
University of Padova

Department of Physics and Astronomy

Master Thesis in Physics of Data

Optimization of the PID algorithms at

the Belle II Experiment

Supervisor Master Candidate
Prof. Alessandro Gaz Ali Bavarchee
University of Padova

Student ID
1219425

Academic Year
2022-2023

ii

“Dedication”

— ForHana-Chan

iv

Abstract

Particle identification in the Belle II experiment involves utilizing information from various
sub-detectors to classify six different species of charged particles: electrons, muons, charged pi-
ons, charged kaons, protons, and deuterons. Previous studies have demonstrated that directly
adding log-likelihoods from each detector for each hypothesis is not an optimal use of avail-
able information since poorly calibrated detectors can hurt overall particle identification per-
formance. To address these issues, we study different approaches that involve assigning to the
individual contributions different weights, depending on the region of the phase space under
study. Machine learning tools are employed in order to optimize the weights and study the
possible improvements in the performance.

v

vi

Contents

Abstract v

List of figures ix

List of tables xiii

Listing of acronyms xv

1 Introduction 1
1.1 Belle II Experiment . 1
1.2 SuperKEKB . 2
1.3 Data-Taking Status . 3
1.4 Belle II Detector . 3

1.4.1 Vertex detector (VXD) . 6
1.4.2 Central Drift Chamber (CDC) . 7
1.4.3 TOP and ARICH . 8
1.4.4 Electromagnetic Calorimeter (ECL) 10
1.4.5 KL- Muon Detector (KLM) . 10

1.5 Trigger System and Data Acquisition System 11
1.6 Data Production and Reconstruction . 12

1.6.1 Belle II analysis software framework (basf2) 12
1.6.2 Offline Reconstruction andMonte Carlo Production 12
1.6.3 Belle to Belle II dataset . 13
1.6.4 Tracking . 13
1.6.5 Reconstruction of Charged Particles 15

2 Particle Identification (PID) 17
2.1 Introduction . 17
2.2 TOP Simulation . 18
2.3 TOP Reconstruction . 18
2.4 Particle Identification: forward End-cap . 20
2.5 Charged particle identification . 21

2.5.1 Ionisation Energy Loss Measurement 21
2.5.2 Determination of Likelihoods of Charged Particles 22

2.6 PID in Belle II . 22

vii

2.6.1 GlobalPID . 23
2.6.2 Binary PID . 23

2.7 Physics Samples . 24

3 Machine Learning ForHEP 27
3.1 Multivariate Analysis (MVA) . 27
3.2 TuningModel . 28
3.3 Convolutional neural network (CNN) . 28
3.4 Evaluation the Performance . 29
3.5 Area Under Receiver Operating Characteristic 31
3.6 Random Forest Regression . 31

4 Methodology 33
4.1 Monte Carlo Simulation . 33

4.1.1 Generating ParticleGun Simulations as Background 33
4.1.2 Generating Signal Samples . 34
4.1.3 Making Ntuple . 34

4.2 Particle identification calibration . 35
4.2.1 Optimization of Calibration and Extraction of WeightedMatrix . . . 36

4.3 TuningML algorithms . 37
4.3.1 Data Preparation . 37
4.3.2 TrainingModels: Deep Neural Network 38
4.3.3 Random Forest . 39
4.3.4 SamplePIDAnalysis . 39
4.3.5 ApplyWeight . 40

5 Conclusion 41

References 53

Appendix 55

Acknowledgments 67

viii

Listing of figures

1.1 Total ingrediented weekly data taking progression from Jan 2019 to Aug 2022 4
1.2 Belle II detector side view [1] . 5
1.3 SuperKEKB and the Belle II detector top view [2] 6
1.4 A schematic view of the Belle II vertex detector [2]. 6
1.5 Schematic overview of the data-flow in the Belle II environment. Data is pro-

vided by the Belle II detector (red); the MC generators; or Belle mDST files.
Basf2 is responsible for MC generation, detector simulation, online recon-
struction, offline reconstruction, mDST analysis and the Belle to Belle II con-
version (gray), as well as writing and reading the different data-formats (blue).
Analysis-specific user-code is only required during the ntuple analysis, which
extracts the desired physics observables (purple) [1] 14

1.6 Belle II analysis: direct information fromthe real or simulateddetector is saved
in raw data files [3] . 14

2.1 Conceptual overviewofTOPcounter (left), Schematic side-viewofTOP(right) [2]. 18
2.2 Proximity focusing ARICH [4] . 20
2.3 The ROE flavour-tagging method relies on a certain principle. It involves se-

lecting events that contain only one K± in the ROE, and then determining
the neutralDmeson’s flavour based on the charge of that kaon [2]. 25

4.1 Visualizationof thePyTorchneural networkmodel (WeightNet)withnn.Linears
that is trained over the dataset and gets a six by six matrix as an output called
weighted matrix (left). Schematic of a typical neural network (right). 38

4.2 Schematic Random Forest RegressionModel 40

5.1 The Area Under the Receiver Operating Characteristic Curve (AUC ROC)
of theneural network. Tocompute theAUCROCof aneural network, first it
is needed to calculate the true positive rate (TPR) and false positive rate (FPR)
for each possible threshold of the predicted probabilities, then plot the TPR
against FPR for all possible thresholds to create the ROC curve. The AUC
ROC is the area under this curve, which ranges from 0 to 1, with a higher
value indicating better performance. 42

5.2 The Area Under the Receiver Operating Characteristic Curves of perform-
ing random forest models by GridSearch (top). The AUC ROC of the best
Random Forest model (bottom). 42

ix

5.3 The weighted matrix contains dimensionless quantities extracted from aneu-
ral network model (right) and its visualization by heat map (left) 43

5.4 The weightedmatrix contains dimensionless quantities extracted from aRan-
dom Forest (right) and its visualization by heat map (left) 43

5.5 Normalized Random Forest’s weighted matrix (right) and its visualization by
heat map (left) . 43

5.6 K signal efficiency and πmisidentification rates as a function of p on collision
D∗ decay MC and data. 45

5.7 K signal efficiency and π misidentification rates as a function of cosθ on colli-
sionD∗ decay MC and data. 45

5.8 Pion signal efficiency and Kmisidentification rates as a function of p on colli-
sionD∗ decay MC and data. 46

5.9 Pion signal efficiency and K misidentification rates as a function of cosθ on
collisionD∗ decay MC and data. 46

5.10 The π/K binary likelihood ratios of the detectors before and after optimiza-
tion by Neural Network teq., plotted separately. In each histograms, binary
likelihood ratios of pion of different detectors before and after optimization
are demonstrated by different colors. 47

