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VII

Disclaimer

This thesis builds on the work of Jonas Eppelt (KIT, ETP) on the search for Inelastic Dark
Matter with a Dark Higgs. The production and reconstruction of the SM samples has been
mainly done by the Belle II collaboration. Jonas Eppelt’s reconstructions performed in his
work are used. Parts of his program were also used and partly modified for own purposes.
The simulation of the signals was performed by Patrick Ecker (KIT, ETP). The plots shown
in this paper were also created by me using the plotting functions of Jonas Eppelt, unless
otherwise noted. The Isolation Forest is based on the scikitlearn [1] implementation and
partially modified or extended. All analyses in this thesis are performed by me.
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1. Introduction

Particle physics is a dynamic field that seeks to unravel the puzzle of the universe and
understand its fundamental nature. As knowledge expands, deviations from the well-
established theoretical framework known as the Standard Model (SM) are emerging. These
deviations, observed in the vast and intricate fabric of the universe, serve as clues to the
existence of new particles and Physics Beyond the Standard Model (BSM). Among others,
the Belle II experiment is used to search for Dark Matter (DM). A possible signature of
the Dark Higgs is predicted by the theoretical Inelastic Dark Matter with a Dark Higgs
(IDMDH) model. Using precise measurements of the SM and its processes, it is possible to
study the collision process of an electron-positron pair effectively and to probe for evidence
of unknown signals. However, the challenge is to detect these rare and anomalous events in
the huge amount of data generated by such collisions. Anomaly Detection (AD) techniques
have proven to be useful for the direct identification of unknown signals in complex data
sets [2]. These techniques are widely used in various fields, including finance, where they are
often used as powerful tools to detect fraud [3]. One particular method that has attracted
considerable attention is the Isolation Forest (IForest) algorithm [4], which is known for
its efficiency in detecting anomalies [5]. The search for the unknown in collision processes
also offers a potential use of this approach. Motivated by the possibility of discovering new
physical signatures, this work examines in detail the IForest algorithm within a search for
the IDMDH model at Belle II.

This thesis focuses on training the IForest using Monte Carlo (MC) simulations of SM
processes, exclusively on prompt decays of electron-positron collisions. By analyzing the
behavior of IForest, including its hyperparameters and the effect of various input features,
the study aims to understand its capabilities and limitations in identifying anomalies
associated with the SM samples used and the IDMDH model. In addition, alternative
techniques, such as averaging over an ensemble of Isolation Forests or iterative retraining,
are explored. These techniques are investigated to assess the sensitivity of the IForest in
Chapter 4.

In addition, this thesis includes a comparative analysis with Autoencoder (AE) [6], another
AD approach, with an IForest model specifically derived from this study. The goal of
this analysis is to gain valuable insight into the performance and efficiency of the IForest
compared to AE. This comparative study is presented in Chapter 5 and highlights the
relative sensitivity of these two AD techniques.
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2. The Belle II Experiment and Physics
Theory

The Belle II Experiment provides an opportunity to explore Physics Beyond the Standard
Model (BSM). With its ability to produce precise Standard Model (SM) decays as output
and due to its high luminosity, it provides an ideal platform to explore New Physics (NP).
Searching for NP is of great interest, especially for Dark Matter (DM), since astrophysical
observations have already suggested its existence. A specific model search for new physical
phenomena exceeds the possibilities given by the nature of the unknown signals. Taking
a more general approach allows for exploring a wider parameter space and increases the
chances of discovering unexpected signs of unknown particles. Therefore, the consideration
of a model-independent approach is justified in the search for anomalies specific to the
theoretically assumed DM. To begin with, a concise technical introduction to the experiment
is necessary for the scope of this work.

2.1. The Belle II Experiment

The Belle II detector operates at the SuperKEKB collider, located at KEK, Tsukuba, Japan.
SuperKEKB [7] is an asymmetric electron-positron accelerator that operates at the energy
of the Υ(4S) resonance at a center-of-mass energy of

√
s = 10.58GeV. Therefore it is also

called a B-factory. Along the SuperKEKB accelerator, there are four experimental halls,
namely Nikko, Fuji, Oho and Tsukuba. Figure 2.1 provides an overview of the accelerator’s
arrangement, with the Belle II detector located in the Tsukuba hall. The Main Ring (MR)
consists of the Low Energy Ring (LER) for the positron beam at 4 GeV and the High
Energy Ring (HER) for the electron beam at 7 GeV. Both electrons and positrons are
injected into the 3 km long MR from a linear accelerator via beamlines. The collision of the
two particles takes place at the Interaction Point (IP), around which the Belle II detector is
placed. This particle accelerator, with its design for high luminosity, is advantageous for the
generation of large amounts of data from the collision. At present, this is the accelerator
with the highest instantaneous luminosity of 4.65 × 1034cm−2s−1 in the world [8].

In the 4π-symmetric Belle II detector, several layers of subdetectors are responsible for
detecting collision events, as illustrated in Fig. 2.2. The innermost detectors are the Pixel
Detectors (PXD) and Silicon Vertex Detectors (SVD), used for particle trajectory detection.
Charged particles are tracked by the Central Drift Chamber (CDC) in the Belle II detector

3



4 2. The Belle II Experiment and Physics Theory

Figure 2.1.: Schematic of SuperKEKB with the Belle II detector at the particle Interaction
Point (IP). The electron (positron) beams are marked in blue (red) with an
additional linear accelerator for the particles and the positron damping ring [7].

using charged wires and helium-methane gas, providing essential charge and momentum
information.

The Time-of-Propagation (TOP) counter measures the precise timing of particle interactions
by detecting the emission of photons in a Cherenkov cone as charged particles traverse a
radiator material. The Aerogel Ring-imaging Cherenkov (ARICH) measures the angular
distribution of Cherenkov photons emitted in the silica aerogel source. Both subdetectors
provide Particle Identification (PID) information, focusing on distinguishing kaons from
pions throughout most of the momentum spectrum.

The next layer of the Belle II detector is the Electromagnetic Calorimeter (ECL), which is
used to measure the energy of particles. For photon detection and electron identification,
scintillation crystals with their strong light emission are used to convert absorbed high-energy
gamma radiation by the emission of low-energy photons.

The KL and Muon Detector (KLM) is located outside the superconducting solenoid as the
outermost layer of the Belle II detector. Long-lived particles as K0

L and µ pass through
the previous layers without being stopped due to their weaker interaction strength. It
is composed of alternating layers of iron plate absorbers and resistive plate chambers to
measure the energy loss of these particles. The superconducting solenoid provides a 1.5T
magnetic field. More detailed information on the technical design of these detectors is given
in [10].
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Figure 2.2.: Schematic of the Belle II detector layers. The asymmetric energy of the colliding
particles and their direction, as well as the placements of the detectors, are
displayed [9].

Through a combination of hardware and software algorithms, triggers evaluate various
characteristics of detected particles to determine if an event has to be retained or discarded.
The goal of triggers is to efficiently filter and reduce the amount of data while retaining the
most relevant events for physics analysis. The exact operation of keeping events associated
with triggers is described in [11]. For analysis, the Belle II Analysis Software Framework
(basf2) [12] is provided by the collaboration. This software can be used to generate
Monte Carlo (MC) particles as well as for combining the information from all the detectors
introduced above and thus reconstructing the particle events.

2.1.1. Beam Background

The operation of the SuperKEKB accelerator leads to beam background events in addition
to the collision process. Consequently, several processes that contribute to the generation of
beam background events, studied during the operation of SuperKEKB [13], are presented:

• Touschek backgrounds: Coulomb interaction with particles in the same beam that
scatter at an energy different from the nominal bunch energy.

• Beam-gas events: Particles that deviate from the nominal beam path and collide with
the wall of the accelerator pipe.

• Synchroton radiation: Radiation in the energy range of several keV generated from
emitted photons of moving charged particles.
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• Luminosity background: Apart from the collision at the IP, other processes in the Belle
II detector lead to an increase of the radiation dose and occupation of the hits in the
detector by emitting photons, e.g., the radiative Bhabha scattering e+e− → e+e−γ.

• Injection background: Because of the short lifetime of the beam, interactions between
injected bunches to maintain a stable current can lead to the creation of additional
particles through beam-beam collisions.

The evaluation of background is crucial due to the high luminosity, as it leads to an increased
presence of background events. As a result, these background processes produce additional
particles that do not originate from the collision itself but are still detected and, generally,
worsen the detectors’ performance. With future upgrades of SuperKEKB [14], the beam
background becomes more relevant.

2.2. Physics Beyond the Standard Model

In the past, numerous observations supporting the existence of DM have been docu-
mented [15]. As a result, theories involving DM are being proposed for phenomena that
cannot be explained by the SM. Some known phenomena in the field include the Comsmic
Microwave Background (CMB), galaxy rotation, and the challenging strong CP problem.
Tighter constraints on the mass of potential DM particles, based on the theoretical model
presented in [16], prohibit them from being heavier than the gauge boson A′ and thus tend
to limit the DM to a lower mass spectrum.

An inelastic coupling to SM particles that can exist independently of the CMB bounds
is very intriguing. This model is described in more detail in [16] and is called Inelastic
Dark Matter with a Dark Higgs (IDMDH). In particular, the idea of introducing two DM
particles, as well as bosonic particles interacting with the DM particles, is analogous to
existing particles in the SM. In the context of the IDMDH model, a SM photon resulting
from electron-positron collisions can kinetically mix with an induced Dark Photon A′.
The lightest DM particle is introduced as χ1 and can be excited to χ2 by a Dark Photon.
Similarly to the SM where the higgs particle gives mass to other particles, the dark particles
get their mass from a dark Higgs h′. The process is illustrated in a simplified model shown
in Fig. 2.3. In this particular case, as well as in other possible scenarios involving different
final state particles, an SM photon mixes with a Dark Photon and emits a dark Higgs h′

that decays into a muon-antimuon pair. The Dark Photon, in turn, decays into two DM
particles, χ1 and χ2. The heavier χ2 then decays into a χ1 and a Dark Photon, which
decays into an electron-positron pair. So in total there are four leptons (e+, e−), (µ+, µ−)
and the missing energy. This results in seven free parameters [16] with:

• The mass of the A′, mA
′

• The mixing angle of the SM photon to the A′, ϵ

• The mass of the h′, mh
′

• The mixing angle of the SM Higgs to the h′, θ

• The mass of the χ1, mχ1
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Figure 2.3.: Feynman diagram of the simplified IDMDH model adapted from [6].

