
ll

(d) qr

0.00

0.02

0.04

0.06

0.08

0.10

no
rm

al
iz

ed
by

ar
ea

data

MC

−10 −5 0 5 10

∆t[ps]

−5

0

5

pu
ll

(e) ∆t in linear scale

10−5

10−4

10−3

10−2

10−1

100

no
rm

al
iz

ed
by

ar
ea

data

MC

−30 −20 −10 0 10 20 30

∆t[ps]

−5

0

5

pu
ll

(f) ∆t in log scale

Figure A.6: Data-MC comparison of B+ → K0
SK
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+ distributions (1)
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Figure A.7: Data-MC comparison of B+ → K0
SK
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SK

+ distributions (2)
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A.4 Signal extraction

We use the same PDF models ofMbc,M , and O′
CS as those for B0 → K0

SK
0
SK

0
S described

in Sec. 5.2. We fix the shape parameters for signal events by fits to 1D MC distributions

while we determine the background shape parameters simultaneously with Fsig in the 3D

signal extraction fit.

Figure A.8 show the 1D PDFs fitted to signal and background distributions. The

result of the signal extraction fit to the B+ → K0
SK

0
SK

+ data are shown in Fig. A.9.

We obtain the background parameters listed in Tab. 5.3 and Fsig = 0.017243± 0.001659,

which corresponds to 149+15
−14 signal events. We expect 216 signal events with around 5 %

uncertainty assuming:

• NBB = (198± 3.0)× 106,

• BR(Υ(4S) → B+B−) = 0.514± 0.006,

• BR(B+ → K0
SK

0
SK

+) = (1.05± 0.04)× 10−5,

• BR(B+ → χc0K
0
S) ·BR(χc0 → K0

SK
0
S) = (1.51+0.15

−0.13)× 10−4 · (3.16± 0.17)× 10−3,

• BR(K0
S → π+π−) = 0.692, and

• reconstruction efficiency of 21.2 % in MC.

Considering that the selection efficiency in data is around 0.8 times shorter than MC

as shown in Tab. A.1, the observed number of events is around 1.4 σ smaller than the

expectation.
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CS for signal events
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Figure A.9: Results of signal extraction fit for B+ → K0
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+ data
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We check the feasibility of the simultaneous fit using toy MC. We generate 1000

pseudo-experiments each with 155 signal and 9000 background events expected and per-

form the signal extraction fits to the samples. Figure A.10 shows the pull distribution of

Fsig and background shape parameters, where we find no issues.
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A.5 ∆t resolution function

We study the ∆t resolution in the control channel to understand the condition where

the resolution can be described by the same resolution function parameters as B0 →
K0

SK
0
SK

0
S .

The Rrec parameters determined on B0 → K0
SK

0
SK

0
S signal MC also describe B+ →

K0
SK

0
SK

+ vertex resolution well as shown in Fig. A.11 where Rrec is overlaid to the MC

δℓCP distribution. It is also true in each bin of σCP
ℓ as in Fig. A.12. However, when

we compare them in bins of
(

χ2

ndf

)CP
as in Fig. A.13, we see a clear discrepancy in the

three largest
(

χ2

ndf

)CP
bins. This is the reason we use the tight selection χ2/ndf < 3.27

(corresponding to p-value > 0.001) for TD events so that the CP-side resolutions of B0 →
K0

SK
0
SK

0
S and B+ → K0

SK
0
SK

+ can be described by the common resolution function.

We suspect that the discrepancy arises due to the different number of tracks in the fit.

Sometimes tracks are poorly reconstructed to make the χ2 huge but do not really deteri-

orate the vertex resolution. This insight is verified by a study described in Appendix E.2.

Having more tracks, B0 → K0
SK

0
SK

0
S picks up such tracks more frequently, which results

in a better resolution in the large χ2 region.
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Figure A.11: Rrec overlaid on MC δℓCP distribution
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Figure A.12: Rrec overlaid on MC δℓCP distribution in bins of σCP
ℓ
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Figure A.13: Rrec overlaid on MC δℓCP distribution in bins of
(

χ2

ndf

)CP
, each plot contain-

ing 5% of reconstructed events
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On the tag side, B+ → K0
SK

0
SK

+ suffers less bias due to non-primary tracks than

B0 → K0
SK

0
SK

0
S because B± produces fewer D± and more D0/D̄0. We determine an

independent set of the lifetime parameters (τ 0, τ 1, and τmax) in Rnp by fitting Rasc ⊗Rnp

to the δℓtag distribution of B+ → K0
SK

0
SK

+ MC. The other parameters in Rnp and Rasc

are kept the same as B0 → K0
SK

0
SK

0
S . Figure A.14 shows the MC δℓtag distribution and

the fitted function, and Figs. A.15 and A.16 show those in bins of σtag
ℓ and

(
χ2

ndf

)tag
.

The tag-side resolution is described well with most of the parameters common with

B0 → K0
SK

0
SK

0
S .
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Figure A.14: Rasc ⊗Rnp fitted to MC δℓtag distribution
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Figure A.15: Rasc ⊗Rnp fitted to MC δℓtag distribution in bins of σtag
ℓ
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Figure A.16: Rasc ⊗Rnp fitted to MC δℓtag distribution in bins of
(

χ2

ndf

)tag
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As in Sec. 5.3.4 we perform lifetime fits to the B+ → K0
SK

0
SK

+ MC sample. The fits

are done in different ranges of
(

χ2

ndf

)CP
; (0,100), (0,3.27), and (3.27,100). We summarize

the results in Tab. A.2. The lifetime is clearly biased when the large
(

χ2

ndf

)CP
region is

used in the fit. When the CP-side resolution in that region is excluded, the fitted lifetimes

are around 1.62–1.63 ps and shorter than the MC input 1.638 ps by around 10 fs. This

should be the bias due to the K0
S selection which is also found in B0 → K0

SK
0
SK

0
S lifetime

fit.

A.6 Background ∆t distribution

We use the same background ∆t model as B0 → K0
SK

0
SK

0
S with a different set of pa-

rameters. We determine the parameters by a fit to sideband of B+ → K0
SK

0
SK

+ data,

Mbc < 5.265GeV/c2. Figure A.17 shows the fit result.