5.11 The π/K binary likelihood ratios of the detectors before and after upgrading
weights by Random Forest model, plotted separately. In this plots, like the
before one, the binary likelihood ratios of each detectors, before and after op-
timization are demonstrated by different colors 47

5.12 The log likelihood difference of K and π for MC (green and gold) and data
(purple and cyan) with and without updating weights by NN 49

5.13 The log likelihood difference of K and π for MC (green and gold) and data
(purple and cyan) with and without updating weights by RF 49

5.14 The comparissionof likelihood ratios ofpion, before and after applyingweights
by neural networkmodel. The global likelihood ratios of π; demonstration of
MC (pink), weightedMC (blue), data (green) andweighted data(yellow) [top
left], binary likelihood ratios of π; demonstration for MC (pink), weighted
MCperformed (blue), data (green) andweighted data(yellow) [top right], the
binary likelihood ratios of π before (blue line) and after (red line) applying
weights[below left], the binary likelihood ratios of π before (blue line) and
after (red line) applying weights [below right]. 50

x

5.15 The comparissionof likelihood ratios ofpion, before and after applyingweights
by random forest model. The global likelihood ratios of π; demonstration of
MC (pink), weightedMC (blue), data (green) andweighted data(yellow) [top
left], binary likelihood ratios of π; demonstration for MC (pink), weighted
MCperformed (blue), data (green) andweighted data(yellow) [top right], the
binary likelihood ratios of π before (blue line) and after (red line) applying
weights[below left], the binary likelihood ratios of π before (blue line) and
after (red line) applying weights [below right]. 51

xi

xii

Listing of tables

1.1 Achieved parameters of KEKB and design parameters of SuperKEK [5] [2] . . 2

xiii

xiv

Listing of acronyms

NP New Physics

CP Charge-Parity

SM StandardModel

PXD PiXel Detector

PDF Probability Density Function

ADC Analog-to-Digital Converter

SVD Silicon Vertex Detector

CDC Central Drift Chamber

TOP Time-Of-Propagation

ARICH Aerogel RICH

RICH Ring-Imaging CHerenkov

ECL Electromagnetic Calorimeter

KLM KL - Muon Detector

LER Low Energy Ring

HER High Energy Ring

HEP High Energy Physics

ML Machine Learning

NN Neural Network

CNN Convolutional Neural Network

RF Random Forest

ROC Receiver Operating Characteristic

xv

xvi

1
Introduction

1.1 Belle II Experiment

Belle II is a next-generation flavour factory designed to search for new physics (NP) in the
flavour sector at the intensity frontier and improve the precision of StandardModel (SM)
measurements [2]. The SuperKEKB facility collides electrons and positrons at center-of-mass
energies near the Υ resonances, and the asymmetry in beam energies provides a boost to the
center-of-mass systemfor time-dependent charge-parity (CP) symmetry violationmeasurements.
SuperKEKB has a design luminosity of 6 × 1035cm−2s−1, about 30 times larger than KEKB’s
recorded peak and about 80 times KEKB’s design luminosity. The first collision data-taking
run was undertaken in 2018 for commissioning. The SM is the best-tested theory of nature,
but it does not explain many fundamental questions, such as the hierarchy in fermion masses,
the number of fermion generations, the Higgs boson accounting for neutrino masses, and the
matter-antimatter asymmetry in the universe. Many NP scenarios have been proposed, and
experiments in high-energy physics aim to address these questions. At the energy frontier, the
LHC experiments aim to discover new particles produced in proton-proton collisions, while
at the intensity frontier, experiments like Belle II can observe signatures of new particles or
processes through measurements of suppressed flavour physics reactions or from deviations
from SM predictions. Belle II and SuperKEKB will exploit their strengths at the intensity
frontier by characterizingNPthroughover-constrainingmeasurements in several relatedflavour

1

physics reactions.

1.2 SuperKEKB

KEKB was upgraded to SuperKEKB to increase instantaneous luminosity using the Nano-
Beam scheme and doubled beam current, and the beam energy asymmetry was reduced to
mitigate the Touschek effect, resulting in a reduced Lorentz boost. In June 2010, KEKB was
closed down and upgraded to SuperKEKB with the aim of increasing the instantaneous
luminosity to a level 30 times higher than the maximum instantaneous luminosity achieved
by KEKB. To achieve this, the Nano-Beam scheme- invented by P. Raimondi, was adopted,
which requires a larger crossing angle to fit the final focusing magnets and therefore, the beam
size at the collision point was reduced by a factor of 20 and the currents were increased by a fac-
tor of 1.5 compared to KEKB values. Additionally, the beam current in both HER and LER
rings was doubled, and the beam energy asymmetry was reduced to counteract the shortened
beam lifetime caused by the Touschek effect. As a result, the Lorentz boost was decreased to
(⟨β⟩ ≈ 0.284). A summary of the relevant machine parameters for both KEKB and
SuperKEKB is presented in Table 1.1.

Machine
Parameter

KEKB
HER(e−)

KEKB
LER(e+)

SuperKEKB
HER(e−)

SuperKEKB
LER(e+)

Beam current
(A)

1.64 1.19 3.60 2.61

Energy (GeV)
(EHER/ELER)

8.0 3.5 7.0 4.0

β∗y (mm) 5.9 5.9 0.27 0.41
Crossing angle
(mrad)

22 22 83 83

Beam lifetime
(min)

200 150 10 10

Luminosity
(1034 cm−2 s−1)

2.11 2.11 80 80

Table 1.1: Achieved parameters of KEKB and design parameters of SuperKEK [5] [2]

As it is mentioned in Table 1.1, the collision angle was increased to 83 mrad, and a slightly
lower beam energy asymmetry was chosen to reduce beam losses due to Touschek scattering.

2

This reduction will lead to a decrease in the spatial separation between B-mesons, but it will
improve the solid angle acceptance for missing energy decays.