• The coupling of the χ1 and χ2 to the h′, f

• The coupling of the χ1 and χ2 to the A′, gX

The two dark χ1 are expected to be undetectable, so there is a discrepancy with the
accelerator energy when the remaining ECL clusters are summed up and missing energy
is left over. In this work, based on the calculations of the master’s thesis [6], the mass of
the Dark Photon is set to mA

′ = 4 ·mh
′ and the following hypotheses are assumed. The

couplings are required to be less than
√
4π. Therefore, the h′ must not be heavier than the

Dark Photon A′

m2
h
′ ≲

√
π

4gX
m2

A
′ . (2.1)

With additional constraints for the masses due to the DM annihilation and CMB

f4

64π2mχ1
< mh

′ ≲ mχ1
< mA

′ . (2.2)

This results in a theoretical mass for the χ2 of

mχ2
= mχ1

+
f ·mA

′

gX
(2.3)

In addition, the coupling constants are fixed to

f =
√
4παf ≈ 0.2476 (2.4)

and
gX =

√
4παD ≈ 1.12 (2.5)
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with αf = 0.006 and αD = 0.1. This gives the relation between masses χ1and χ2

mχ1
+mχ2

+mh
′ < 10.58GeV. (2.6)

The accelerator energy of 10.58GeV results in:

f

gX
· 4 ·mχ1

≈ mχ1
(2.7)

additional limitation from [16] results in

mχ1
> mh

′ , (2.8)

and
∆m = mχ2

−mχ1
≥ 2 ·mµ. (2.9)

The focus in this work is on the prompt decays of h′ and χ2. For this reason, the mixing
angles ϵ and θ are set to a high value of 10−2, controlling the lifetime of the Dark Photon
A′.

2.2.1. Standard Model

The signature of the events studied in this work is characterized by four charged particles in
the detector acceptance: a muon-antimuon pair resulting from the decay of the h′ particle,
and an electron-positron pair resulting from the decay of the χ2 particle. Also, missing
energy corresponds to the energy carried away by the χ1 particle, which is not detected.
A variety of known processes within the SM produce a similar signature. Therefore, such
processes are detailed in this chapter.

2.2.2. Possible Collider Processes

The process e+e− → e+e−µ+µ− involves exactly the same particles that are expected in
the final state. Therefore, the missing energy could be derived from reconstruction and
measurement errors. In addition, tauon decays e.g. τ− → e− + ν̄e + ντ with undetectable
neutrinos may mimic the final state of the dark process. Moreover, combinations of
single-lepton-pair processes and the beam background, as well as other measuring and
reconstructing errors, can imitate the final states that are sought. Furthermore, the similarity
of the masses of the muons and pions implies a contribution from the e+e− → e+e−π+π−

process. Due to the high production rate of the B± → l±νlX or B0 → K0l+l− decays of
the B factory accelerator, a background results from reconstruction errors. In addition
to the production of b-quark and anti-b-quark pairs, the continuum background includes
non-resonant decays e+e− → uū, e+e− → dd̄, e+e− → ss̄, and e+e− → cc̄, which contribute
to the overall background. Additionally, within the context of the SM, there are various
processes that exhibit high cross-sections. These processes involve the production of
commonly observed particles, such as electrons, muons, quarks, and gauge bosons. As
described in [6], the use of machine learning is motivated by the resulting large amount of
data.
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Table 2.1.: Summary of simulated process-based MC samples adapted from [6] with their
corresponding luminosity and number of events.

process simulated luminosity in fb−1 number of events (·106)
e+e− → e+e−µ+µ− 100 1883

e+e− → τ+τ− 100 91.9
e+e− → e+e−π+π− 100 189.5
e+e− → e+e−e+e− 100 3955
e+e− → µ+µ− 100 114.8
e+e− → e+e− 10 2958
e+e− → B0B̄0 100 54
e+e− → B+B− 100 51
e+e− → uū 100 160.5
e+e− → dd̄ 100 40.1
e+e− → ss̄ 100 38.3
e+e− → cc̄ 100 132.9

e+e− → µ+µ−µ+µ− 2000 0.35120
e+e− → K0K

0
(γ) 1000 0.886400

2.3. MC Simulations and Reconstruction

MC simulated samples are used for the comprehensive study of the Isolation Forest (IForest)
in this thesis. These samples adapted from [6], correspond to each of the SM processes and
are summarized in Table 2.1. Samples with a simulated luminosity other than 100fb−1 are
reweighted later. The dark Higgs signals were simulated for a few possible configurations
for 25000 events adapted from [6]. All model parameters which are used for the simulation
are listed in Tab. 2.2. Separate simulations are done for beam background events which are

Table 2.2.: Summary of the model parameters with their corresponding values, as adapted
from [6].

model parameter values
mχ1

in GeV c−2 [0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
mh

′ in GeV c−2 [0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
mA

′ in GeV c−2 4 ·mχ1

f 2.746× 10−1

gX 1.12

then overlayed in the event simulation process. In the further discussion, three exemplary
signal samples are used to represent the three extreme cases:

• small masses DM: mh
′ = 0.5GeV c−2, mχ1

= 0.5GeV c−2

• large masses DM: mh
′ = 2.5GeV c−2, mχ1

= 2.5GeV c−2

• high mass splitting: mh
′ = 0.5GeV c−2, mχ1

= 3GeV c−2
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The reconstruction conditions for the particles taken from [6] are as follows:

The Final State Particle (FSP) were restricted in the following aspects for the reconstruction
process:

• two pairs of opposite-charged tracks

• tracks originating from the IP

• tracks in the CDC acceptance of 17◦ < θ < 150◦

To reduce the number of misidentified particles, the PID is used. It provides a probability
of a detected particle being assigned to a specific particle type. In this regard, a variable
known as binary PID is introduced

PID(e, µ) =
Le

Le + Lµ
, (2.10)

where the value Lℓ represents the probability assigned to a specific particle ℓ. Thus,
an electron (muon) is assumed if the PID value is 1 (0). Based on this assumption, a
binary PID(e,µ) greater than 0.1 is assigned to electrons and smaller than 0.9 to muons.
Intermediate particles h′ and χ2 are reconstructed by combining opposite-charged muons
and electrons. In the case where both particles originate from the same parent particle,
their tracks can be extrapolated to identify the decay vertex, allowing the selection of
intermediate particles based on a vertex fit result. This results in the following vertex
conditions for both particle pairs:

• decay vertex must originate from the IP

• all candidates with failed fits are rejected

• at least one of the vertex fits must fulfill χprob > 0.01, where χprob is the p-value of
the vertex fit

Further conditions for the reconstruction, referred to as weakly selection samples are:

• events with more tracks that fulfill the requirement are discarded

• π0veto: The emission of photons in collision processes, such as π0 → γγ, is considered
due to the absence of photons in the signal state. This process occurs in tauon decays,
specifically τ → π + π0 + ντ . The selection conditions for photons are as follows:

– The number of cluster hits in the ECL is greater than 1.5.

– The cluster is located between 17◦ and 150◦ in the ECL

– The reconstructed energy is smaller than 0.25GeV

– The absolute time difference between the collisions and measurement of the
photon in the ECL must be smaller 200 ns

• The rest of the event of all remaining ECL clusters must be greater than 0.05GeV;
otherwise, they are discarded.

Additional selection on the samples are performed in this work referred to as stricter
selection samples. A short overview of the selections is provided below:
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• selection on the missing energy: Candidates with unphysical missing energy with
Emiss < 0 and Emiss > 10.58GeV are removed

• vetoing π0: events with 0 Gev c−2 < mγγ < 0.3Gev c−2 are excluded

Detailed selection specifications can be found in [6].





3. Machine Learning and Anomaly Detection

In the field of Machine Learning (ML), Anomaly Detection (AD) refers to the process of
identifying anomalous instances within a data set [17]. There are a number of definitions
for the description of an anomaly [18], which are generally rare and few in number. Outliers
are defined as distinct deviations from the normal behavior of a data distribution, providing
a way to characterize and identify exceptional observations. This definition refers to
the distance of the data points from most of the data set. Another definition is over-
densities, which refers to regions in the data that show more events than expected. To
measure abnormality, an Anomaly Score (AS) is established that provides an estimate
of the anomaly’s magnitude and quantifies the deviation of a data point or pattern from
expected normality. A general definition of the score is not present and must be specified
for each problem independently.

In the search for New Physics (NP), one tries to find unknown signals which deviate
from known SM processes. To this end, the High Energy Physics (HEP) community has
conducted research on anomaly detection methods through several challenges, such as
the LHC Olympics 2020 [19], where different methods were developed using simulated
collider events from two jets resulting from strong interaction. The goal is to test different
approaches’ potential and advance the search for new physics with anomaly detection
algorithms. The Dark Machine Challenge [20] also includes studies of simulated proton-
proton collisions for the Large Hadron Collider. The models are trained on pure SM samples,
allowing the algorithms to learn the properties of the SM background. Many different
methods, such as the presented autoencoder in [20], are considered and compared. These
challenges are intended to drive the development of anomaly detection algorithms and to
stimulate research into new physics.

In contrast to supervised learning algorithms, which require labeled training data, unsuper-
vised algorithms are able to use the inherent patterns and structures in the data to detect
deviations from normality [21]. This approach allows anomaly detection based solely on
the intrinsic properties of the data set without the need for explicit classification. The
tree-based unsupervised method known as Isolation Forest (IForest) offers a straightforward
approach to direct anomaly detection. In this method, the sample is partitioned based on
randomly chosen partition values, allowing for the identification of anomalies.

In order to exploit these advantages of the efficient algorithm, the IForest is discussed in
this chapter.