We confirm that the ∆t is not correlated with Mbc in the background MC as shown

in Fig. A.18 to verify the extrapolation of ∆t distribution from the sideband to signal

region.

Table A.2: Results of lifetime fits τB+ [ps] in different ranges of
(

χ2

ndf

)CP
, with fit uncer-

tainties of the last digit(s) in parentheses

variable (0,100) (0,3.27) (3.27,100)

∆ttrue 1.629(6) 1.625(7) 1.655(18)
ℓtrueCP −ℓtruetag

βγc
1.629(6) - -

ℓCP−ℓtruetag

βγc
1.640(8) 1.621(8) 1.866(29)

ℓtrueCP −ℓtag
βγc

1.628(7) - -

∆t 1.639(8) 1.619(8) 1.877(31)
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Figure A.17: ∆t distribution in B+ → K0
SK

0
SK

+ sideband data and fitted Pbkg(∆t)
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Figure A.18: ∆t distribution in B+ → K0
SK

0
SK

+ background MC for different Mbc bins

135



Appendix B

Data-MC comparison of CP-side

vertex resolution using two K0
S tracks

We attempt to compare the CP-side vertex resolution between data and MC.

To extract information on the vertex resolution, we perform vertex fit using only two

K0
S out of three. Using the i-th and j-th K0

S in the vertex fit, we obtain a vertex position

ℓCP
ij . The difference between vertex positions, ℓCP

ij − ℓCP
jk , should give some information

on the vertex resolution using three K0
S . We do not use the IP constraint for a technical

difficulty and restrict the study to only the events where all of three K0
S have VXD hits.

At first we use the signal MC to compare the two-K0
S resolution ℓCP

ij − ℓCP
jk with the

three-K0
S resolution (obtained as the vertex position residual from the MC truth, ℓCP −

ℓCP
true). Figure B.1 shows the comparison of the distributions, where the two-K0

S resolution

is stacked for (i, j) = (0, 1), (1, 2), (2, 0) and the three-K0
S resolution is multiplied by

an arbitrary factor
√
31. We find that the two-K0

S resolution reproduces the three-K0
S

resolution to some extent.

Then we compare the two-K0
S resolution between data and MC as in Fig. B.2. The

reasonable agreement indicates that the ∆t resolution in the data is reproduced by the

MC without a significant difference.

1
√
3 assumes the equal resolution between the three K0

S and no correlation between ℓCP
ij and ℓCP

jk ,

which is clearly incorrect.
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Appendix C

Correlation between variables used

for signal extraction

B analyses often use a variable ∆E ≡ Ebeam/2 − EB for signal yield extraction, where

Ebeam and EB is the energy of beam and B in the center-of-mass frame. However we

replace it with B invariant mass M since we observe a sizable correlation between ∆E

andMbc as shown in Fig. C.1. Within the plotted region these variables have the Pearson

correlation coefficient of −0.12.

Mbc and ∆E are originally invented so that they are only weakly correlated with each

other. The correlation is generally weak because the uncertainty of Mbc is dominated by

the fluctuation of beam energy and that of ∆E by the detector resolution. However for

decay modes with good ∆E resolution like B0 → K0
SK

0
SK

0
S , the contribution from beam

energy spread in ∆E uncertainty cannot be neglected so ∆E and Mbc show a visible

correlation originated from beam energy spread.

We confirm that the correlation coefficients between Mbc, M , and O′
CS are small as

shown in Tab. C.1. The correlations are weak for both signal and qq samples. We do not

observe a correlation in the 2D histograms shown in Fig. C.2 either.

Table C.1: Correlation coefficients between Mbc, M and O′
CS for signal and qq MC

events. The numbers in the parentheses are the coefficients calculated within (5.27 <

Mbc[ GeV/c2] < 5.29) ∧ (5.18 < M [ GeV/c2] < 5.38).

variables signal qq

Mbc, M 0.014 (−0.018) 0.001 (0.049)

Mbc, O′
CS 0.002 (−0.001) −0.008 (−0.003)

M , O′
CS 0.000 (0.000) 0.011 (0.026)
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Figure C.2: 2D histograms of Mbc, M , and O′
CS for signal and qq MC
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Appendix D

CP-side vertex resolution and

number of K0
S with PXD hits

The vertex resolution of BCP strongly depends on the number of K0
S having associated

VXD hits, especially PXD hits. We divide TD events from the signal MC sample into

three categories according to the number of K0
S that have PXD hits:

• events where two or three K0
S have PXD hits,

• events where one K0
S has PXD hits, and

• events where no K0
S has PXD hits

and show the distributions of σCP
ℓ and δℓCP for each of them in Fig. D.1. Despite the

strong dependence, the CP-side resolution function Rrec covers all categories well with a

common parameter set as shown in Fig. D.2.

141



0 50 100 150 200

σCP` [µm]

0

500

1000

1500

2000

2500

3000

3500

4000

2+ Ks w/ PXD hits

1 Ks w/ PXD hits

0 Ks w/ PXD hits

−400 −200 0 200 400

δ`CP [µm]

0

1000

2000

3000

4000

5000

6000

2+ Ks w/ PXD hits

1 Ks w/ PXD hits

0 Ks w/ PXD hits

Figure D.1: σCP
ℓ and δℓCP distributions of signal MC events classified according to the

number of K0
S that has PXD hits
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(b) one K0
S has PXD hits
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Figure D.2: Rrec fitted to MC δℓCP distribution, classified according to the number of K0
S

that has PXD hits
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Appendix E

Room for improvement

The current analysis adopts tight selection criteria about CP-side vertex reconstruction

quality and discard ∆t information from roughly a half of signal events, which are clas-

sified as TI events due to off-diagonal K0
S and large χ2. We discuss the improvement in

the situation in near term to recover the vertex reconstruction quality for these events

and exploit the ∆t information as TD events.

E.1 off-diagonal K0
S

As described in Sec. 4.2.2, off-diagonal K0
S are the K0

S candidates whose daughter tracks

do not share the same innermost VXD layer to have a hit in. We particularly focus on the

candidates where one daughter has its innermost hit in Layer 1 and the other in Layer 3

or 4. They arise in two ways:

• K0
S decays inside Layer 1 and we miss a Layer-1 hit for one daughter, or

• K0
S decays between Layer 3 (4) and the next inner layer and we assign an irrelevant

(fake) Layer-1 hit to one daughter.