1.3 Data-Taking Status

Belle II’s physics program focuses on studying rare decays and CP asymmetries in B decays,
along with a range of other topics including b-quarks, c-quarks, τ-leptons, two-photon physics,
quarkonium, and exotic physics. Recent emphasis has been on understanding QCD’s role in
4 and 5-quark states and searching for a dark sector. Extended run periods at various energy
regions, including Υ(1S), Υ(2S), Υ(3S), Υ(5S), and near Υ(6S), along with fine energy scans,
will address open questions. Additionally, measurements at Υ(5S) will provide insights into
Bs decays. Data-taking at SuperKEKB is performed in two main phases [2]:

• the first collision data taking phase: SuperKEKB and the interaction regionwas commis-
sioned before the installation of the sensitive silicon inner detectors. The peak luminos-
ity delivered by SuperKEKB reached 0.5× 1034/cm2/s, and a data set of order 0.5 fb−1

was collected at the Υ(4S) resonance. This small data set has been used for searches of
dark sectors that were previously limited by a lack of efficient triggers.

• The second collision phase had been seen the full detector and allowing for the full
flavour program to commence.

The Belle II experiment has gathered an extensive amount of data, exceeding 400 fb−1. The
majority of these data were obtained at an energy level corresponding to the mass of the Υ(4S)
particle which is reported in Fig. 1.1.

1.4 Belle II Detector

The Belle II detector is a significant upgrade to its predecessor, Belle, designed to enhance the
particle identification performance and the decay vertex reconstruction capabilities in harsher
beambackgroundconditions. It consists of various sub-detectors arranged cylindrically around
the collision point of the e+e− beams, which are enclosed by a beryllium beam pipe with a
radius of 1 cm.

The innermost part of the detector is the PiXelDetector (PXD),which consists of two layers
of DEpleted P-channel Field Effect Transistors (DEPFET). The first layer includes 16 sensor
modules arranged on eight ladders, while the second layer has four sensor modules mounted

3

Figure 1.1: Total ingrediented weekly data taking progression from Jan 2019 to Aug 2022

only on two ladders, due to construction-related limitations, and the installation of the
complete PXD is currently underway. The PXD is surrounded by the Silicon Vertex Detector
(SVD), which is a four-layer double-sided silicon strip detector arranged cylindrically around
the interactionpoint (IP).Thefirst layer is straight, and the second to fourth layers are slanted to
reduce thematerial budget and the number of sensors. Both PXD and SVDoffer the necessary
radiation hardness required to operate at the high luminosity of SuperKEKB. Together, PXD
and SVD form the silicon-based vertexing (VXD) inner detector.
TheVXD is enclosed by theCentralDrift Chamber (CDC), which is filledwith aHe (50%)

andC2H6 (50%) gas mixture. The CDChas 56 layers of 14,336 wires of axial or stereo orienta-
tion, grouped in cells of nine,withone ”sense”wire towhichHV is applied surroundedby eight
grounded ”field” wires. The wires are grouped into nine superlayers, and by combining the in-
formation of axial and stereo wires, the full three-dimensional trajectory of a charged particle
can be reconstructed, providing a measurement of the mean ionization energy loss, dE/dx.
TheBelle II detector is designed to operate at a 30 times higher luminosity compared toBelle

and with background rates higher by a factor of 10 to 20. Therefore, higher event rates require
modifications to the trigger scheme, data acquisition system, and computing compared to the
previous experiment. In addition, the Belle II detector needs to improve hadron identification
and maintain hermeticity at least as good as the original Belle detector. The detector’s critical

4

issue is mitigating the effects of higher background levels, which lead to an increase in occu-
pancy and radiation damage, as well as to fake hits and pile-up noise in the electromagnetic
calorimeter, and to neutron-induced hits in themuon detection system. The trigger andDAQ
are also adapted to support a broader low-multiplicity (dark sector) physics analysis program.

Figure 1.2: Belle II detector side view [1]

Figure 1.3 illustrates the design of the Belle II detector, which consists of various compo-
nents for detecting different types of particles. The detector is made up of two layers of pixe-
lated silicon sensors (PXD) and four layers of silicon strip sensors (SVD) closest to the beam
pipe to reconstruct decay vertices. The central drift chamber (CDC) fills the larger outer ra-
dius of the tracking volume. There is also a time of propagation system in the barrel region
(TOP) and a ring-imaging Cherenkov detector in the forward endcap (ARICH) specifically
designed for identifying hadrons. ACsI(Tl) electromagnetic calorimeter (ECL) is used tomea-
sure the energy of photons and electrons, and it has a longitudinal size of 16.2 X0 in units of
radiation length. Finally, the KLMdetector is composed of scintillator strips and resistive plate
chambers, which are used forK0

L meson and muon identification.

5

Figure 1.3: SuperKEKB and the Belle II detector top view [2]

1.4.1 Vertex detector (VXD)

The vertex detector is made up of two devices, the silicon Pixel Detector (PXD) and Silicon
Vertex Detector (SVD), with a total of six layers around a 10 mm radius beam pipe. The first
two layers at radii of 14 mm and 22 mm use pixelated sensors of the DEPFET type, while the
remaining four layers at radii of 38 mm, 80 mm, 115 mm, and 140 mm are equipped with
double-sided silicon strip sensors. The outermost layer of the new detector is at a considerably
larger radius compared to the Belle vertex detector, which is expected to result in significant
improvements in momentum resolution and reconstruction efficiency for certain types of
decays.

Figure 1.4: A schematic view of the Belle II vertex detector [2].

It is possible to distinguish between different mass hypotheses by combining the track mo-
mentum (plab) and the mean energy loss by ionisation (dE/dx) in the SVD strips of a charged

6

particle, which is related to its velocity through the Bethe-Bloch formula, and plotting them in
the (dE/dx, plab) space [6].
Although excluding the SVD from the LID likelihood model [6] has a small impact on

performance overall, adding this information improves the identification of soft leptons that
curl back inside the CDC, particularly in terms of reducing the misidentification rate of pions.

To extract the probability density function (PDF) for the electron hypothesis, one can recon-
struct photon conversion candidates (γ → e+e−) that occur within the material of the PXD
and SVD inner tracking systems. A converted photon candidate is identified by combining
two oppositely charged tracks fitted with the electron mass hypothesis. The sample purity is
enhanced by applying a dielectron invariantmass selection in a 3 < Mee < 15MeV/c2window,
and by performing a vertex fit, where only photon candidates with a fit χ2 > 0.001 are kept.
The |z| coordinate of the photon production vertex is then restricted to be less than 8 cm to
reduce secondary electrons. More details and description of χ and the concept of the purity are
mentioned in the next sections [6].