13
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3.1. Isolation Forest

Isolation Forests, an anomaly detection algorithm, uses binary trees as its basic structure.
Binary trees allow for an efficient and iterative evaluation of the data by splitting instances
into two child nodes based on decision values. Creating the IForest from unlabeled data
involves recursively dividing subsamples from the data set, as illustrated in Fig. 3.1. Outliers

root

internal node external node

value >= split valuevalue < split value

value >= split valuevalue < split value

value >= split valuevalue < split value

internal node external node

external nodeexternal node

Figure 3.1.: Exemplary representation of the Binary Tree (BT) of the IForest. Simplified
distribution starts from the root node and is partitioned into two daughter
nodes by a random split value. External nodes represent the end nodes.

are promptly identified as they exhibit a short path length in the tree, requiring fewer
divisions to isolate them. This process is repeated multiple times to create a forest of trees.
The average path length E(h(x)) of an instance x is then used to calculate the anomaly
score by Eq.3.1,

s(x,n) = 2
−E(h(x))

c(n) (3.1)

with c(n), where n represents the number of instances in the data set

c(n) = 2H(n− 1)− (2(n− 1)/n). (3.2)

Serving as a normalization factor, with H(i) representing the harmonic number, derived from
the average path length of terminating paths in external nodes, defined as an unsuccessful
search in a binary search tree [4]. This value indicates the extent to which an instance is
an outlier in the range between 0 and 1, where outlier values are closer to 1 and normal
instances closer to 0. The growth of the binary trees terminates when it satisfies one of
three conditions:
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• only one instance in the external node

• instances in the external node having the same value

• the tree exceeds a height limit.

The model’s training and testing stages are shown in Fig. 3.2, which represents the

Background (SM Processes)

Test Samples

Isolation Forest Model

IForest Testing

Training Output (IForest)

Anomalyscore

Figure 3.2.: The training phase represents the construction of binary trees on the training
sample, and the test phase is the traversal of the test sample, resulting in an
anomaly score corresponding to the average path length of the entire IForest.

construction of the various binary trees in the training and testing stage, with the test data
being passed to the trained forest by obtaining the path length for each instance. The height
of the binary tree is limited by the condition log2(k), where k represents the subsample
size. This limitation is motivated in [4] to enhance the algorithm’s efficiency by prioritizing
shorter path lengths, which are indicative of anomalies. Subsequently, the average path
length of the dataset instances is used to determine the anomaly score by Eq. 3.1. When
using the IForest algorithm, it is important to consider the influence of swamping and
masking effects, as their contribution is determined by the size of the subsample used for
training. Swamping occurs when anomalies are misclassified as normal instances because
they share characteristics with the majority of the data. Masking refers to the phenomenon
of anomalies being detected as normal since they are surrounded by a dense region of normal
data.

3.1.1. Optimization and Challenges

Hyperparameter selection is a typical challenge for machine learning algorithms as well as
for the IForest. By modifying the number of trees (n_estimators), the chosen subsample
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size (max_samples), and the number of randomly chosen input features (max_features),
the IForest will show different outcomes after training. The parameters that can be changed
depending on the forest are shown in Fig. 3.3. According to the original paper [4], the forest

Isolation Forest Model

Outcome

Isolation Forest Model

Outcome

bootstrap n_estimators

max_samples max_features

Hyperparameter: Default

False 100

max256

bootstrap n_estimators

max_samples max_features

Hyperparameter

False a

cb

Figure 3.3.: Representation of the hyperparameters of the IForest algorithm. As usual
in machine learning models, the hyperparameters are optimized to achieve
improved results. The accompanying visualization represents the impact of
various hyperparameters, denoted as values a, b, and c, on the performance of
the model.

is set to its default values. However, optimizing these samples by changing the settings in
the search for the Inelastic Dark Matter with a Dark Higgs (IDMDH) model is possible.
The optimization can directly improve the performance of the IForest by more accurately
categorizing the signals based on the trained SM background. With a small number of trees,
a large dataset is trained on only a very small subset of it, which increases the underfitting
of the IForest. This can be reduced by averaging over a larger number of trees since a larger
data set is represented in the training. With a high-dimensional data set, it is essential to
consider the number of random features for splitting within the binary tree. Relying on a
subset of features does not adequately capture the distribution of the samples. To take the
training data into account, a random subsample is selected for each tree repeatedly, which
means that the bootstrap parameter must be set to true. The objective is to train a model
on the background of Standard Model (SM) samples that can effectively isolate events
as anomalies while reducing the problems of overfitting and underfitting. This becomes
particularly relevant when considering different hyperparameter configurations.

3.2. Extended Isolation Forest
Based on the similar principle of a random selection of features and split values, the
Extended Isolation Forest [22] is a different variant of the Standard Isolation Forest. Their
difference is in the way they apply those selections to the distribution shown in 3.4. The
selection criteria for the Standard Isolation Forest can be either horizontal or vertical along
the selected features. This leads to a bias in isolating outliers, provided in the anomaly score
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Figure 3.4.: Selection Criteria for the different IForest Methods: Standard Isolation Forest
(left) and Extended Isolation Forest (right). Taken from [22].

map in Fig. 3.5 for the anomaly score. Because of the horizontal and vertical selections

Figure 3.5.: Anomaly Score Map of the Standard Isolation Forest (left) and Extended
Isolation Forest (right) performed on normally distributed clusters. Taken
from [22].

of the distribution, compared to selections with a random location in the distribution,
some areas indicate a lower anomaly score for points that are out of the distribution. This
problem is solved with the Extended Isolation Forest, where the anomaly score bias in the
vertical and horizontal directions is resolved. The principle of the Extended Isolation Forest
is based on the fact that the selections are applied with a randomly chosen slope in the space.
As with the Standard Isolation Forest, the anomalous data points will stand out due to the
small number of separations. For a high-dimensional data set, the selections are not straight
lines. Instead, they are an N-1 dimensional Hyperplane of the N-dimensional feature space.
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These are constructed with a randomly chosen normal vector n⃗ and a randomly chosen
intercept point p for any data x⃗: (x⃗− p⃗) · n⃗ ≤ 0. Multiple levels of extension are used for
high-dimensional data because of the N-1 dimensional hyperplanes. With hyperplanes that
can cross any of the coordinate axes available on the fully extended level. The lowest level
of extension is represented by the Standard Isolation Forest.



4. Isolation Forest Training Analysis

This work uses the scikit-learn [1] implementation of the Isolation Forest (IForest) algorithm
for training on Standard Model (SM) samples, introduced in section 2.3. Bootstrapping is
enabled during training to ensure a broader representation in the construction of binary trees
and to avoid under-sampling on a subsample. Since hyperparameters are values that modify
the training of IForest, hyperparameter optimization is performed to obtain a matched
configuration for categorizing the SM and signal samples. By considering input features
such as particle kinematics, Particle Identification (PID), and energies, it becomes possible
to investigate their contribution to the distinction between background and signal peaks.
The entire background and signal samples are used to compute the Anomaly Score (AS)
resulting from passing through instances of the given sample. To evaluate the performance
of the IForest, the Punzi Figure of Merit (PFOM) as a metric to assess sensitivity is used.
Furthermore, the influence of different features and the individual contribution of SM
processes are investigated.

Finally, the optimized IForest is compared to the autoencoder approach in Chapter 5.

4.1. Plain Isolation Forest
The default settings provided in Table 4.1 are initially utilized to configure and evaluate
the IForest model. These default settings are based on the implementation provided by the
scikit-learn library [1]. A total of 20 input features are used, with the choice of

• Four-vectors

• Missing momentum

• Missing energy

being provided by the events of the Final State Particle (FSP). A second set of features
provides additional information about the detected particles. This increase is summarized
in Tab. 4.2 .

Table 4.1.: Default hyperparameter settings are used for IForest training, except for the
bootstrap value.

n_estimators max_samples max_features bootstrap
100 256 all True

19
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Table 4.2.: Summary of the two input feature sets utilized in the training and testing stages
of the IForest.

Input Features Count
Four-vector 16

Missing momentum 3
Missing energy 1

Transverse momentum 4
binaryPID(e, µ) 4

ϕ 4
θ 4∑

36

Input Features Count
Four-vector 16

Missing momentum 3
Missing energy 1

∑
20

Punzi Figure of Merit

To evaluate the performance of the IForest with different modifications made, the PFOM is
used [23]:

PFOM =
ϵ

a
2 +

√
B

(4.1)

with the signal efficiency ϵ = Nafter selection/Nproduced events, where N is the count of events
and B the number of remaining background events after the selection. The signal efficiency
is an indication of the ability to accurately detect signal events, while the background count
is related to the presence of false positives. The significance level described in terms of
relating to one-sided Gaussian tests at a given significance is denoted by the parameter a.
In this case, its chosen value is a = 1 in order to be consistent with the autoencoder study
in [6].

Evaluation of Isolation Forest

In the evaluation of IForest, the distribution of the anomaly score is examined. Therefore,
the deviation of the anomaly scores between the events observed in the SM samples and
the example signals described in Section 2.3 is investigated. For that, only the SM samples
are trained, and then both these and the signal events are passed through the forest. In
Fig. 4.1a, the background distribution of SM samples is depicted using filled bins for each
process. The background events in the distribution are weighted by the simulated luminosity
to an integrated luminosity of 100 fb−1. The resulting anomalyscore is a dimensionless
quantity whose distribution is given by the number of events in each bin. The signals are
also represented for the different model parameters as an outline of the distribution in
an arbitrary unit. A distinction arises in the calculation of background and signal events,
evident from the peaks that correspond to a higher density of these events for an anomaly
score. Thus, the analysis reveals that the high-density SM sample region exhibits a lower
anomaly score compared to the three signals. A difference in scoring is also apparent for
these signals in particular. While the peaks of the heavy and high mass difference signals
show a less distinct detection, the signal for the light mass shows a much higher value shift
in the anomaly score compared to the high-density background events. In the case of the
stricter selection samples used for training (Fig. 4.1b), the detection performance for the
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heavy mass and large mass difference signals is worse. This can be attributed to significant
overlap with the background distribution, making it more challenging to categorize them as
anomalies.

In order to estimate the performance between the two results of the IForest with different
training samples, the PFOM (Eq.4.1) is calculated. Additionally, the signal efficiency is
determined by quantifying the number of events that remain after applying selections to the
sample discussed in Section 2.3. The selection criteria for the anomaly score are set at the
1% and 99% percentile, resulting in 36 equally distributed steps. Based on the simulated
luminosity, the background is weighted. Fig. 4.2 illustrates the PFOM values for the weakly
and stricter selection samples. The differences are summarized in Tab. 4.3 for the maximal

Table 4.3.: Summary of the maximal PFOM for the two IForests trained on weakly selection
samples and stricter selection samples. The relative difference in the selection
sensitivity (max. PFROM) of the stricter with respect to the weakly selection
samples is given in percentage.