In the current analysis 13.3% of reconstructed signal MC events are classified as TI

events due to the presence of off-diagonal K0
S . The fraction is even larger in the real

data. We exclude these events from the time-dependent analysis because they are likely

to be affected by fake Layer-1 hits, which leads to wrong estimation of the vertex position

uncertainty. As shown in Fig. E.1, the pull distribution of BCP vertex position becomes

significantly broader if BCP includes an off-diagonal K0
S . If we do not exclude the events

affected by off-diagonal K0
S , Rrec can not describe the vertex resolution well anymore as

in Fig. E.2 due to the wrongly estimated uncertainty. The systematic uncertainty arising

from the poor resolution modelling is hard to quantify.

Though it is not yet reflected to the analysis, we have already modified the K0
S recon-

struction algorithm to solve the issue. In the new algorithm, after finding an initial K0
S

decay vertex, the hits assigned to the daughter tracks are examined if they are located on
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Figure E.1: Pull distribution of BCP vertex position for signal MC sample, divided ac-

cording to if the BCP candidate has an off-diagonal K0
S
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Figure E.2: CP -side resolution function fitted to signal MC sample including off-diagonal

K0
S events (Event selections and vertex fit constraint are not up to date for this plot.)
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Figure E.3: Innermost VXD layers where K0
S daughter tracks are detected in the modified

software release
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Figure E.4: Radial coordinate of decay vertices for off-diagonal K0
S reconstructed with

the current and modified software releases. The legend denotes the innermost VXD layers

of daughter tracks.

the inner or outer side with respect to the K0
S vertex. The hits located on the inner side,

which are obviously fake, are then removed and the track is refitted. Figure E.3 shows

the fraction of innermost VXD layers of the K0
S daughters reconstructed with the modifed

software. Compared to Fig. 4.7, the off-diagonal K0
S ’s are reduced to half. Figure E.4

shows the radial coordinate of off-diagonal K0
S decay vertices. We confirm that the off-

diagonal K0
S with obvious fake hits are removed by the modification. The remaining ones

with missing hits can be safely used without the wrong estimation of vertex position

uncertainty. Therefore, from the next round of this analysis the rejection of off-diagonal

K0
S will not be needed anymore.
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E.2 Removal of large-χ2 K0
S

As shown in Fig. 4.11, there are a considerable fraction of signal events where the CP-side

vertex fit p-value is unnaturally large. We suspect that one ofK0
S ’s is poorly reconstructed

in these events, for example, due to a wrong hit assigned to pion tracks. We study this

issue without using the IP constraint in the CP-side vertex fit for a technical reason. We

quantify the reconstruction quality of K0
S as the partial χ2 of the BCP vertex fit, which

corresponds to the χ2 component of its daughter tracks. We refer to the partial χ2 as χ2
K0

S

and the K0
S having the largest χ2

K0
S
among the three K0

S ’s on the CP side as the worst

K0
S . Figure E.5 shows the ratio of χ2

K0
S
of the worst K0

S to total χ2 in bins of total χ2.

When the total χ2 is large, it is often dominated by the single worst K0
S . This supports

our suspicion.

We try to improve the vertex fit quality by removing the worst K0
S from the fit if

χ2
K0

S
exceeds a threshold of 10. Figure E.6 shows the distribution of p-value, BCP vertex

position residual, and vertex position pull for the cases where all three K0
S ’s are used in

the fit and the worst K0
S is removed. We find that the p-value distribution is greatly

improved and becomes almost flat by the prescription. It is notable that the resolution

does not deteriorate even though a K0
S is removed from the fit while the pull distribution

gets sharper. This suggests that the poorly reconstructed K0
S does not almost contribute

to the resolution but leads to underestimation of vertex position uncertainty. Using this

technique, we will be able to reduce the large-χ2 events and prevent the wrong estimation

of vertex fit uncertainty due to poorly reconstructed K0
S . It will recover most of the TI

events due to large χ2 and make our resolution function more decay-mode universal,

which is convenient for its validation.

146



0.0 0.2 0.4 0.6 0.8 1.0

vertex fit p-value

0.0

0.5

1.0

1.5

2.0

2.5
×104

default

Remove K0
S

if χ2
K0
S
> 10

(a) vertex fit p-value

−400 −200 0 200 400

LBoost residual [um]

0

500

1000

1500

2000

2500

3000

default

Remove K0
S

if χ2
K0
S
> 10

(b) vertex position resolution

−10 −5 0 5 10

LBoost pull

0

500

1000

1500

2000

2500

3000

default

Remove K0
S

if χ2
K0
S
> 10

(c) vertex position pull
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of removing the worst K0
S
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Appendix F

Helix parameter uncertainty

correction

In this chapter, d0 and z0 are shown in the unit of cm unless specified.

F.1 Motivation

An MC study on the reconstruction of B0 → J/ψK0
S vertex reveals that the vertex

position uncertainty estimated from the vertex fit is underestimated. Figure F.1 shows

the width of the pull distribution of vertex position as a function of its uncertainty.1

It indicates severe underestimation of vertex uncertainty especially when the estimated

uncertainty is small. Also the overall level of pull width is apart from unity. Among

the helix parameters of the muon tracks shown in Fig. F.2, a similar correlation between

pull and uncertainty is observed for d0 and z0. The correlation is supposed to arise from

imperfect estimation of PXDCluster position uncertainty. The position of particle inter-

section at the PXD is reconstructed by merging the cluster of adjacent pixel hits, which

is referred to as PXDCluster. The PXDCluster position and its uncertainty is estimated

based on a center-of-gravity method using the amount of collected charge in each pixels

belonging to the PXDCluster. The sum of collected charge in the PXDCluster is referred

to as cluster charge. Figure F.3 shows the cluster charge dependence of PXDCluster

position resolution and estimated uncertainty studied in MC. The current formula of

uncertainty assumes that the position uncertainty decreases inversely proportionally to

cluster charge, which is not correct and leads to underestimation of position uncertainty

especially for clusters with large charge and thus small estimated uncertainty.