The sPlot technique [6] is used to subtract the residual background, and the resulting two-
dimensional distribution of dE/dx vs. plab is used to calculate the likelihood. The impact of
including SVD likelihoods in the PID model on electron identification is evaluated in data
using electrons from γ → e+e−, andpions and kaons fromaD∗+ → D0(→ K−π+)π+ sample.
For this analysis, only tracks within the SVD detector fiducial region with plab < 1 GeV/c are
considered. The recent study [6] finds that the electron efficiency increases from around 80%
to 90% for a fixed 20% π → emisidentification probability, and from around 94% to 98% for
a fixed 40%K → emisidentification probability.

1.4.2 Central Drift Chamber (CDC)

The Belle II spectrometer’s central tracking device, the CDC, is a large volume drift chamber
with 14,336 sense wires arranged in 56 layers. It has been designed to handle higher event rates
and increased background levels, and has smaller drift cells than the one used in Belle. The
CDC extends to a larger radius (1130 mm compared to 880 mm) and contains both axial and
stereo layers that allow for 3Dhelix track reconstruction. The chamber gas is aHe-C2H6 50:50
mixture with an average drift velocity of 3.3 cm/μs and a maximum drift time of about 350 ns
and it has been commissioned with cosmic rays.

For each reconstructed track in the CDC, specific ionisation (dE/dx) measurements are
obtained. Signal pulses on each sense wire of a cell are digitised with 31.75MSPS flash ADCs,

7

and values over a nominal threshold are summed to yield the raw ADC readout. Geometrical
corrections are applied for track length in each drift cell (dx) based on the polar angle of the
track and the track geometry in the cell. Variations in gas gain between data taking runs due to
variations in pressure and temperature aswell as gas composition are calibratedwith a large sam-
ple of e+e− → e+e−γ radiative Bhabha events. Wire-to-wire gain variations due to variations
in electronics and cell characteristics are also calibrated.

Samples of e, μ, π,K, and p from dedicated control samples are used to determine gas gain
saturation effects for tracks with varying intrinsic ionisation (i.e., saturation relative to elec-
trons). The same control samples are also used to parametrise the mean expected dE/dx as
a function of βγ. Corrected ADC values from each hit (i.e., sense wire) on a given track are
used to calculate a truncated mean by discarding the lowest 5%− and highest 25%− of mea-
surements on a given track and averaging the remainder. Truncation yields a nearly Gaussian
average from a highly skewed initial ADC distribution.

Distributions of the measured truncated mean are used to calculate a normalised deviation
for each charged particle hypothesis using the formula [6]:

χh =
ΔdE/dx

σpred
=

dE/dxmeas − dE/dxpred
σpred

. (1.1)

The expected spread ΔdE/dx, where dE/dxmeas (dE/dxpred) is the measured (predicted) trun-
cated mean, is parametrised as a function of track polar angle, the number of hits on track,
and the dE/dx value itself. The factor σpred at the denominator is the predicted resolution on
ΔdE/dx, as obtained from a fit with a Gaussian function. The χh distributions are converted to
likelihoods, assuming their PDF is well described by Gaussian functions.

The discrepancy between data andMCon the high-side tail for pions is due to imperfections
in the cos θ-dependent gas-gain saturation corrections.

1.4.3 TOP and ARICH

The Belle II spectrometer uses a combination of advanced technologies for particle identifi-
cation. The time-of-propagation (TOP) counter and the Aerogel Ring Imaging Cherenkov
(ARICH)detector are key components. TheTOPcounteruses a specialized typeofCherenkov
detector while the ARICH detector employs aerogel as a Cherenkov radiator. The radiator re-

8

fractive index (n) canbe determined from theCherenkov angle resolution,which is givenby [6]

cos θC =
1
nβ

, (1.2)

where β = p/E and p is the particle momentum, m is the mass, and c is the speed of light.
Using the tracking detectors, the particle mass and identity can be determined from this rela-
tion. The TOP and ARICH detectors provide important information for particle identifica-
tion, particularly for charged hadrons like pions, kaons, and protons, and also contribute to
electron identification at low momenta.

The TOP counter measures the time and position where internally-reflected Cherenkov
photons hit an array of photo-multipliers at the end of a fused silica bar. The time measure-
ment can be decomposed into two parts: tph = ttof + tprop, where ttof is the time of flight of
the particle from the IP, proportional to 1/β, and tprop is the time spent by the Cherenkov pho-
ton inside the quartz bar, which is a function of the particle incident angle, position, and β.
To achieve good particle identification, a coarse segmentation of the PMT is sufficient, while
the readout timing resolution must be around 100 ps. The chosen sensors are micro-channel
plate photo-multipliers (MCP-PMT) with a pixel size of about 5.5 × 5.5 mm2 and a transit
time spread of approximately 38 ps, providing a low-resolution measurement of the photon
positions and a very precise measurement of their detection time. The readout is performed
by the IRSX chip, capable of reaching 30 ps of timing resolution. Particle identification in-
formation is obtained by comparing the distribution of the time of arrival of the photons in
each of the 512 channels with the expected probability density functions (PDFs) for the six
standard charged particle hypotheses. The ratios of the six corresponding likelihood values are
then used to assign identification probabilities. However, the separation power decreases as the
momentum increases, as the TOP PID information is ultimately based on a measurement of
the particle velocity [6].

The ARICH detector uses aerogel as a Cherenkov radiator to separate the charged parti-
cles. The aerogel produces Cherenkov photons when a charged particle passes through it. The
photons are then detected by the hybrid avalanche photon detector (HAPD), a single photon
sensitive high granularity sensor. The RICH uses a novel method to increase the number of
detectedCherenkovphotonswithout degrading theCherenkov angle resolution. The informa-
tion from both TOP and ARICH is crucial for the particle identification of charged hadrons
and contributes to electron identification at low momenta [2].

9

1.4.4 Electromagnetic Calorimeter (ECL)

The Belle II electromagnetic calorimeter (ECL) is made up of thallium-doped caesium iodide
crystals and is highly segmented. It has a total of 8736 crystals covering about 90 percent of
the solid angle in the center-of-mass system [2]. The crystals were reused from Belle, and the
readout electronics and reconstruction software were upgraded to mitigate the overlapping of
pulses from neighboring events. Scintillator photo-sensors equippedwith waveform-sampling
read-out electronics were used. Radiation damage and high background rates in the forward
region could degrade the performance. Hence, a replacement of CsI(Tl) with pure CsI is
under study. The baseline method for charged particle identification relies on the E/p ratio.
Templates of E/p are generated from simulated single-particle Monte Carlo samples for each
charged particle hypothesis, and PDFs are extracted via adaptive Gaussian Kernel Density Es-
timation fits [2]. Independent fits in 18 orthogonal bins [6] are performed to account for
variations in the PDF shapes as a function of polar angle, momentum, and charge. Angular
and momentum binning are defined in accordance with the calorimeter geometry, and charge
dependency is introduced to account for differences in ECL energy deposition patterns due
to charge asymmetry in hadronic interactions. The method’s performance is currently being
studied and evaluated.