PFOMmax,weak PFOMmax, strict relative difference

mχ1
= 5× 10−1GeV/c2

mh
′ = 5× 10−1GeV/c2 0.000427 0.000758 72.8%

mχ1
= 25× 10−1GeV/c2

mh
′ = 25× 10−1GeV/c2 0.000221 0.000375 69.7%

mχ1
= 3GeV/c2

mh
′ = 5× 10−1GeV/c2 0.000189 0.000313 65.6%

PFOM with the relative difference between these samples in percentage. The light mass
signals have the highest PFOM for the different model parameters. This means that the
signal is most sensitive to the light mass, as expected from the distribution of the anomaly
scores. The maximum PFOM also confirms the lower separation between the background
and the low-sensitivity signals. Thus, comparing the two low and high-sensitivity samples
shows that an improvement in sensitivity is possible.

The distribution of the anomaly score for additional input features with information on
particle identification, transverse momentum, and angular coordinates (ϕ, θ) used to describe
the direction of the emitted particles is shown in Appendix. A.1. A widening of the sharp
background peak is observed. The signals of the heavy and large mass differences overlap
even more with the background, making them indistinct from the background. Comparing
the maximal PFOM between the respective sample restriction types and considering the
contribution of additional input features results in an improvement of the light mass signal
in the weakly selected samples. However, the sensitivity is reduced in the more strictly
selected samples. In addition, the categorization of the two weakly sensitive signals leads to
a more "normal" categorization in terms of the anomaly score compared to the majority of
the background. This does not contribute to a favorable detection of Dark Higgs signals.
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(a) Anomaly distribution for the weakly selection samples with 20 Input Features
used for training the IForest.
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(b) Anomaly distribution for the stricter selection samples with 20 Input Features
used for training the IForest.

Figure 4.1.: The IForest algorithm performed on the weakly and stricter selection samples
in a direct comparison of the anomaly score distribution. Showing the effects
on the Dark Higgs signals with higher anomaly scores compared to the peak of
the SM sample background.
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(a) Punzi Scan for different selection criteria on the anomaly
score performed on the weakly selection samples.
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(b) A Punzi Scan performed on the stricter selection samples,
considering different selection criteria based on the anomaly
score.

Figure 4.2.: The PFOM for different selection criteria applied to the anomaly score. In
which the separation between background and signal is evaluated for the weakly
(a) and stricter (b) selection samples.
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Statistical fluctuations of training

The randomness involved in training the IForest results in varying outcomes for the same
forest. This occurs because the entire forest observes a different distribution of the high-
dimensional sample when the subsample is randomly selected. Therefore, an examination is
conducted to assess the magnitude of fluctuations when training the IForest multiple times.
For this purpose, the same IForest is trained 50 times using default values.
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(a) Distributions of the different maximal PFOM
values obtained from repeated training for
the light Dark Higgs mass. With a mean of
0.000235 and a standard deviation of 2.49 ·
10−5.
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(b) Distributions of various maximum PFOM
values obtained from repeated training for
the heavy Dark Higgs Mass. With a mean
of 0.000199 and a standard deviation of
9.2 · 10−6.
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(c) Maximal PFOM for the strong splitting be-
tween Dark Higgs and Dark χ1 Masses. With
a mean of 0.000453 and a standard deviation
of 2.49 · 10−6.

Figure 4.3.: Fluctuations of the maximal PFOM for exemplary chosen Signals trained 50
times on the same IForest. The distribution of the maximal PFOM shows the
unstable sensitivity, revealing a greater fluctuation of the same IForest.

In Fig. 4.3, the distributions of the maximal PFOM for the different signals

• light Dark Higgs Signal (a)
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• heavy Dark Higgs Signal (b)

• strong splitting between Dark Higgs and Dark χ1 masses (c)

are obtained after 50 runs of the same IForest. For light masses in Fig. 4.3a, a stronger
variation of the values is given, while for heavy masses in Fig. 4.3b and mass differences in
Fig. 4.3c, a lower scattering is present. This represents the dispersion of the sensitivity
deviations between the runs. Accordingly, the light mass signal has a maximum deviation
of 30% between minimum and maximum values in this distribution. For the heavy mass
signal, the largest deviating values of the maximal PFOM account for 1.4%, which increases
to 13.5% for large mass differences. This indicates that two of the tested signals have
a high spread of results in terms of sensitivity. While the remaining background count
in Appendix A.2 shows similarities to the maximum PFOM, the distribution of signal
efficiencies in Appendix A.3 appears to be evenly distributed. Consequently, the fluctuations
in the results reveal the instability of the IForest. Although these variations are inherent to
randomness, this investigation demonstrates a significant variance in the results. Therefore,
it is important to minimize these fluctuations. A simple suggestion is to increase the number
of trees in the IForest so that more subsamples are used for training across multiple trees,
thus representing a larger fraction of the input sample. But as the computation time is
highly dependent on the number of trees, increasing this parameter significantly increases
the overall computation time. However, this behavior is not investigated further in the
subsequent analysis.
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4.2. Hyperparameter Optimization

4.2.1. Model Impact

The influence of different hyperparameters is investigated by examining the distribution
of the anomaly score. In this investigation, two parameters are fixed to their default
values, while the other free parameter is systematically changed. To evaluate the impact
of hyperparameter on the IForest, different configurations are considered for use on the
stricter selection samples provided in Tab. 4.4.

Table 4.4.: Summary of the Hyperparameter configurations for the study on the influence
on the model

Hyperparameter Configurations
n_estimators [10, 80, 100, 125, 200, 256, 500, 1000]
max_samples [10, 80, 100, 125, 200, 256, 500, 1000]
max_features [1, 2, 4, 10, 11, 15, 26, 36]

bootstrap True

Therefore, extreme ranges of values as the n_estimators of 10 and 1000 for the number of
trees are added to the range of parameters for construction in the training stage. Accordingly,
for a number of trees of 10, the Fig. 4.4
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Figure 4.4.: Training of the IForest on the Hyperparameter:
n_estimators=100, max_samples=256 and max_features=36.
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is obtained. Along the anomaly score axis, the signals exhibit a widening trend, indicating
an increase in the range of the anomaly score distribution. Resulting in an almost complete
overlapping of the light mass signal with the SM samples. Also, the other signals with
heavy mass and large mass differences strongly overlap with the high-density events of the
SM samples. This leads to a worse classification of the signal events because the samples
trained on the ten trees have a very similar distribution to the background. Increasing the
number of trees with the parameter n_estimator as shown in Appendix A.5.1 results in a
compression of the anomaly score distribution and a reduction of the width of the Dark
Higgs peaks for all signal model configurations. This is most evident for the light mass.

A forest trained with max_samples=10 in Fig. 4.5 shows a strong similarity to a Gaussian
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Figure 4.5.: Training of the IForest on the Hyperparameter:
n_estimators = 100, max_samples = 10 and max_features = 36.

distribution since the events of the background are densely distributed around an anomaly
score. In addition, the distribution of the signal clearly has an overlap with the background.
Therefore, no interpretation of signal and background with respect to anomalies is possible.
Greater separation between the light mass signal and the high-density SM events of the low
anomaly score is observed as the subsample size increases, as displayed in Appendix A.5.2.
This separation is particularly apparent when the IForest is trained on larger subsample
sizes but is not as distinct for other signals.

Furthermore, the parameter max_features, which specifies the number of randomly chosen
input features, with the value max_features = 1 shown in Fig. 4.6, exhibits similar behavior
as the subsample size since also, in this case, only a very small part of the input sample is
used for training. The range of the anomaly scores increases without significant change in
the peak width of the background and signal, as shown in Appendix A.5.3.
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Figure 4.6.: Training of the IForest on the Hyperparameter:
n_estimators=100, max_subsamples = 256 and max_features = 1.

As the parameters increase, the distribution of the anomaly score shifts, stretches, or widens.
Given this behavior of the hyperparameters, low values are not advantageous for detection
because distributions concentrated around a particular anomaly score have no meaning in
terms of signal detection. Thus, the hyperparameter choice is quite relevant for anomaly
detection. To improve performance, optimizing the hyperparameters can help to improve
the detection of these Dark Higgs signals, studied in the following section, using a restrictive
range of hyperparameters.

4.2.2. PFOM Grid Search

Based on the findings of the hyperparameter evaluation, the search range for the number
of trees and the subsample size is narrowed. The acceptable range for these parameters is
now limited to 100-500, as specified in Tab. 4.5. Despite the expected reduced statistical
variation in sensitivity for a higher number of trees, the value is limited because of the high
computational cost. With this smaller range of parameters, a grid search is performed for
the weakly selection samples. Thus, the PFOM (Eq. 4.1) is used as a metric of sensitivity to

Table 4.5.: Summary of the restricted Hyperparameter configurations for the Grid Search

Hyperparameter Configurations
n_estimators [100, 150, 200, 250, 500]
max_samples [100, 150, 200, 256, 500]
max_features [16, 20, 24, 36]

bootstrap True
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Table 4.6.: Summary of the resulting best hyperparameters from the Grid Search

n_estimators max_samples max_features bootstrap
500 256 all True

background and signal behavior. Fig. 4.7, which displays all hyperparameter configurations
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Figure 4.7.: Grid search result for the maximum PFOM for all hyperparameter configurations
provided in 4.5 individually for the selected signals.

and shows a negligible variation of the sensitivity for the heavy Dark Higgs and large mass
differences of the Dark Higgs and Dark χ1 signals. Additionally, the light mass signal
demonstrates a more prominent sensitivity fluctuation. As the number of trees increases,
the sensitivity increases gradually with the number of trees. The value of max_features has
a pronounced impact on the sensitivity, resulting in a substantial decrease for lower values
and a continuous rise with an increasing number of max_features. This is investigated
by fixing two parameters and iterating over the free parameter to find the best possible
hyperparameters. With 500 trees and a sub-sample size of 256, the number of features
selected distinguishes a slight change in sensitivity, as seen in Fig. 4.8. The resulting best
hyperparameters are listed in Tab. 4.6, leading to an increase in sensitivity of 4.2 % for
the light Dark Higgs signal. Thus, a strong influence of the hyperparameters is not given.
The reason behind this phenomenon is the overall larger inclusion of more subsamples
represented in the training process as the number of trees increases. When the number of
trees exceeds 150, the deviation between the maximal PFOM values is reduced, and the
stability of IForest is consolidated. However, the best hyperparameters are not used due
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to the increased computation time of almost 3 hours. Instead, the parameters shown in
Tab. 4.7 are chosen. Considering that the decrease in sensitivity is only 1.6%, the reduced
computational time significantly benefits the subsequent analysis.
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Figure 4.8.: Fixed parameters of n_estimators=500 and max_sample=256 used for iteration
in a specific region of parameters. No significant difference is evident for these
values.