As a temporary measure, we apply a correction described in the following sections

to helix parameter uncertainties so that the correlation is mitigated and the pull width

becomes closer to one as well. We introduce different corrections for tracks that have a

1Pull is defined as the residual of estimated value from the true value normalized by its uncertainty.

“Width” refers to the half range of [16, 84] % quantiles of a distribution hereafter.
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Figure F.1: Width of B0 → J/ψK0
S vertex position pull distribution as a function of its

uncertainty in cm. B0 vertex is reconstructed from two muon tracks with (“scaled”) and

without helix uncertainty normalization (“not scaled”).

PXD hit (“PXD tracks”) and tracks that do not have a PXD hit but have a SVD hit

(“SVD tracks”). PXD tracks are further classified into tracks produced inside the beam

pipe and outside.

F.2 Correction to PXD tracks

For PXD tracks, we apply a constant scale factor ch to each helix uncertainty εh,

εh → εscaledh = ch · εh (h = ϕ0, ω, tanλ). (6.1)

In addition to the constant scaling, we limit d0 and z0 uncertainties so that they do not

become smaller than the intrinsic resolution:

εh → εscaledh = max (ch · εh, σbest
h (ah, bh; p̃h)) (h = d0, z0). (6.2)

The “best” resolution σbest
h is given by a pseudo-momentum dependent formula,

σbest(ah, bh; p̃h) =
√
a2h + (bh/p̃h)2, (6.3)

where p̃h = pβ sin
3
2
( 5
2
) θ for h = d0(z0). The lower limit of the best resolution deals with

the steep rising edge observed in Fig. F.2. The best resolution is fixed below 0.5 GeV/c,

σbest(ah, bh; p̃h < 0.5) = σbest(ah, bh; p̃h = 0.5GeV/c) (6.4)

These low-momentum tracks do not suffer from the severe underestimation of d0 and

z0 uncertainties as multiple scattering effect dominates the uncertainties. If we kept
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Figure F.2: Width of pull distribution as a function its uncertainty for each helix param-

eter with and without helix uncertainty normalization. Muons from B0 → J/ψ(µµ)K0
S

MC sample are used.

the momentum dependence σbest would become too large for the low-momentum tracks,

resulting in overscaling.

The correction requires nine parameters in total: five c’s and two sets of a and b.

The undesired correlation between pull and uncertainty is resolved by the prescription as

shown in Figs. F.1 and F.2.

Long-lived particles such as K0
S often decay outside the beam pipe or within its

thickness. In that case they are affected by no or less multiple scattering through the

pipe.Because our correction parameters, especially b, are also sensitive to the multiple

scattering, we define a separate parameter set for displaced K0
S daughter tracks. The

displaced K0
S is defined as K0

S decaying at r > 1 cm. For the K0
S decaying inside the

beam pipe, we apply the common scale factors to their daughter tracks as the prompt

tracks produced at the IP.

F.2.1 Parameter determination for prompt tracks using MC

In order to determine the nine parameters an MC sample is used where a muon is gen-

erated in each event with the following settings:

• uniform momentum between [0.2, 3.0] GeV/c,
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Figure F.3: PXDCluster position resolution in v (z) direction normalized by the pixel

pitch vs cluster charge. Crosses are the standard deviations of cluster position residual

and solid lines are the estimated position uncertainties. “uSize” and “vSize” indicate the

cluster size in u (r-ϕ) and v (z) directions, respectively.

• uniform cos θ between [17, 150] degrees.

The scale factors cϕ0 , cω and ctanλ are determined by the widths of their pull distributions.

Regarding the other two requiring the special prescription, h = d0, z0, the parameters

ah, bh and ch are determined in the following procedure.

The reconstructed muon tracks are split into ten bins of pseudo-momentum p̃h from

0.5 to 3.0GeV/c, in each of which the width of h residual distribution is plotted as a

function of h uncertainty as in Figs. F.4 and F.5. The residual tends to improve with the

estimated uncertainty but saturates when the uncertainty is too small. The saturation

level depends on the pseudo-momentum while the slope of the distribution is similar

among different pseudo-momentum bins. The best resolution σbest
i for i-th bin and the

scaling factor ch are obtained as the saturation level and the slope by fitting a kink

function y = max (c · x, σbest
i ) to the residual vs uncertainty plots. The kink functions

are fitted simultaneously with a common ch. The resulted best resolution is shown in

Fig. F.6. The parameters ah and bh are otained by fitting Eq. (6.3) to the data points.

The obtained parameters are listed in Tab. F.3 Applying the correction we can make

the pull widths of helix parameters closer to unity and also less dependent on their

uncertainties for d0 and z0 as shown in Fig. F.2.

F.2.2 Parameter determination for displaced K0
S
using MC

For displaced K0
S daughter tracks we use basically the same correction scheme as the

prompt tracks but with a different set of correction parameters. We determine the cor-

rection parameters in the same way as in Sec. F.2.1. We do not need the cutoff defined

in Eq. 6.4 for z0 uncertainty because the multiple scattering effect is small for displaced

K0
S tracks.
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Figure F.4: d0 resolution vs d0 uncertainty for prompt tracks in ten pseudo-momentum

bins

We generate an MC sample containing one K0
S in each event with the following set-

tings:

• uniform momentum between [0.2, 4.0] GeV/c,

• uniform cos θ between [17, 150] degrees.

and select displaced K0
S daughter tracks that have a Layer-1 hit. We also require that

the K0
S daughters do not share the common PXD hit. The results of kink function fitting

for d0 and z0 are shown in Figs. F.7 and F.8. Figure F.9 shows the best resolution.

Compared to the prompt tracks, displaced K0
S daughter tracks have similar a parame-

ters but significantly smaller b parameters because of the absence of multiple scattering

through the beam pipe. The correction parameters for displaced K0
S daughters are listed

in Tab. F.4

We demonstrate the correction performance by applying the correction to the K0
S

daughter tracks in the MC sample. Figure F.10 shows the helix pull width as a function

of its uncertainty for the K0
S daughter tracks produced inside the beam pipe, for which we
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Figure F.5: z0 resolution vs z0 uncertainty for prompt tracks in ten pseudo-momentum

bins

apply the correction factors for prompt tracks. Figure F.11 shows the result of correction

for the displaced K0
S daughter tracks.