1.4.5 KL- MuonDetector (KLM)

The K0
L and muon detector (KLM) in Belle II consists of iron plates and active detector ele-

ments for detecting K0
L mesons and muons. In Belle II, large background rates are expected in

some KLM detector areas, which will reduce detection efficiency [2]. The muon identifica-
tion algorithm proceeds in two steps: track extrapolation and likelihood extraction for each of
the six charged particle hypotheses. Track extrapolation starts at the outermost point of the re-
constructed track’s trajectory and ends when the kinetic energy falls below a defined threshold,
the track curls inwards, or the track escapes from the KLM geometrical boundaries. Likeli-
hood values per hypothesis are obtained from precalculated probability density functions for
individual particle hypotheses, charge, and extrapolation ending outcome. The longitudinal
profile PDF values are sampled according to the pattern of all KLM layers crossed during the
extrapolation, and the total longitudinal likelihood is the product over all layers crossed by the

10

extrapolated track [6].

LL =
∏
k=1

LL
k (1.3)

The transverse scattering probability density function per KLM region and particle hypoth-
esis is sampled according to the measurement of χ2 of the Kalman filter and the number of de-
grees of freedom. To mitigate this problem, RPCs have been replaced by layers of scintillator
strips with SiPMs as light sensors. The high neutron background will also cause damage to the
SiPMs, but irradiation tests have shown that the detector system can still be reliably operated.

1.5 Trigger System andData Acquisition System

The trigger system of Belle II [2] plays a crucial role in identifying events of interest during data
collection. The systemmust work efficiently in the presence of high background rates expected
fromSuperKEKB andmeet the limitations of the data acquisition system. Awell-designed trig-
ger system unlocks a broad range of topics not explored in previous B-factories, such as dark
sector searches and axion-like particle searches. The main beam background sources, such as
Touschek effect, beam-gas scattering, synchrotron radiation, radiative Bhabha process, two-
photon process, and beam-beam effects, are discussed in detail. Most of these processes have
topologies that are problematic for low-multiplicity productionmodes. The flagship measure-
ments for Belle II in B- and D- flavour physics are expected to be highly robust to trigger im-
plementation. Events will be easily identified from the presence of at least 3 tracks in the CDC
trigger and a large deposition of energy in the ECL, similar to Belle.

The Belle II experiment uses a two-level trigger system [2] consisting of a low-level trigger
(L1) and a high-level trigger (HLT) to cope with the high event rate and background levels.
The L1 trigger has a latency of 5 μs and maximum trigger output rate of 30 kHz, and has
been upgraded with 3D tracking algorithms, improved online reconstruction techniques for
calorimeter, global reconstruction logic, and a new trigger menu. The HLT reconstructs the
event with offline reconstruction algorithms and reduces online event rates to 10 kHz for of-
fline storage. It has a trigger menu in development and employs a total of 6000 CPU cores to
process at nominal 30 kHz, which is the required rate for nominal instantaneous luminosity.
Dark matter searches pose a big challenge for the trigger due to the presence of only one en-
ergetic photon in the final state, and loose and tight trigger conditions are applied to suppress
dominant background processes such as Bhabha scattering. The high-level trigger farm uses

11

data from all sub-detectors to reconstruct the event and perform a physics-level event selection.
The raw event rate written to storage is anticipated to be between 6 kHz and 10 kHz. The
HLT involves many clusters of Linux-based personal computers and runs the Belle II Analysis
Software Framework (basf2).

1.6 Data Production and Reconstruction

1.6.1 Belle II analysis software framework (basf2)

The basf2 [7] is used for online and offline data handling. It is designed to allow independent
processing modules to perform small tasks linearly within a defined path. Modules communi-
cate by passing information to and from a common object store. The framework is important
due to the enormous data output rate at Belle II, and data sets are processed in several phases,
with each phase reducing and enhancing the data. High-level objects are constructed from de-
tector information, and the event size is reduced by a factor of approximately 40. The reduced
information is then used to determine particle-level information. The performance of recon-
struction algorithms is given for basf2 software.

1.6.2 Offline Reconstruction andMonte Carlo Production

Thebasf2 [7] canbe used for offline reconstruction,MonteCarlo production, andphysics anal-
ysis in particle physics experiments such as Belle II. It is used to process the raw data obtained
from the detector aftermachine-dependent calibration parameters have been determined. The
reconstructed data is then stored in ROOT-based mDST files. Monte Carlo production and
reconstruction are distributed to data centers worldwide for further analysis. Overall, basf2 is
an essential tool for particle physicists to analyze the data obtained fromBelle II experiment. It
also uses in other simulation modules, specifically the GEANT4 toolkit, to simulate particle
interactions and decays. This involves generating particles with given momentum and Parti-
cle Data Group (PDG) codes, and simulating their life story through interactions and decay
processes using probabilistic relations and random number selection. MC simulations like
GEANT4 are highly accurate and have found applications in various fields such as space sci-
ence, medical physics, radiation protection, and nuclear medicine. Efforts are being made to
further improve their accuracy as experimental data provides feedback and their physics capa-
bilities are extended.

12

1.6.3 Belle to Belle II dataset

The Belle II dataset undergoes four levels of data processing, namely online reconstruction, of-
fline reconstruction, mDST analysis, and n-tuple analysis. The online reconstruction involves
reading the detector and trigger system, producing the raw data (DST files). The offline recon-
struction involves cluster reconstruction, track finding, track fitting, and producing themDST
data. The mDST analysis involves creating final state particle hypotheses, reconstructing inter-
mediate particle candidates and vertex fitting, and then producing flat n-tuples. Finally, the
n-tuple analysis involves fitting theoretical predictions to extract interesting observables and
producing scientific papers. Converting the raw data from Belle to Belle II is a challenging
task due to the differences in detectors and expected backgrounds. However, converting Belle
mDST data to the new mDST format used by basf2 allows for the validation of the Belle II
analysis software and reproduction of Belle measurements using improved software. Figure
1.5 provides an overview of basf2, including the conversion path presented in this work. By
comparing the original Belle results, the Belle results obtained from converted data in basf2,
and Belle II sensitivity studies on Belle II Monte Carlo, it is possible to identify improvements
in sensitivity and inconsistencies in the analysis and reconstruction algorithms separately.