Table 4.7.: Summary of the hyperparameters used for the following analysis.

n_estimators max_samples max_features bootstrap
250 256 all True

4.3. Extended Isolation Forest
As introduced in section 3.2, the Extended Isolation Forest is studied because it explores
a different approach to partitioning the distribution with randomly selected slopes. The
hyperparameters used in the analysis of the Plain Isolation Forest remain unchanged.
However, an additional extension level is introduced for this model. The extension level
determines the maximum number of possible intersections of the hyperplanes used for the
high-dimensional samples, and it is set to 35.

In contrast to the Plain Isolation Forest, the study of the Extended Isolation Forest is
severely limited by runtime costs. In this model, the duration for training and calculating
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the anomaly score for the same data measures 8 hours. This computation time far exceeds
the time required for the Plain Isolation Forest. Consequently, a more rigorous selection of
samples for analysis is required to justify using the Extended Isolation Forest.

Fig. 4.9 shows a clear difference in the distribution of the anomaly values, especially for
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(a) Distribution of anomaly score for the Plain Isolation Forest

0.35 0.40 0.45 0.50 0.55 0.60 0.65
anomalyscore

0

1

2

3

4

5

Ev
en

ts
 / 

0.
00

3

×105

Belle II Simulation dt = 100 fb 1

Extended IsolationForest

Continuum
e+e +

e+e e+e +

e+e e+e (Bhabha)
BB BKG
e+e +

e+e e+e e+e

e+e e+e +

e+e + +

e+e K0K0( )
 m 1=5 × 10 1GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
 m 1=25 × 10 1GeV/c2 
 mh ′=25 × 10 1GeV/c2 
 in a.u.
 m 1=3GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
MC stat. unc.

(b) Distribution of anomaly score for the Extended Isolation
Forest

Figure 4.9.: Different distributions of the anomaly score for the Plain Isolation Forest (a)
and the Extended Isolation Forest (b) are shown.

the Dark Higgs signals. These peaks in the distribution shift towards higher anomaly
values. Looking at the PFOM curve in Fig. 4.10 it provides a negligible rise in sensitivity
with this extended method. More precisely, the maximal PFOM value increased from
0.000681 to 0.000729, improving the sensitivity by 7.2% for the light Dark Higgs signal.
Furthermore, the study with different configurations of Dark h′ and Dark χ1 masses in
Fig. 4.11 shows that the Extended Isolation Forest is more sensitive to a few light masses
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in ranges of mh
′ < 1.0 and mχ1

< 1.0. In addition, the Extended Isolation Forest rejects
similar amounts of background as the Plain Isolation Forest, with a minor change in signal
efficiency.
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(a) PFOM curve for different selection criteria on the
anomaly score performed for the Plain Isolation For-
est.
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(b) PFOM curve for different selection criteria on the
anomaly score performed for the Extended Isolation
Forest.

Figure 4.10.: The PFOM for the representative selected signals in comparison of the Plain
Isolation Forest (a) and Extended Isolation Forest (b).

Due to the increased computational time and marginal improvement in sensitivity for the
signals, the Extended Isolation Forest approach is not examined in further analysis.
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(a) Different Signals for various mass configurations for the Plain Isolation Forest
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Figure 4.11.: The maximal PFOM for different configurations of the Dark h′ and Dark χ1

for the Plain Isolation Forest (a) and the Extended Isolation Forest (b) as
well as the signal efficiency and remaining background after selection.
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4.4. Contribution to Model

The following study investigates the impact of different training runs on separately trained
IForests. This involves training on each SM process and a subset of the features grouped
into the different information of the particles. Specifically, the effectiveness of the IForest
trained on individual background and input features regarding the contribution of isolating
signals in the anomaly score distribution. By considering these factors, insights are gained
into the capability of the IForest to contribute to the advancement of this method.

4.4.1. Input Feature

For the examination of the contribution of the features, the focus is on the different
kinematics and other information from the collision events, which are listed in Tab. 4.8.
The different information content of the input features is utilized to understand the
individual influence on the model. This is accomplished by training the model on each SM
process and separately for each input feature group. Due to the small sample size of the
e+e− → K0K

0
(γ) process, all events in the subsample are used for training. For the other

processes, 256 events for each tree are taken according to the max_sample hyperparameter.
The resulting distribution of the anomaly score for one SM process and feature group is
represented in Appendix A.6. Therefore, the performance of the separately trained IForest
is evaluated in terms of its ability to differentiate between background and signal peaks with
respect to the input features. The separation strength between these peaks is examined as
a measure of performance. A clear distinction between these distributions indicates that
the features have good discriminative power while overlapping distributions indicate that
the features may not be contributing effectively to the distinction. Certain features, such
as the missign Four-vector and transverse momentum, stand out in all ten SM processes,
showing a robust categorization of signal peaks with high anomaly scores compared to the
SM sample. For example, in the e+e− → e+e−µ+µ− process for the missing momentum
and missing energy or in the e+e− → e+e−e+e− process for the transversal momentum. In
addition, the input features that have shared information content show a very different
degree of isolation of the outliers of these distributions. This can be seen for the Four-vector
and the transversal momentum, where the latter contains less information. Nevertheless, it
shows a better separation between the background and the signal. This suggests that the
way the information is presented to the IForest is important for this method of anomaly

Table 4.8.: Summary of different Input Feature groups used for individual training on the
IForest.

Input Feature Count
Missing momentum/energy 4

binary PID (e, µ) 4
Transverse momentum 4

Four-vector 16
θ 4
ϕ 4

Invariant mass 2
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detection. Furthermore, binaryPID(e, µ) information also delivers poor characteristics for
detecting anomalies, as they mainly lead to overlap with the SM sample distributions. For
these reasons, missing momentum, missing energy, and transverse momentum are used as
input features for the following study, as they are generally beneficial in all given processes.

4.4.2. Background Samples

To investigate the individual SM processes, since these are not learned specifically in the
combined training, the IForest is set up separately on the distribution of the SM sample
processes in Tab. 4.9. This is used to infer the behavior of the trained forest on all processes
and their contribution to signal detection as a distinction from the SM background. The
separate training is performed using the same well-suited input features, namely the missing
Four-vector and transverse momentum, as explored in Section 4.4.1. The IForest trained on
a single SM sample learns more about a process distribution because only that distribution
is used to construct the forest, and more samples are used in total per process. According
to the dominant share of Continuum and e+e− → τ+τ− processes, the weighting of these
processes within the training is questioned. The assumption is that in order to perform more
effective partitioning on these distributions, training on a particular process’s distribution,
as discussed earlier, must be performed. When determining the anomaly score in the test
phase, all SM samples are passed, which allows the observation of how the IForest calculates
the anomaly score for not seen events. The IForest trained on the Continuum (Fig. 4.12a)
contributes significantly to the model training due to its distribution’s similarity to the
forest trained on all SM samples (Fig. 4.12b). This similarity is also reflected in the
calculation of the anomaly score for the SM sample events in both distributions.

Table 4.9.: Summary of the SM processes used for the individual training of the IForest
with rounded percentage values.

SM Background Process Events Percentage
Continuum 23802002 62.4%

e+e− → τ+τ− 10807984 28.3%
e+e− → µ+µ−µ+µ− 1132608 3.0%
e+e− → e+e−µ+µ− 1085954 2.8%

BBBKG 940570 2.5%
e+e− → µ+µ− 158074 0.4%

e+e− → e+e−π+π− 106766 0.3%
e+e− → e+e−e+e− 67066 0.18%

e+e− → e+e−(Bhabha) 58225 0.15%
e+e− → K0K

0
(γ) 175 4.6 · 10−4%∑

38159424 100%
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(a) Anomaly distribution for all processes trained on Continuum.
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(b) Anomaly distribution for IForest trained on all SM samples.

Figure 4.12.: Distributions of the anomaly score for the training on Continuum with the
entire background (a) and the training on all SM samples (b) are shown. The
uncertainties in the background events are not visible in the plot due to their
small magnitude.
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The results in Appendix A.7 illustrate that the anomaly score calculation of other process
events is strongly affected by the separate training, as reflected in the extreme classification
for the anomaly score of the not trained processes. This is to be expected since the distribu-
tions partly overlap. Nevertheless, there is a clear tendency indicating a strong deviation of
the anomaly score distribution with respect to the trained SM process. Particularly evident
in

• e+e− → e+e−e+e−

• e+e− → e+e−π+π−

• e+e− → µ+µ−µ+µ−

processes that have the peculiarity of containing at least two of the four expected particles.
The analysis suggests that the majority of the data set does not overlap with these particular
events, leading to a classification of the remaining background as abnormal being prevalent.
Furthermore Fig. 4.13 presents a significant bias in favor of samples with a larger proportion,
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Figure 4.13.: Distribution of the anomaly score for an IForest trained on a subset of given
processes.

such as the e+e− → e+e−µ+µ− process when calculating the anomaly score for Bhabha
events. The denser fraction of Bhabha events shows a higher value of the anomaly score
compared to the distribution trained only on the Bhabha process in Appendix A.7.2. This
may be a consequence of a type of overtraining on instances in the e+e− → e+e−µ+µ−

process that overlap with those in the Bhabha process.

These insights serve as inspiration for the ensemble approach of IForests, which is presented
in Chapter 4.6.