F.2.3 Data-MC correction

For the application to real data, we consider the data-MC difference of the correction

parameters using cosmic data and MC samples. The cosmic data were taken during

beam collisions and processed with two calibration conditions, “prompt” corresponding

to initial processing and “proc12” reprocessed with detector alignment calibration. In

these samples, cosmic rays are separately reconstructed as upper and lower tracks and the

tracks are required to have a hit in PXD and four in SVD. Impact parameter resolution

and helix parameter pull are evaluated by comparison of the upper and lower tracks.

Residual and pull of a helix parameter are defined as (hup − hdown)/
√
2 and (hup −

hdown)/
√
ε2h,up + ε2h,down, respectively.
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Figure F.6: d0 (left) and z0 (right) best resolution vs pseudo-momentum for prompt

tracks

(1) Impact parameter resolution

In terms of impact parameter resolution, we are interested in cosmic tracks affected by

multiple scattering through the beam pipe as ordinary B meson daughter tracks coming

from IP and reside within the detector acceptance. Therefore, the following selections

are applied to the cosmic events:

• |z0| > 0.3 cm, rejecting background tracks coming from IP

• −2 < z0 < 4 cm, rejecting tracks which penetrate titanium parts of the beam pipe

and are significantly affected by multiple scattering

• |d0| < 1 cm, requiring tracks to be scattered through the beam pipe.

The latter two selections significantly change the impact parameter resolution. Fig-

ure F.12 shows the impact parameter resolution in each cosmic sample fitted by Eq. (6.3).

The difference in the fit parameters between data and MC is summarized in Tab. F.1.

We use the results to obtain the correction parameters for data,

a2data = a2MC + (a2cosmic,data − a2cosmic,MC)

bdata = bMC × bcosmic,data

bcosmic,MC

,

where aMC and bMC are the correction parameters obtained in Sec. F.2.1 and (a2cosmic,data−
a2cosmic,MC) and

bcosmic,data

bcosmic,MC
the data-MC difference in impact parameter resolution.

(2) Scaling factors

Figure F.13 shows the pull distributions of helix parameters obtained from the cosmic

samples. The data-MC difference of scaling factors c is estimated as that of the pull
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Figure F.7: d0 resolution vs d0 uncertainty for displaced K0
S daughter tracks in ten

pseudo-momentum bins

widths. The pull widths of d0 and z0 are calculated in a low pseudo-momentum region

[0.5, 1.0]GeV/c, where the uncertainty is not too much underestimated. Using the results

in Tab. F.2, the scaling factors for data are obtained as

cdata = cMC × ccosmic,data

ccosmic,MC

, (6.5)

where cMC is the scaling factor in Sec. F.2.1 and
ccosmic,data

ccosmic,MC
is the ratio of pull width.

F.2.4 Summary of correction parameters

Tables F.3 and F.4 summarizes the correction parameters obtained from MC and cor-

rected by the data-MC difference.
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d0 z0√
a2proc12 − a2MC [µm ] 4.0 5.3√
a2prompt − a2MC [µm ] 6.9 7.9

bproc12/bMC 1.034 1.040

bprompt/bMC 1.027 1.032

Table F.1: Difference in impact parameter resolution between cosmic data and MC

d0 ϕ0 ω z0 tanλ

proc12 1.014 0.899 1.138 1.025 0.894

prompt 1.043 0.908 1.138 1.034 0.898

Table F.2: Ratio of the width of helix pull distribution between cosmic data and MC

data set cd0 cϕ0 cω cz0 ctanλ ad0 bd0 az0 bz0
[µm ] [µm · GeV/c] [µm ] [µm · GeV/c]

MC 1.150 1.086 1.152 1.096 1.087 11.5 13.5 12.4 13.3

proc12 1.166 0.976 1.310 1.124 0.971 12.2 13.9 13.5 13.8

prompt 1.199 0.986 1.310 1.134 0.976 13.4 13.8 14.8 13.7

Table F.3: Summary of the correction parameters for prompt tracks

data set cd0 cϕ0 cω cz0 ctanλ ad0 bd0 az0 bz0
[µm ] [µm · GeV/c] [µm ] [µm · GeV/c]

MC 1.126 1.059 1.206 1.067 1.048 11.74 7.79 13.5 0.00058

proc12 1.142 0.952 1.372 1.093 0.936 12.41 8.057 14.5 6.062

prompt 1.174 0.962 1.372 1.104 0.941 13.6 7.997 15.66 6.015

Table F.4: Summary of the correction parameters for displaced K0
S daughter tracks
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Figure F.8: z0 resolution vs z0 uncertainty for displacedK0
S daughter tracks in ten pseudo-

momentum bins

F.3 Correction to SVD tracks

F.3.1 Parameter determination

Many of K0
S daughters do not have PXD hits but have SVD hits because of the long

K0
S lifetime. Because the source of position uncertainty for the SVD tracks is different

from the PXD tracks, they require different correction. We simply apply constant scaling

factors to helix parameter uncertainties for SVD tracks, which do not depend on the

track momentum. We collect SVD tracks from displaced K0
S in B0 → K0

SK
0
SK

0
S signal

MC to have tracks of reasonably broad momentum range considering that the correction

will be applied to K0
S produced in BB events. We determine the scaling factor for each

helix parameter uncertainty as the width of helix pull distribution of the collected SVD

tracks. The scaling factors are in Tab. F.6.
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Figure F.9: d0 (left) and z0 (right) best resolution vs pseudo-momentum for displaced

K0
S daughter tracks

d0 ϕ0 ω z0 tanλ

0.922 0.946 1.189 1.000 0.945

Table F.5: Ratio of the width of helix pull distribution between cosmic data and MC

F.3.2 data-MC correction

For data-MC correction of the SVD-track parameters we use cosmic events as in Sec. F.2.3

but reconstruct the tracks without using PXD hits. We require the cosmic tracks

• to have six or more SVD hits (corresponding to three SVD layers),

• |z0| > 0.3 cm,

• −8 cm < z0 < 12 cm,

• |d0| < 2.5 cm, and

• p < 3GeV/c.