1.6.4 Tracking

Theprimary goal of tracking is to reconstruct charged particles that come from the primary and
secondary decay points. This involves identifying VXD and CDC hits caused by ionization
from a specific charged particle amidst other background hits from detector noise, machine
background, or other particles. Then, a trajectory is obtained by fitting the hit positions. The
majority of tracks originate inside the beampipe, with the exception of charged decay products
from long-lived V0-like particles (such as K0

S, Λ, and converted photons) that are produced
outside the beam pipe. The tracking algorithms are responsible for these tasks. They must
identify and match the two decay products with opposite charges of K0

S, Λ, and photons that
undergo decay within the tracking volume.
The trajectories of reconstructed particles are utilized to align the detector. Having a detector
that is optimally aligned is crucial for carrying out precise and reliable measurements of flavor
quantities with time dependence. Additionally, when fitting decay chains, the knowledge of
the spatial distributionofprimary interactions (beamspot) canbeutilized as a potent constraint
that is dependent on the run.

13

Figure 1.5: Schematic overview of the data‐flow in the Belle II environment. Data is provided by the Belle II detector (red);
the MC generators; or Belle mDST files. Basf2 is responsible for MC generation, detector simulation, online reconstruction,
offline reconstruction, mDST analysis and the Belle to Belle II conversion (gray), as well as writing and reading the different
data‐formats (blue). Analysis‐specific user‐code is only required during the ntuple analysis, which extracts the desired
physics observables (purple) [1] .

Figure 1.6: Belle II analysis: direct information from the real or simulated detector is saved in raw data files [3]

14

1.6.5 Reconstruction of Charged Particles

The reconstructionof chargedparticles involves tracking software that generates lists of charged
particle paths based on a given mass hypothesis. During analysis, a track is represented by
(x⃗0, p⃗), where x⃗0 is the closest point of approach to the origin of the coordinate system, and
p⃗ is the particle momentum at x⃗. The detector hits associated with the track are not carried
forward after tracking to reduce the size of analysis files (mDST), although additional informa-
tion, such as the number of hits in each detector layer of the VXD and CDC used to fit the
track, is saved for the analyst. This information is useful for selecting high-quality tracks dur-
ing analysis. Charged particle reconstruction is composed of two main stages: track finding,
which groups together detector hits that belong to a single track into a track candidate, and
track fitting, which determines the trajectory of the track by fitting the track candidate.

In trackfinding, aHopfieldnetwork is usedwith aquality indicator to generatenon-overlapping
track candidates [2]. Multiple track finder runs with different sector maps can be used for dif-
ferentmomentum regions. Two complementary algorithms, a global and local track finder, are
used for CDC track finding. The global track finder applies a Hough transformation and can
handle cases withmissing hits, while the local track finder uses cellular automaton to search for
segments and tracks. The track candidates from VXD and CDC are merged based on the dis-
tance between the extrapolated VXD and CDC track candidates. In the future, cross-detector
searches may be conducted to add hits from VXD to CDC track candidates and vice versa.

In track fitting, the tracking software uses five parameters to describe the helix-like trajectory
of a charged particle in a magnetic field: d0, z0, φ0, tan λ, and ω. Due to interactions with de-
tector material and a non-uniform magnetic field, the trajectories are not perfect helices, and
particle mass is used as a hypothesis to account for such interactions. The deterministic anneal-
ing filter is used as the primary track fitting algorithm, which is based on the Kalman filter (KF)
but is more robust against false hit assignments and incorrect assumptions about wire passage.

15

16

2
Particle Identification (PID)

2.1 Introduction

Particle identification (PID) is a process in particle physics that aims to determine the type of
particle that has been detected. Identifying particles is crucial to understanding the physics pro-
cesses that occur in high-energy experiments and for distinguishing signals from background.
There are several methods used for particle identification. In the barrel region, TOP has this
duty, while in the forward endcap region, ARICH, a Cherenkov ring imaging detector, by uti-
lizing aerogel as its Cherenkov radiator, is vested upon to identify charged particles. Also, ECL
measures the energy deposited by a particle as it passes through a detector. Different particles
deposit different amounts of energy, and so the energy deposition can be used to identify the
type of particle. In particular, electromagnetic calorimeters can distinguish between electrons
and photons by measuring the pattern of energy deposition.

In order to improve the particle identification (PID) system and cope with a higher back-
ground environment, as well as to increase the spectrometer’s capability to distinguish between
kaons and pions, an upgrade to the PID system is necessary. Furthermore, to enhance the
calorimeter response to electromagnetic particles, it is desirable to reduce the amount of mate-
rial and make it more uniform. In the barrel region of the spectrometer, the current time-of-
flight and aerogel Cherenkov counters have been replaced by a Time-Of-Propagation (TOP)
counter. The TOP counter measures the time of propagation of Cherenkov photons

17

internally reflected inside a quartz radiator, and reconstructs the Cherenkov image from the
3D informationprovidedby two coordinates andprecise timing, determinedbymicro-channel
plate PMTs. The quartz bar array surrounds the outer wall of the CDC and is divided into 16
modules in φ in the baseline geometry. In order to reduce the impact of the chromatic effect,
a focusing mechanism has been implemented that separates the ring image based on the wave-
length of Cherenkov photons. This division occurs as the photons are focused onto various
sections of the PMT array, depending on their respective wavelengths or energies.

Figure 2.1: Conceptual overview of TOP counter (left), Schematic side‐view of TOP (right) [2].

2.2 TOP Simulation

To explore the optimal performance of the TOP detector under different configurations, it is
necessary to obtain simulation output. In order to replicate the output from a real detector
after generating the four-vectors of the event. The actual detector measures the interaction be-
tween the particles and the detector’s material using various processes such as bremsstrahlung,
Cherenkov radiation, ionisation, and scintillation, among others. All these processes can be
simulated using software, and Geant4 is the most well-known simulation software. Geant4
takes the four-vectors and simulates their interaction with a virtual Belle II detector, and the
result is the deposited energy and particles produced by the interactions in each sub-detector.
Once this is done, the custom software converts the output from Geant4 into signals, which
are then used to determine the pixels that were fired. The simulation of the entire detector is a
costly process and can take up to a second for Belle II and evenminutes for experiments likeAT-
LAS and CMS due to the high number of produced particles and the high energy involved [8].