38 4. Isolation Forest Training Analysis

4.4.3. Impact of global PIDs

Recognizing the significance of particle information, it is now incorporated into the model.
The binary PID is used to indicate whether a particle of interest is classified as a muon
or an electron. However, as discussed in Section 4.4.1, these features tend to result in a
less precise distinction of background and signal. Several particle identification features
used for model training are listed in Tab. 4.10. The lepton PID used gives the probability

Table 4.10.: Overview of the additional Input Features regarding the Particle Identification.

Input Feature Count
Missing momentum/Energy 4

Transverse momentum 4
binary PID(e,µ) 4

electron ID noTOP 4
kaon ID 4

proton ID 4
pion ID 4
muon ID 4

deuteron ID 4
lepton PID 4∑

40

that a detected particle is an electron or a muon, with all particles considered for the PID.
For example, if the probability of an electron is 0.5, then the probability of the other five
particles combined is 0.5.

An examination of the distribution presented in Fig. 4.14 indicates a major improvement
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Figure 4.14.: Distribution of the anomaly score for the IForest with PID information used
for training.
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in model-independent signal detection. This improvement is attributed to the fact that the
signals are closely grouped within a similar anomaly score range.

The PFOM curve (Fig. 4.15) presents an improved sensitivity for all signals with the
addition of PID information. These signals, which performed worse in the previous analysis,
now compete with the sensitivity of the light mass. Compared to the IForest with missing
Four-vector and transverse momentum as input, there is a drop of about 30%, particularly
concerning the light mass. Nevertheless, the result with the PIDs is an improvement due to
the independence of the model parameters of the signals tested for anomaly detection.
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(a) with PID features.
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Figure 4.15.: PFOM curve for the IForest trained with PID features (a) and without PID
features (b).
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4.5. Evaluating Overfitting

The assessment of model overfitting is related to the classification accuracy of trained and
unknown samples. If the model’s performance remains consistent when applied to unseen
data during testing, this suggests minimal overfitting and high accuracy. To investigate this
in the context of the IForest model using the studied input features (missing four-vector,
lateral momentum, global PIDs), a large data set is randomly divided into an 80% training
set and a 20% test set. Both sets are then passed through the IForest algorithm. The
anomaly score distributions (Fig. 4.16) are obtained by scaling the events based on the
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(a) Distribution of 20% samples.
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(b) Distribution of 80% samples.

Figure 4.16.: Distribution of the anomalyscore for the 80% random samples (b) used for
training and 20% for testing (a) on the trained IForest. The background
events are scaled according to the proportion of samples to 100 fb−1.

sample size ratio to an integrated luminosity of 100 fb−1. This scaling takes into account
the difference in event counts. The distributions reveal no significant variation in the event
distribution for the anomaly score. By calculating the PFOM, scaling it to the sample size,
and then analyzing the curves, only minor differences between the curves for the light mass
are apparent (Fig. 4.17). This observation of curve overlap for the PFOM confirms that the
IForest model, when applied to unseen data, has comparable classification performance to
the training data, which comprises 80% of the data set. These results indicate the absence
of overfitting. Due to time constraints in this study, it was not possible to conduct further
testing with different ratios of test and training samples.
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Figure 4.17.: PFOM curve for the Train/Test Split IForest. The dashed line represents the
sensitivity for the 80% used for training, while the straight line represents the
20% that the IForest did not see during training.
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4.6. Ensemble of Isolation Forests

The IForest is modified by performing an ensemble of forests, each is trained on one process
of the SM background, as shown in Fig. 4.18. To train the forests, the missing Four-vector

Anomaly Score
average

Continuum

Figure 4.18.: Schematic of the Ensemble Isolation Forest, which consists of several IForests
trained on separate SM processes. The new anomaly score is the average of
the individual IForests in the ensemble.

and the transverse momentum are used as input features. Then the resulting anomaly scores
are averaged over the entire ensemble, yielding the average anomalyscore. The distribution
of the individual forests trained on each process in Appendix A.8 exhibits a tendency
towards the center of the anomaly score range, which is primarily influenced by the extreme
classification behavior of each separate IForest towards an anomaly score of 0 or 1. Fig.
4.19, illustrates the compression of the distribution along the anomaly score, showing the
concentration towards the center. The sensitivity improvements (Fig. 4.20) are due to the
fact that for each process, the resulting anomaly score is given equal weight in the evaluation.
Accordingly, the application of additional techniques for selecting the anomaly score, such as
minimum, maximum, weighting based on luminosity or weighting based on the sample size
is displayed in Appendix A.4, A.9. The results presented in Appendix A.9.1 show that using
the minimum and maximum scores shifts the distributions towards either low or very large
anomaly scores. Compared to the Plain Isolation Forest with default settings, this causes
the model to be less sensitive. Therefore, using extremes in the anomaly score distribution
can negatively impact the model’s ability to effectively discriminate between normal and
anomalous sample events. A weighting based on sample size or luminosity results in an
anomaly score with a dominant contribution from the Continuum and e+e− → τ+τ− due
to their large proportion of the total sample. These provide a sensitivity that is comparable
to that of the IForest trained on all SM samples.
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Figure 4.19.: Distribution of the averaged anomaly scores for the Ensemble of Isolation
Forests.
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Figure 4.20.: PFOM curve of the averaged anomaly scores for the Ensemble of Isolation
Forests.
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Figure 4.21.: Distribution of the averaged anomaly scores for the Ensemble of Isolation
Forests with PID information used for training.

Ensemble of Isolation Forest with PIDs

In order to determine whether applying the ensemble of Isolation Forests increases sensitivity
only for certain features, the global PIDs are now included. The training procedure with
the 40 input features and the subsequent analysis of the anomaly score distributions for
the processes in Appendix A.8.1 display a distinct behavior in the distributions of the
individually trained IForests, especially concerning the signals. As a result, the distribution
in Fig. 4.21 shows a strong overlap between background and signals, which is also reflected
in the PFOM in Fig. 4.22 for the poor performance of the averaged forests. Furthermore,
due to the extremely low sensitivity for signals with high mass and large mass difference for
the suitable features missing Four-vector and transverse momentum, there is no general
advantage of this method despite the higher sensitivity for signals with low mass. This
reveals a strong dependency on the IForest and its input in the Ensemble of Isolation
Forests, making it not recommended for general use.
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Figure 4.22.: PFOM curve for the Ensemble of Isolation Forests with PID information.
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4.7. Iterative Training

In order to efficiently reduce the input sample through a beneficial selection based on a
separation between background and signals, an iterative method is used. By using the
IForest trained on separate SM processes in the previous Section 4.4.2, suitable selections are
determined. An advantageous selection can be made with the distribution of the anomaly
score trained separately on the e+e− → e+e−µ+µ− process illustrated in Fig. 4.23, which
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Figure 4.23.: Removed background events on the anomaly score distribution (right) for
the IForest trained on the e+e− → e+e−µ+µ− process separately. Individual
distribution of the e+e− → e+e−µ+µ− process (left), on which the criterion
for selection without signal efficiency loss for an anomalyscore > 0.38 is
based.

allows selection almost without efficiency loss on the example signals with an anomaly
value greater than 0.38. The remaining background event counts after the selection are
listed in Tab. 4.11. Only a small portion of the background, about 13.4%, is removed.
Subsequently, training is performed on the entire background using only one IForest. As
a result, the distribution for the IForest trained on the entire reduced data set with the
selection criterion of the anomaly score of the separately trained e+e− → e+e−µ+µ− process
is obtained. This distribution is shown in Appendix A.17. The width of the SM sample
peak is tighter compared to the signal peaks. In addition, the signal peaks for heavy masses
and strong mass differences are closer to the SM sample peak, indicating some overlap in
their distributions. Light mass signals portray a distinct distribution that is separate from
the SM peak. To evaluate the performance of the selection, the PFOM metric is chosen.

As depicted in Fig. 4.24, the reduction of the background using the selected process
results in increased sensitivity for the light Dark Higgs signal. However, it also leads to
a deterioration in performance for the other two signals. This indicates a greater overlap
of signals with the background for signals with low sensitivity, as already observed in the
distribution of the anomaly score. In the following analysis, additional tests are performed
on the iterative training approach using additional information from PID.
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Table 4.11.: Summary of the SM processes remaining after the performed selection on
e+e− → e+e−µ+µ−. The event count of the processes is not weighted on their
luminosity.

SM Background Process Events rejected background
Continuum 19333337 18.77%

e+e− → τ+τ− 10285312 4.84%
e+e− → µ+µ−µ+µ− 1132607 8.83%
e+e− → e+e−µ+µ− 1052735 3.06%

BBBKG 846062 10.05%
e+e− → µ+µ− 158053 0.013%

e+e− → e+e−π+π− 103564 3.00%
e+e− → e+e−e+e− 66548 0.77%

e+e− → e+e−(Bhabha) 57828 0.68%
e+e− → K0K̄0(γ) 166 5.14%∑

33036212 13.43%
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Figure 4.24.: PFOM showing the sensitivity on several selections along the anomaly score
for the IForest trained on the reduced samples according to the selection
criterion of the anomaly score > 0.38.

Iterative training method with PIDs

Another test is performed using the PID characteristics for the iterative method. The
selection criteria based on the individually trained SM processes are shown in Tab. 4.12.
The selection in the IForest with all the SM samples to be trained is referred to as ’collective’.
Here, the selection criterion e+e− → e+e−µ+µ− is taken from the IForest trained without
PIDs. A suitable selection on the continuum-trained IForest is identified at a selection
criterion of 0.48 for the separate trained forest on the SM processes. This selection effectively
reduces a significant part of the background, as summarized in Tab. 4.13, in particular
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Table 4.12.: Overview of the individual selection criteria for the iterative training of the
IForest.

Training e+e− → e+e−µ+µ− Continuum Collective
Selection Criterion 0.38 0.48 0.45

removing the Continuum and e+e− → τ+τ− events. Subsequently, the IForest with
collective SM samples are considered and trained on all SM samples. Again, with a selection
criterion of 0.45, much of the background can be removed as described in Tab. 4.13b.