The second selection removes background coming from beam collision, the third removes

tracks scattered by PXDmount blocks, and the fourth removes tracks going through Layer

3 in r-ϕ direction that are somehow reconstructed with large helix pull. Figure F.14 shows

the pull distribution of helix parameters for the cosmic SVD tracks. We determine the

data-MC correction factor as the ratio of the pull widths between data and MC as in

Eq. (6.5). The correction factors and the corrected parameters are listed in Tab. F.5 and

F.6.

We only define a single set of parameters for data because the c parameters are not

sensitive to the calibration as indicated by the data-MC comparison of PXD tracks in

Tab. F.2.
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Figure F.10: Width of pull distribution as a function of the uncertainty for each helix pa-

rameter with and without helix uncertainty normalization. K0
S daughter tracks produced

inside the beam pipe are selected.

data set cd0 cϕ0 cω cz0 ctanλ

MC 1.079 1.080 1.209 1.088 1.083

data 0.994 1.022 1.438 1.088 1.023

Table F.6: Summary of the correction parameters for SVD tracks
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Figure F.11: Width of pull distribution as a function of the uncertainty for each helix

parameter with and without helix uncertainty normalization. Displaced K0
S daughter

tracks are selected.
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Figure F.12: Impact parameter resolution of cosmic tracks in data and MC samples
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Figure F.13: Pull distributions of helix parameters of PXD tracks in cosmic samples
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Figure F.14: Pull distributions of helix parameters of SVD tracks in cosmic samples
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Appendix G

Feldman-Cousins confidence interval

From the ensemble test in Sec. 5.5.1 we find the CP fit results are biased due to low

statistics and the uncertainties obtained by MINOS are not fully reliable. We estimate the

confidence interval using a frequentist approach based on the Feldman-Cousins likelihood-

ratio ordering [41][42]. Confidence interval is defined as the interval where the true value

of the parameter of interest exists with a given probability (confidence level).

Given the true CP asymmetries θ⃗ = (Sinput, Ainput) as conditional variables, we con-

struct a PDF for measured values x⃗ = (Sfit, Afit) as a sum of two two-dimensional Gaussian

functions:

P (Sfit, Afit|Sinput, Ainput) = fmG(Sfit;µmS, σmS)G(Afit;µmA, σmA) (7.1)

+(1− fm)G(Sfit;µtS, σtS)G(Afit;µtA, σtA), (7.2)

where

fm = fm0 + fm2SS
2
input + fm2AA

2
input, (7.3)

µmS = µmS0 + µmS1SSinput + µmS3SS
3
input, (7.4)

σmS = σmS0 + σmS2SS
2
input + σmS2AA

2
input, (7.5)

µtS = µtS0 + µtS1SSinput, (7.6)

σtS = σtS0, (7.7)

µmA = µmA0 + µmA1AAinput, (7.8)

σmA = σmA0 + σmA2AA
2
input, (7.9)

µtA = µtA0 + µtA1AAinput, and (7.10)

σtA = σtA0, (7.11)

and the PDF contains 19 parameters. We determine the parameters by an unbinned

maximum likelihood fit to the distribution of (Sfit, Afit, Sinput, Ainput) obtained from

toy MC samples, where we vary the Sinput and Ainput in 0.2 steps within the physical

boundary S2
input + A2

input ≤ 1 as shown in Fig. G.1 and repeat 8000 experiments at each

(Sinput, Ainput). Table G.1 show the fit results. As shown in Figs. G.2–G.9 the fitted PDF

describes well the distributions of toy MC results.
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Figure G.1: Input CP asymmetries (Sinput, Ainput) for toy MC samples

Table G.1: PDF parameters
parameter value

fm0 0.8920+0.0022
−0.0023

fm2S −0.0788+0.0045
−0.0046

fm2A −0.1408+0.0045
−0.0045

µmS0 −0.00225+0.00083
−0.00083

µtS0 0.0027+0.0043
−0.0043

µmA0 0.00072+0.00042
−0.00042

µtA0 −0.0063+0.0016
−0.0016

µmS1S 0.9698+0.0038
−0.0038

µmS3S 0.0705+0.0068
−0.0068

µtS1S 2.047+0.012
−0.012

µmA1A 0.99590+0.00087
−0.00088

µtA1A 1.1967+0.0031
−0.0031

σmS0 0.5228+0.0015
−0.0015

σmS2S 0.0092+0.0033
−0.0033

σmS2A −0.0187+0.0016
−0.0016

σtS0 1.1476+0.0040
−0.0039

σmA0 0.27023+0.00045
−0.00045

σmA2A −0.0417+0.0012
−0.0012

σtA0 0.3538+0.0012
−0.0011
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Figure G.2: Fitted PDF and toy MC distribution projected onto Sfit in arbitrary bins of

Afit with (Sinput, Ainput) at black dots in Fig. G.1
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Figure G.3: Fitted PDF and toy MC distribution projected onto Sfit in arbitrary bins of

Afit with (Sinput, Ainput) at red dots in Fig. G.1
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Figure G.4: Fitted PDF and toy MC distribution projected onto Sfit in arbitrary bins of