2.3 TOP Reconstruction

Mainly the studies have focused on separating K and π particles. In order to determine the
expected rates of true detections and false positives, the detected photons for each track are

18

compared against probability distribution functions (PDFs) specific to eachparticle hypothesis
(PK(x, t) and Pπ(x, t)). The origin of the PDFs varies depending on the simulation group [2].

Based on the probability distribution functions (PDFs), a likelihood is calculated for a
simulated primary charged particle could be [9]:

LK,π =
∏
i

PK,π (x, t)i (2.1)

where the index i runs over each detected photon in the event. Typically the log of the likeli-
hood is used as it is more computationally stable. The difference between the likelihood under
each hypothesis is calculated [9] [6].

Δ logL = logLK − logLπ = log

(
1

P(π
K)

− 1

)
(2.2)

Where P(π
K)
is the pion binary PID (LID) which is defined in equation 2.7 of section2.6.2.

The log-likelihood difference is used to determine whether the detected particle is a pion or a
kaon, with positive values indicating a pion and negative values indicating a kaon.
By comparing the likelihood-based classifications to the known simulated particle species, the
fractions of correctly and incorrectly identified particles can be determined.

The methods use PDFs fromMonte Carlo simulations, which require significant computa-
tional resources to generate for a single combination of track parameters, limiting the number
of track parameters that can be evaluated for expected efficiencies and fake rates. As theMonte
Carlo-based method is not practical for the final detector configuration, efforts are ongoing to
develop suitable reconstructionmethods, such as adapting the analytical method to the Geant-
basedMonte Carlo data.

0Previously, the methods so calledNagoya andHawaii methods, the PDFs are derived from a large number of
events involving single tracks with a specific momentum, impact position, and angle on the quartz bar. On the
other hand, another method as known as Ljubljana reconstruction, uses the known properties and distributions
of Cherenkov radiation to create PDFs through analytical calculations.

0The Ljubljana method uses analytically calculated PDFs, allowing for much finer sampling of performance
across the parameter space for potential charged tracks with less computational resources. However, this method
may lack some details seen under realistic operating conditions.

19

2.4 Particle Identification: forward End-cap

One of the fundamental needs for Belle II is to identify charged particles over the full kine-
matic range. To address this requirement, ARICH has been designed for the forward endcap.
ARICH can differentiate between kaons and pions over a significant portion of their momen-
tum spectrum and can distinguish between pions, muons, and electrons below 1 GeV/c.

Figure 2.2: Proximity focusing ARICH [4]

The ARICH detector consists of several components (Fig. 2.2), including an aerogel radia-
tor that producesCherenkov photonswhen charged particles pass through it, an expansion vol-
ume that allows the photons to form rings on the photon detector surface, an array of position-
sensitive photon detectors capable of detecting single photons with high efficiency and good
resolution in two dimensions, and a read-out system to record the detected photons.

20

2.5 Charged particle identification

Asmentioned before, the forward end-cap and barrel regions of the detector includesTOP and
ARICHsystems that provide chargedparticle information across the full kinematic range. The
PID information from these detector systems is combined with specific ionisation or stopping
power(dE/dx) measurements from the SVD and CDC to be the primary sources of informa-
tion for charged hadronPID. Likewise, the ECLprovides the primary information for electron
identification, and the KLM provides that for muon identification [6].

To determine the identity of charged particles, likelihood-based selectors are used. Each PID
system provides independent information to calculate a likelihood for each charged particle
hypothesis, which can then be combined to form a likelihood ratio. Analysis-specific criteria
may be applied to construct prior probabilities, which, when combined with likelihoods, can
determine the probability of a charged track having a specific identity. Although in princi-
ple this approach provides optimal PID performance, it requires analysis-specific optimization
and does not allow for pre-determined selection efficiency uncertainty. Likelihood ratios are
constructed by summing the PID log likelihoods from each detector to create a combined PID
likelihood for each of six long-lived charged particle hypotheses. The difference in log likeli-
hood between two particle hypotheses is then used to form a PID value L(α : β) [6].

L(α : β) =
∏

det L(α)∏
det L(α) +

∏
det L(β)

=
1

1+ e(lnLβ−lnLα)
(2.3)

Where L(α : β) indicates the probability of a charged particle being of type α compared to
type β. The value is greater than 0.5 if the charged particle is more likely to be of type α, and
less than 0.5 if it’s more likely to be of type β. The performance results presented in this section
were obtained from large simulated datasets of 106 cc̄ events generated.

2.5.1 Ionisation Energy LossMeasurement

To determine the ionization energy loss, dE/dx, of a charged particlemoving through the Belle
II detector, measurements from the VXD and CDC are used. The dE/dx measurement is
expected to only depend on the particle velocity, βγ = p/m. However, calibration is needed
to avoid systematic effects that can break this dependence. Generally, the dE/dx information
is more effective at discriminating between particle momenta below 1 GeV/c.

21

2.5.2 Determination of Likelihoods of Charged Particles

TheVXD andCDCdetectorsmeasure ionisation energy loss, dE/dx, independently, and both
require different calibration procedures. At present, the dE/dx algorithms in both subsystems
construct likelihood values using information from individual hits. A lookup table constructed
from large MC samples is used to determine a likelihood value for each particle hypothesis,
including pion, kaon, proton, muon, electron, and deuteron. To reduce the effect of non-
Gaussian tails, the lowest 5% and highest 25% dE/dxmeasurements of each track are not used
in the likelihood determination.

The basf2 could use a truncated mean and resolution parameterisation to determine dE/dx
PID discriminators. This method will involve comparing the measured dE/dx truncatedmean
to a predicted value and resolution and determining a χh value.

χh =
Imean − Ipred,h

σpred,h
(2.4)

The predicted values are calculated from a parameterisation of dE/dx as a function of βγ, and
the predicted resolutions depend on the dE/dx measurement, the number of hits on the track,
and the polar angle of the track. The distributions of this χ variable are approximately Gaus-
sian and can be converted to a likelihood and combined with the output of other PID systems.
Thismethod is expected to have similar performance to the currentmethod but enable a better
characterization of the resolution.