The retrained IForest on e+e− → e+e−µ+µ− and collective sample selections are the
only ones that contain a clear separation between background and signal peaks, shown in
Appendix A.17, A.20. For the continuum selection, only the events that exhibit similar
characteristics are retained due to the significant reduction in the sample size. As a result,
an overlap of signal and background in the distribution is given. Therefore, this selection
using the continuum leads to quality loss as the IForest reaches its limit of detecting
anomalies in overlapping samples. With the sensitivity given by the PFOM in Appendix
A.10, it is clear that with the e+e− → e+e−µ+µ−, there is an improvement for all signals,
but for the IForest without PIDs, the light mass signal loses some sensitivity. As expected,
the sensitivity for the substantial background reduction with the continuum method is very
poor. Selection on the entire trained background shows similar behavior to the selection on
the e+e− → e+e−µ+µ− process. Therefore, these two methods are particularly well suited
for increasing the overall sensitivity of all signals.

The additional analysis of the invariant mass of h′ reflects the reduction of background
events while preserving the remaining signal events (Fig. 4.25). This selection proves
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Figure 4.25.: Distribution of the invariant mass of the h′ for the selection on the IForest
trained on all SM samples. By selecting without losing many events, the
number of signal events before and after selection remains almost unchanged.

advantageous for the detection of the signals since it results in the removal of a significant
number of background events while preserving the signal characteristics. Although iterative
training does not provide a large increase in sensitivity, the global PIDs and these effective
selections can be applied to train a model that provides relatively high sensitivity for
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independent model parameters.

Table 4.13.: Summary of the SM process events remaining after the performed selections
presented in Tab. 4.12 .

(a) Overview of the SM processes remaining after
the performed selection on Continuum. The
event count of the processes is not weighted
on their luminosity.

SM Background Process Events rejected background
Continuum 1939787 91.85%

e+e− → τ+τ− 1158132 89.28%
e+e− → µ+µ−µ+µ− 708041 37.48%
e+e− → e+e−µ+µ− 799687 26.36%

BBBKG 172496 81.66%
e+e− → µ+µ− 154479 2.27%

e+e− → e+e−π+π− 67802 36.49%
e+e− → e+e−e+e− 59946 10.62%

e+e− → e+e−(Bhabha) 56749 2.54%
e+e− → K0K̄0(γ) 104 40.57%∑

5117223 86.59%

(b) Overview of the SM processes remaining after
the performed selection on Collective Back-
ground. The event count of the processes is
not weighted on their luminosity.

SM Background Process Events rejected background
Continuum 5137734 78.41%

e+e− → τ+τ− 3119249 71.14%
e+e− → µ+µ−µ+µ− 1122954 0.85%
e+e− → e+e−µ+µ− 926682 14.67%

BBBKG 307249 67.33%
e+e− → µ+µ− 157631 0.28%

e+e− → e+e−π+π− 89430 16.24%
e+e− → e+e−e+e− 64642 3.61%

e+e− → e+e−(Bhabha) 57924 0.52%
e+e− → K0K̄0(γ) 132 24.57%∑

10983627 71.22%
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Signals for various Masses

Additionally, to ensure that the selections do not unintentionally also remove other signal
instances when discarding events based on a given anomaly score criterion, different
configurations of the Dark Higgs and Dark χ1 masses are now taken into account. This
serves to verify that an undetected signal is not affected by the selections and is not
completely removed. The overview provided in Tab. 4.14 illustrates the signal efficiencies
obtained through the selection on the distribution of the IForest trained on the collective
background at an anomaly score value of 0.45. It indicates that the removal of different
signals based on the variation of their masses is not observed due to the overall high signal
efficiency.

Table 4.14.: Overview of the signal efficiency for various masses regarding the strong selection
on the collective SM sample distribution with the selection criterion of an
anomalyscore > 0.45.

mh
′ mχ1

signal. eff.
0.25 0.25 0.998
0.25 0.5 0.999
0.5 0.5 0.999
0.25 1.0 0.997
0.5 1.0 0.997
1.0 1.0 0.996
0.25 1.5 0.995
0.5 1.5 0.996
1.0 1.5 0.997
1.5 1.5 0.995
0.25 2.0 0.994
0.5 2.0 0.993
1.0 2.0 0.993
1.5 2.0 0.993
2.0 2.0 0.993
0.25 2.5 0.988
0.5 2.5 0.990
1.0 2.5 0.993
1.5 2.5 0.996
2.0 2.5 0.997
2.5 2.5 0.998
0.25 3.0 0.994
0.5 3.0 0.995
1.0 3.0 0.995
1.5 3.0 0.997



5. Comparison with Autoencoder

In this chapter, a comparison is drawn between Autoencoder (AE) and Isolation Forest
(IForest), two methods used for Anomaly Detection (AD). The AE approach uses deep
neural networks in an encoder-decoder architecture to encode samples into a reduced
parameter space and decode them back to their original form. The discrepancy between the
input and output is measured using the mean square error (MSE) metric, which serves as
the Anomaly Score (AS). In the following, a comparison of the performance of two models
for anomaly detection is made, focusing on the 8-dimensional Basic Autoencoder as the
best model in the study [6].

There is a significant difference in sensitivity between the IForest and AE approaches.
The AE shows much higher sensitivity in detecting the light mass signal compared to the
best IForest model, which achieves only a quarter of the sensitivity. Despite the relatively
lower sensitivity, the IForest result, which is characterized by its independence from signal
parameters, is selected for further analysis. It is important to note that direct comparison
between the two methods in this study is limited due to the use of different input formats
and samples.

Apparent differences at the initial level are that the IForest algorithm is a more practical
approach to anomaly detection due to the simplicity and efficiency of binary trees. Unlike
AE, IForest does not require any preparation for sample reduction since the method works
well on samples with only a few selections. A direct comparison of the PFOM curve (Fig.
5.1) with the corresponding anomaly scores, yield an order of magnitude difference in
sensitivity between the two methods, further strengthening the case for the AE approach.
However, the sensitivity differences between different signals are less pronounced for IForest
than for AE. Furthermore, the sensitivity remains relatively constant for mass configurations
(Fig. 5.2) in the range of mh

′ < 1.5 and mχ1
< 1.5, indicating the independence from

various model parameters. Remarkably, IForest exhibits significantly higher signal efficiency
compared to AE, with a twofold difference for light masses and more than a threefold
difference for heavy masses.

This comparison underlines the potential of IForest as a model-independent approach for
the detection of Dark Higgs signals. In addition, the ability of IForest to process particle
information by particle identification (PID) offers further advantages since the inherent
limitations of the PID distribution are problematic for AE application. The AE exhibits
higher sensitivity, as indicated by the maximal PFOM, making it a more suitable AD

51
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method compared to the IForest. Therefore, in the context of searching for unknown signals,
the AE is considered a more appropriate approach due to its enhanced sensitivity.
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(a) PFOM curve for the AE.

(b) PFOM curve for the IForest.

Figure 5.1.: Direct comparison of the PFOM for different selections applied using the
corresponding AS for the AE (a) and the IForest (b).
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Figure 5.2.: Summary of the sensitivity and signal efficiency for the AE (a) and the IForest
(b) considering the respective range of the maximum PFOM for variations of
the masses mh

′ and mχ1
.





6. Conclusions and Outlook

In this thesis, a comprehensive investigation of the Isolation Forest (IForest) method for
Anomaly Detection (AD) is carried out in the context of searching for the Inelastic Dark
Matter with a Dark Higgs (IDMDH) model at Belle II. The study focuses on training the
IForest on Monte Carlo (MC) simulations of Standard Model (SM) processes that arise
from prompt decays of electron-positron collisions. The IForest exhibits a certain level of
variance in the anomaly score distribution due to its inherent randomness. An analysis of
the hyperparameters reveals an underfitting behavior for small hyperparameter values while
optimizing the hyperparameters improves the sensitivity of the computed Punzi Figure of
Merit (PFOM). However, the model shows limited parameter dependence when the number
of trees exceeds 100, and higher numbers of trees lead to stabilized sensitivity results.

The influence of different input features on anomaly detection with the IForest is explored,
highlighting the effectiveness of the missing four-vector and transversal momentum in
classifying signals as abnormal. Incorporating global PIDs with particle type information
further enhances sensitivity for signals with heavy mass and significant mass differences,
providing a model with signal parameter-independent sensitivity. To assess the overfitting,
the training data is split into separate training and testing sets, revealing the stability of
the IForest in capturing the behavior of anomaly score distributions for both seen and
unseen samples, indicating the absence of overfitting.

An alternative approach, the Ensemble of Isolation Forests, where separate processes of
the Standard Model are trained individually, does not generally improve the sensitivity
in terms of the averaged anomaly score. The sensitivity enhancement highly depends on
the input features used. Additional methods, such as iterative re-training of the IForest
with selections for background efficiency reduction based on anomaly score distributions,
either lead to reduced sensitivities with lower maximum PFOM due to similar instances of
background and signal or yield similar maximum PFOM values for all tested signals.

In the final comparison with the Autoencoder (AE), the IForest achieves a level of sensitivity
below that of the AE. This is evident from the significantly lower maximum PFOM achieved
by the IForest, indicating a sensitivity of approximately one order of magnitude lower than
that of the AE. However, the IForest demonstrates significantly better signal efficiency for
various mass configurations than the AE.
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56 6. Conclusions and Outlook

Outlook

Overall, there are several ways to improve the IForest algorithm. By reviewing techniques
and modifications as presented in [24] to improve anomaly detection. In addition, hybrid
versions [25] of the IForest and nested IForest [5] as further developed methods can be
implemented to address the challenges of over-density anomalies. These advances indicate
that the potential of IForest as a method for discovering new physical phenomena has not
yet been exhausted.
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A.1. Plain Isolation Forest trained on additional features:
binaryPID(e, µ), pt, θ and ϕ
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(a) Anomaly distribution for the weakly selection samples with 36 Input
Features used for training the IForest.
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(b) Anomaly distribution for the stricter selection samples with 36 Input
Features used for training the IForest.

Figure A.1.: Usage of a different subset of input features on the weakly (a) and stricter
(b) selection samples in a direct comparison of the anomaly score distribution.
The effects on the Dark Higgs signals detected in regard to the anomaly score
distribution are shown.
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(a) Punzi Scan for different selection criteria on the anomaly score
performed on the weakly selection samples.
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(b) Punzi Scan for different selection criteria on the anomaly score
performed on the stricter selection samples.