Afit with (Sinput, Ainput) at green dots in Fig. G.1

166



−6 −4 −2 0 2
Sfit

0

100

200

300

400

500 Sinput= −0.8,Ainput= −0.6
−3.000<Afit≤ −0.993
−0.993<Afit≤ −0.697
−0.697<Afit≤ −0.391
−0.391<Afit≤3.000

−10 −5 0
Sfit

0

100

200

300

400

500

600

700

800 Sinput= −0.8,Ainput= −0.4
−3.000<Afit≤ −0.779
−0.779<Afit≤ −0.486
−0.486<Afit≤ −0.181
−0.181<Afit≤3.000

−6 −4 −2 0 2
Sfit

0

100

200

300

400

500

600 Sinput= −0.8,Ainput= −0.2
−3.000<Afit≤ −0.562
−0.562<Afit≤ −0.274
−0.274<Afit≤0.037
0.037<Afit≤3.000

−6 −4 −2 0 2
Sfit

0

100

200

300

400

500 Sinput= −0.6,Ainput= −0.8
−3.000<Afit≤ −1.200
−1.200<Afit≤ −0.902
−0.902<Afit≤ −0.616
−0.616<Afit≤3.000

−6 −4 −2 0 2
Sfit

0

100

200

300

400

500

600 Sinput= −0.6,Ainput= −0.6
−3.000<Afit≤ −0.974
−0.974<Afit≤ −0.679
−0.679<Afit≤ −0.388
−0.388<Afit≤3.000

−7.5 −5.0 −2.5 0.0 2.5
Sfit

0

100

200

300

400

500

600

700

800 Sinput= −0.6,Ainput= −0.4
−3.000<Afit≤ −0.766
−0.766<Afit≤ −0.478
−0.478<Afit≤ −0.177
−0.177<Afit≤3.000

−4 −2 0 2
Sfit

0

100

200

300

400

500 Sinput= −0.6,Ainput= −0.2
−3.000<Afit≤ −0.562
−0.562<Afit≤ −0.274
−0.274<Afit≤0.020
0.020<Afit≤3.000

−5.0 −2.5 0.0 2.5 5.0
Sfit

0

100

200

300

400

500

600

700

800 Sinput= −0.4,Ainput= −0.8
−3.000<Afit≤ −1.191
−1.191<Afit≤ −0.888
−0.888<Afit≤ −0.606
−0.606<Afit≤3.000

−6 −4 −2 0 2
Sfit

0

100

200

300

400

500

600 Sinput= −0.4,Ainput= −0.6
−3.000<Afit≤ −0.975
−0.975<Afit≤ −0.685
−0.685<Afit≤ −0.390
−0.390<Afit≤3.000

−6 −4 −2 0 2
Sfit

0

100

200

300

400

500

600 Sinput= −0.4,Ainput= −0.4
−3.000<Afit≤ −0.761
−0.761<Afit≤ −0.479
−0.479<Afit≤ −0.183
−0.183<Afit≤3.000

−6 −4 −2 0 2
Sfit

0

100

200

300

400

500

600 Sinput= −0.4,Ainput= −0.2
−3.000<Afit≤ −0.572
−0.572<Afit≤ −0.276
−0.276<Afit≤0.040
0.040<Afit≤3.000

−7.5 −5.0 −2.5 0.0 2.5
Sfit

0

100

200

300

400

500

600

700

800 Sinput= −0.2,Ainput= −0.8
−3.000<Afit≤ −1.174
−1.174<Afit≤ −0.883
−0.883<Afit≤ −0.608
−0.608<Afit≤3.000

−4 −2 0 2 4
Sfit

0

100

200

300

400

500 Sinput= −0.2,Ainput= −0.6
−3.000<Afit≤ −0.958
−0.958<Afit≤ −0.676
−0.676<Afit≤ −0.387
−0.387<Afit≤3.000

−4 −2 0 2
Sfit

0

100

200

300

400

500 Sinput= −0.2,Ainput= −0.4
−3.000<Afit≤ −0.750
−0.750<Afit≤ −0.468
−0.468<Afit≤ −0.174
−0.174<Afit≤3.000

−4 −2 0 2 4
Sfit

0

100

200

300

400

500 Sinput= −0.2,Ainput= −0.2
−3.000<Afit≤ −0.549
−0.549<Afit≤ −0.273
−0.273<Afit≤0.029
0.029<Afit≤3.000

Figure G.5: Fitted PDF and toy MC distribution projected onto Sfit in arbitrary bins of

Afit with (Sinput, Ainput) at blue dots in Fig. G.1
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Figure G.6: Fitted PDF and toy MC distribution projected onto Afit in arbitrary bins of

Sfit with (Sinput, Ainput) at black dots in Fig. G.1
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Figure G.7: Fitted PDF and toy MC distribution projected onto Afit in arbitrary bins of

Sfit with (Sinput, Ainput) at red dots in Fig. G.1
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Figure G.8: Fitted PDF and toy MC distribution projected onto Afit in arbitrary bins of

Sfit with (Sinput, Ainput) at green dots in Fig. G.1
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Figure G.9: Fitted PDF and toy MC distribution projected onto Afit in arbitrary bins of

Sfit with (Sinput, Ainput) at blue dots in Fig. G.1
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Once we measure a set of CP asymmetries on a data sample x⃗0 = (S0, A0), the

confidence level to reject an arbitrary set of CP asymmetries θ⃗ is∫
LR(x⃗0|θ⃗)≥LR(x⃗|θ⃗)

dx⃗P (x⃗|θ⃗), (7.12)

where LR is likelihood ratio defined as

LR(x⃗|θ⃗) = P (x⃗|θ⃗)
P (x⃗|θ⃗best)

, (7.13)

using θ⃗best(x⃗) which maximizes P (x⃗|θ⃗) for given x⃗. Due to the complexity of the PDF,

we numerically compute θ⃗best(x⃗) using MIGRAD. Figure G.10 shows the distribution of

P (x⃗|θ⃗best). P (x⃗|θ⃗best) corresponds to the outermost line of the PDF when Sinput and Ainput

are varied as shown in Fig. G.11. In the Sfit direction, the PDF has a broader tail when

|Sinput| ∼ 1 so that the height of the main peak gets lower. On the other hand, in the

Afit direction, the PDF gets narrower when |Ainput| is larger so the outline is downwardly

convex at the center.

To draw confidence contours for the measurement x⃗0, we compute the integral of

Eq. (7.12) at arbitrary values of θ⃗ with Monte Carlo method, where we pseudorandomly

generate x⃗ based on the PDF and estimate the probability for x⃗ to fulfill LR(x⃗0|θ⃗) ≥
LR(x⃗|θ⃗). Figure G.12 shows an example of the contours assuming x⃗0 = (−1.1, 0.5).
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(right) plot, Sinput (Ainput) is varied while Afit and Ainput (Sfit and Sinput) are fixed to zero.

173



−1.0 −0.5 0.0 0.5 1.0
S

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A

1σ 2σ3σ

3σ

Sfit= −1.100,Afit=0.500

Figure G.12: Example of confidence contours assuming a fit results of S0 = −1.1 and

A0 = 0.5, which excludes the phase space at 1σ, 2σ, and 3σ confidence levels
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Appendix H

Data-MC comparison of K0
S BDT

selection efficiency

Comparing the expected and observed number of events in Tabs. 4.4 and A.1, we find

around 30% deficit in data both for B0 → K0
SK

0
SK

0
S and B+ → K0

SK
0
SK

+ decays. Mo-

tivated by the difference, we study the efficiency of K0
S BDT selection, OK0

S
> 0.75, in

data.