Figure A.2.: The PFOM for different selection criteria applied to the anomaly score. In
which the separation between background and signal is evaluated for the weakly
(a) and stricter (b) selection samples trained on more information given by the
36 input features.
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A.2. Statistical fluctuations for the signal efficiency of the
IForest
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(a) Signal Efficiency for the light Dark Higgs
Mass.
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(b) Signal Efficiency for the heavy Dark Higgs
Mass.
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(c) Signal Efficiency for the strong splitting be-
tween Dark Higgs and Dark χ1 Masses.

Figure A.3.: Fluctuations of the signal efficiency for exemplary chosen Signals trained 50
times on the same Isolation Forest. The distribution shows the unstable
sensitivity given a larger fluctuation of the same Isolation Forest.

Table A.1.: Overview of the mean and standard deviation for the signal efficiency.

Signal Efficiency mean standard deviation

mχ1
= 5× 10−1GeV/c2

mh
′ = 5× 10−1GeV/c2 0.880 0.027

mχ1
= 25× 10−1GeV/c2

mh
′ = 25× 10−1GeV/c2 0.946 0.026

mχ1
= 3GeV/c2

mh
′ = 5× 10−1GeV/c2 0.950 0.022



A.3. Statistical fluctuations for the remaining background count of the IForest 63

A.3. Statistical fluctuations for the remaining background
count of the IForest
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(a) Remaining background count for the light
Dark Higgs Mass.
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(b) Remaining background for the heavy Dark
Higgs Mass.
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Figure A.4.: Fluctuations of the remaining background count for exemplary chosen Signals
trained 50 times on the same Isolation Forest. The distribution shows the
unstable sensitivity given a larger fluctuation of the same Isolation Forest.

Table A.2.: Overview of the mean and standard deviation for the remaining background
count.

Background Count mean standard deviation

mχ1
= 5× 10−1GeV/c2

mh
′ = 5× 10−1GeV/c2 3812482 480163

mχ1
= 25× 10−1GeV/c2

mh
′ = 25× 10−1GeV/c2 16283915 1621311

mχ1
= 3GeV/c2

mh
′ = 5× 10−1GeV/c2 22783374 1985134
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A.4. Anomaly Score distribution for IForest

0.3 0.4 0.5 0.6 0.7 0.8
anomalyscore

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ev
en

ts
 / 

0.
00

52

×106

Belle II Simulation dt = 100fb 1
Continuum
e+e +

e+e e+e +

e+e e+e (Bhabha)
BB BKG
e+e +

e+e e+e +

e+e e+e e+e
e+e + +

e+e K0K0( )
 m 1=5 × 10 1GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
 m 1=25 × 10 1GeV/c2 
 mh ′=25 × 10 1GeV/c2 
 in a.u.
 m 1=3GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
MC stat. unc.

Figure A.5.: Distribution of the AS for the optimized Isolation Forest on the favorable Input
Features (pt, missing Four-vector).
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Figure A.6.: Distribution of the AS for the optimized Isolation Forest on the favorable Input
Features (pt, missing Four-vector) with PID information.
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Figure A.7.: Distribution of the averaged AS for the Ensemble of Isolation Forests on the
favorable Input Features (pt, missing Four-vector).
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Figure A.8.: Distribution of the averaged maximal AS for the Ensemble of Isolation Forests
on the favorable Input Features (pt, missing Four-vector).
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Figure A.9.: Distribution of the averaged minimal AS for the Ensemble of Isolation Forests
on the favorable Input Features (pt, missing Four-vector).
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Figure A.10.: Distribution of the averaged AS weighted by sample size for the Ensemble of
Isolation Forests on the favorable Input Features (pt, missing Four-vector).
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Figure A.11.: Distribution of the averaged AS weighted by luminosity for the Ensemble of
Isolation Forests on the favorable Input Features (pt, missing Four-vector).
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Figure A.12.: Distribution of the averaged AS for the Ensemble of Isolation Forests on the
favorable Input Features (pt, missing Four-vector) with PID information.
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Figure A.13.: Distribution of the averaged maximal AS for the Ensemble of Isolation
Forests on the favorable Input Features (pt, missing Four-vector) with PID
information.
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Figure A.14.: Distribution of the averaged minimal AS for the Ensemble of Isolation Forests
on the favorable Input Features (pt, missing Four-vector) with PID informa-
tion.



70 A. Appendix

0.3 0.4 0.5 0.6 0.7 0.8
average weighted anomalyscore

0.5

1.0

1.5

2.0

Ev
en

ts
 / 

0.
00

52

×106

Belle II Simulation dt = 100 fb 1

Ensemble IForest

Continuum
e+e +

e+e e+e +

BB BKG
e+e e+e (Bhabha)
e+e +

e+e e+e +

e+e e+e e+e
e+e + +

e+e K0K0( )
 m 1=5 × 10 1GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
 m 1=25 × 10 1GeV/c2 
 mh ′=25 × 10 1GeV/c2 
 in a.u.
 m 1=3GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
MC stat. unc.

Figure A.15.: Distribution of the averaged AS weighted by sample size for the Ensemble
of Isolation Forests on the favorable Input Features (pt, missing Four-vector)
with PID information.
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Figure A.16.: Distribution of the averaged AS weighted by luminosity for the Ensemble of
Isolation Forests on the favorable Input Features (pt, missing Four-vector)
with PID information.
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Figure A.17.: Iterative retrained IForest on the selection criterion of an anomaly score of
0.38 for the e+e− → e+e−µ+µ− process.
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Figure A.18.: Iterative retrained IForest on the selection criterion of an anomaly score of
0.38 for the e+e− → e+e−µ+µ− process with PID information.
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Figure A.19.: Iterative retrained IForest on the selection criterion of an anomaly score of
0.48 for the Continuum with PID information.



A.4. Anomaly Score distribution for IForest 73

0.3 0.4 0.5 0.6 0.7 0.8
iterative anomalyscore

0

1

2

3

4

5

6

Ev
en

ts
 / 

0.
00

52

×105

Belle II Simulation dt = 100fb 1
Continuum
e+e +

e+e e+e +

e+e e+e (Bhabha)
BB BKG
e+e +

e+e e+e +

e+e e+e e+e
e+e + +

e+e K0K0( )
 m 1=5 × 10 1GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
 m 1=25 × 10 1GeV/c2 
 mh ′=25 × 10 1GeV/c2 
 in a.u.
 m 1=3GeV/c2 
 mh ′=5 × 10 1GeV/c2 
 in a.u.
MC stat. unc.

Figure A.20.: Iterative retrained IForest on the selection criterion of an anomaly score of
0.45 for all processes with PID information.
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A.5. Model Impact Details of Hyperparameters

A.5.1. Model Impact Details of n_estimators parameter
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Figure A.21.: Evaluation of the Model Impact regarding the Hyperparameter
n_estimators = 10− 1000 which corresponds to the number of trees of the
Isolation Forest.



A.5. Model Impact Details of Hyperparameters 75

A.5.2. Model Impact Details of max_samples parameter
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Figure A.22.: Evaluation of the Model Impact regarding the Hyperparameter
max_samples = 10 − 1000 which corresponds to subsample size of the
instances used for training each tree of the Isolation Forest
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A.5.3. Model Impact Details of max_features parameter
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Figure A.23.: Evaluation of the Model Impact regarding the Hyperparameter
max_features = 1−36 which corresponds to the subset of features randomly
chosen to use for the partitioning in each tree of the IForest.
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Figure A.24.: Contribution of each Input Feature group shown for the Bhabha process
trained separately.
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Figure A.25.: Contribution of each Input Feature group shown for the Continuum trained
separately.
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Figure A.26.: Contribution of each Input Feature group shown for the e+e− → τ+τ− process
trained separately.
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Figure A.27.: Contribution of each Input Feature group shown for the BBBKG process
trained separately.
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Figure A.28.: Contribution of each Input Feature group shown for the e+e− → e+e−µ+µ−

process trained separately.
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Figure A.29.: Contribution of each Input Feature group shown for the e+e− → e+e−e+e−

process trained separately.
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Figure A.30.: Contribution of each Input Feature group shown for the e+e− → e+e−π+π−

process trained separately.
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Figure A.31.: Contribution of each Input Feature group shown for the e+e− → µ+µ−

process trained separately.
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Figure A.32.: Contribution of each Input Feature group shown for the e+e− → µ+µ−µ+µ−

process trained separately.
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Figure A.33.: Contribution of each Input Feature group shown for the e+e− → K0K
0
(γ)

process trained separately.
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A.7. SM sample contribution to the distribution of the AS for
the IForest

A.7.1. Distribution of the AS of separate trained SM process for favorable
Input Features (pt, missing Four-vector)
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Figure A.34.: Contribution of each SM Background process shown for each process trained
separately given the anomaly score distribution for the entire background.
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A.7.2. Distribution of the AS of individual SM process for favorable Input
Features
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Figure A.35.: Contribution of each SM Background process shown for each process trained
separately, given only the anomaly score distribution for the certain process.
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A.8. Distribution of the AS of separate trained SM process for
favorable Input Features with PID information.
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Figure A.36.: Contribution of each SM process shown for each process trained separately
with PID information given distribution of the anomaly score for the entire
background.
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A.8.1. Distribution of the AS of individual SM process for favorable Input
Features with PID information.
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Figure A.37.: Contribution of each SM process shown for each process trained separately
with the usage of PID information given the distribution of the anomaly score
for the certain process.
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A.9. PFOM curve for different AS of the Ensemble of Isolation
Forests

A.9.1. PFOM curve using the favorable Input Features (pt, missing Four-
vector).
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Figure A.38.: PFOM curve for each method of processing the different anomaly score
distributions for favorable Input Features (pt, missing Four-vector).
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A.9.2. PFOM curve using the favorable Input Features with additional
PID information.
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Figure A.39.: PFOM curve for each method of processing the different anomaly score
distributions for favorable Input Features (pt, missing Four-vector) with
additional PID information.
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A.10. PFOM curve for different selections on the AS of the
iterative trained IForest.
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(a) e+e− → e+e−µ+µ− selection with selection
criterion of 0.38 without PIDs.
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(b) e+e− → e+e−µ+µ− selection with selection
criterion of 0.38 with PIDs.
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(c) Continuum selection with selection criterion
of 0.48.
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(d) Collective selection with selection criterion of
0.45.

Figure A.40.: Selections on different selection criteria on distributions of separately trained
IForests and one forest trained on all SM samples.
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