We fit the following function to K0
S mass distribution:

f(Mπ+π−) = s · V (Mπ+π− ;µ, σ, γ) + b, (8.1)

where V (x;µ, σ, γ) =
∫∞
−∞G(x − x′;µ, σ) γ

π(x′2+γ2)
dx′ is the Voigt function and s, b, µ, σ,

and γ are free parameters. The number of true K0
S , Nsig, is calculated as the integral of

the Voigt function within the fit range. We define the efficiency as the ratio of Nsig with

and without the K0
S BDT selection.

For the K0
S efficiency study, we use B0 → K0

SK
0
SK

0
S sample with only the Mbc and M

selection and 470 < Mπ+π− [MeV/c2] < 530. The K0
S mass range justifies the flat back-

ground distribution in MC. Figure H.1 show the fit results to data and MC distributions

with the K0
S BDT selection applied or not. The estimated K0

S selection efficiencies in

data and MC match each other and that obtained by counting MC truth information as

shown in Tab. H.1. As the efficiency is found to be similar, we attribute the data-MC

difference to imperfect simulation of qq fragmentation in MC.

Table H.1: K0
S BDT selection efficiency in data and MC

sample Nsig without selection Nsig with selection efficiency

MC count 105343 100545 95.4 %

MC fit 106145± 911 100803± 553 95.0± 0.9 %

data fit 69154± 709 66942± 424 96.8± 1.1%
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S mass distributions and fitted functions
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Appendix I

Fit results from validation using

generic MC sample

We show the fitted distributions from the validation study using the generic MC sample

in Sec. 5.5.3.
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Figure I.1: Results of signal extraction fits to generic MC
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Figure I.3: Results of lifetime fit to generic MC
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Appendix J

Invariant mass of K0
SK

0
S

We use the distribution of invariant mass of two K0
S ’s from BCP , MK0

SK
0
S
, to determine

the yield of B0 → χc0K
0
S events and to draw the Dalitz plot.

J.1 Yield determination of B0 → χc0K
0
S events

We veto B0 → χc0K
0
S events in our analysis. Here, we do not veto the decays and

try to estimate its yield by fits to the MK0
SK

0
S
distributions. We name the K0

S ’s A, B,

and C in descending order of momentum and label the MK0
SK

0
S
by the K0

S names. We

define templates of MK0
SK

0
S
distributions using signal and MC samples and fit the sum

of templates and a Gaussian function corresponding to χc0 resonance to the data to

determine the yield of each component. It should be noted the signal MC only includes

non-resonant B0 → K0
SK

0
SK

0
S decays so the signal MC template does not necessarily

represent the real distribution. Signal and background MC distributions are smoothed

by kernel density estimation (KDE) using a Gaussian kernel. The mean and standard

deviation of the Gaussian function for χc0 are fixed to be 3420MeV/c2 and 21MeV/c2 based

on generic MC. Figure J.1 shows the distributions. In the fit, we use only the events within

the signal region and impose a Gaussian constraint to the yield of background component,

86 ± 12, based on a result of signal extraction fit without χc0 veto. The sum of χc0K
0
S

yields are estimated to be 2.0+4.7
−3.7, which is consistent to an MC expectation of 5.7.

J.2 Dalitz plot

Dalitz plot describes the kinematics of three body decays and resonant structure. It is a

2D scatter plot of invariant masses of different combinations of two daughter particles,

mab and mbc. Because in our case the three final-state particles are identical, there are six

definitions for mab and mbc. We can always choose a combination for each event to let it

in the shaded region in Fig. J.2, by defining the largest invariant mass as mab(smax) and

the smallest as mbc(smin). Such a plot is called symmetrized Dalitz plot. Figure J.3 shows
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Figure J.1: MK0
SK

0
S
distribution of signal MC, background MC, and data. The signal and

background MC distributions are smoothed by KDE. The χc0 component fitted to the

data distribution is scaled by ten for better visibility.
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the symmetrized Dalitz plot using the events within the signal region without applying

χc0 veto. The resonant structure is not clear due to low statistics.
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Appendix K

Hyperparameters of boosted

decision trees

We set the following hyperparameters for the two BDTs used for K0
S selection and con-

tinuum suppression described in Sec. 4.2.1 and Sec. 4.6 (See Ref. [31] for the definition

of the hyperparameters.):

• number of trees : 200

• depth of trees : 3

• learning rate : 0.1

• sampling rate : 0.5

• number of events in the training sample : 200,000

• number of features : 22 (K0
S), 18 (continuum suppression)

Since the performance of a BDT depends largely on its number and depth of trees,

we check if our choice of the parameters is proper. Figure K.1 shows the results of grid

search, where we repeat training the BDTs while changing the two hyperparameters. The

performance of the BDTs are evaluated as AUC, which stands for normalized area under

the ROC curve. It ranges from zero to one and a larger value means better separation.

We confirm that the current hyperparameters are close to the optimal choice.
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Figure K.1: AUC of the K0
S (left) and continuum suppression (right) BDTs as a function

of the number and depth of trees
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Appendix L

Correlation between CP-side and

tag-side vertex positions

We use the Btube constraint in the Btag vertex fit (see Sec. 4.4.2). As the constraint

relies on the result of the BCP vertex fit, the fit results may be correlated with each other

in principle. However, we confirm that the correlation is negligible in the signal MC as

described in the following.

We naively expect a possible positive correlation between the vertex position residuals,

δℓCP and δℓtag. Such a correlation should be clearer in the events where only one track is

available for Btag vertex fit. Figure L.1 shows the distribution of δℓtag in the signal MC

events with and without the single-track selection on the tag side. The distributions are

divided according to the sign of δℓCP . We do not observe a correlation between δℓCP and

δℓtag.
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Figure L.1: Distribution of δℓtag for the signal MC events divided according to the sign

of δℓCP . The left plot shows all events passing the reconstruction criteria and the right

plot shows the events where only one track is available for Btag vertex fit.
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