2.6 PID in Belle II

The PID in Belle II involves using both “Global” and “Binary” likelihood ratios for each
particle typewhich are invoked “Global PID” and “Binary PID” respectively [10]. These ratios
are calculated based on the likelihoods from different subsystems within the detector. The
analysis framework provides access to relevant variables, and analysts can choose to use pre-
defined values (“tight”, “loose”) or directly cut on the likelihoods to identify the particles as
electrons, muons, pions, kaons, protons, or deuterons. Since the MC (Monte Carlo) mod-
elling used is not perfect, the performance of particle identification needs to be verified using
data and corrections derived fromMC.

22

2.6.1 GlobalPID

Themain idea behind global PID is to use the log-likelihoods of all six charged particle types to
identify the particle type. For each event, the detector provides log-likelihood values for each
charged particle type, denoted by logLh,d where h is the particle type hypothesis and d is the
detector. These log-likelihood values are combined for each particle type to form an ensemble
hypothesis log-likelihood, represented by logLh [10] [2].

logLh =
∑
d

logLh,d (2.5)

The sum is performed over all six detectors for six particle types that are used for PID. The log-
likelihoods obtained from this sum can be utilized to calculate likelihood ratios, as indicated by
the following equation.

p(h) =
Lh∑
h′ Lh′

=
exp(logLh)∑
h′ exp(logLh′)

(2.6)

where as before, h is the particle type hypothesis of all the detectors and the sum over h′ is
over all six hypotheses.

2.6.2 Binary PID

Binary PID is a particle identification approach that involves the use of only two particle types
as hypotheses: the particle type of interest and a background particle type, which is often
pions (π). This approach is particularly useful in situations where pions form a significant
background in charged particle identification, and the scope of other particle types is limited
in many analyses.

In binary PID, the likelihoods of the two particle types are compared, and the particle is
classified as either the particle type of interest or the background particle (π), based on which
hypothesis has a higher likelihood. For instance, in the case of pion separation from kaons,
the likelihood ratio is computed using the log-likelihood values for each particle type, and the
particle is identified as a kaon if the likelihood ratio for kaon is higher than that of pion [10].

P(hπ)Binary = P(π
K)

=
Lπ

Lπ + LK
(2.7)

Selecting a particle type based on its global likelihood ratio being the largest also means it

23

would have been chosen using binary likelihood ratios with a threshold of 0.5 as binary likeli-
hood ratios is often the case that particles are then identified according to whether P(h) > 0.5.
This is because choosing a hypothesis based on global likelihood ratios means that the prob-

ability of that hypothesis is greater than the probability of all other hypotheses. This in turn
means that the log likelihood of that hypothesis is greater than the log likelihood of all other hy-
potheses, which implies that the binary likelihood ratio for that hypothesis is greater than 0.5.
However, this does not work the other way around. In this document, global PID methods
are used instead of binary PID methods, and particles are identified using the argument that
maximizes the function, which is defined as argmax. When binary PIDmethods are used, this
will be clearly indicated.

2.7 Physics Samples

The decay D∗+ → D0(→ K−π+)π+ is a standard sample for particle identification studies
of charged pions and kaons. In this decay, the charge of πtag (the tagged pion) determines the
flavor of theD0 at production time, and the flavor at decay time is determined by the final state
particle properties. By selecting charged tracks based on their sign and applying a set of cuts
on the reconstruction quality and kinematic properties of the D∗ and D0, this decay can be
reconstructed cleanly and used to study particle identification performance with minimal bias
on the observed quantities.

In the absence of mixing, the initialD0 decays asD0 → K−π+. However, if mixing occurs,
the D0 converts to a D0 and decays as D0 → K+π−, with the charge of the K determining
the flavor at decay time. Therefore, by observing the charge of theK in the final state, one can
determine if mixing occurred.

TheD∗method [2] is awell-established ”golden”flavour-taggingmethodused atB-Factories,
which identifies the flavour of theD0 meson by the charge of the pion emitted with theD0 in
theD∗+ decay. A new flavour-taggingmethod, theROE (the rest of the event)method [2], has
been introduced to increase the sample size of taggedD0 candidates.

0The ROEmethod addsD0 mesons produced in cc̄ events that do not come fromD∗+ decays. The principle
of the ROEmethod is to look at the rest of the event with respect to the neutralDmeson whose flavour we want
to tag, and themethod is performed by selecting events with only oneK± in the ROE and using the charge of the
kaon todetermine the flavour of the otherD0meson at the timeof its production. Thismethoduses amultivariate
classification technique to selectK± candidates in theROE and applies a pre-selection of tracks based on PID and
track fit probability to reject poorly measured candidates.

24

Figure 2.3: The ROE flavour‐tagging method relies on a certain principle. It involves selecting events that contain only one
K± in the ROE, and then determining the neutralD meson’s flavour based on the charge of that kaon [2].

25

26

3
Machine Learning For HEP

3.1 Multivariate Analysis (MVA)

Multivariate Analysis (MVA) algorithms utilize multivariate statistics to analyze observed data
x⃗ and derive characteristics of the underlying process that generated the data [1]. These al-
gorithms are commonly used for tasks such as estimating a function f(x⃗) (known as a regres-
sion task), differentiating data points into signal and background (a classification task), and
grouping similar data points together (clustering). Machine learning (ML) is an effective way
to automatically learn the required statistical model by using a domain-specific dataset, with
knowledge extracted from experience. This can be seen as a type of artificial intelligence. The
machine learning algorithms typically involve two phases: a fitting-phase where a statistical
model is learned from the training dataset, and an inference-phase where the model is used to
predict target information for a new test dataset. Three types of learning are identified based on
the feedback available during the fitting-phase: supervised learning, unsupervised learning, and
reinforcement learning. In high-energy physics (HEP), target information is typically known
fromMonteCarlo simulated events or can be inferred fromdata-driven techniques, making su-
pervised learning the most commonly used approach. In supervised learning, the target infor-
mation y ∼ f(x⃗)+ ε is predicted by a statistical model f̂ using a feature vector x⃗. The algorithm
adapts the internal weights of the statistical model (represented by w⃗) to minimize the discrep-
ancy between the true value y and the predicted value ŷ = f̂(x⃗, w⃗), where the discrepancy is

27

defined by a loss-function L(y, ŷ, w⃗) [1].

3.2 TuningModel

Themodel trains and tests on both real data (comes fromdetector read-out system) andMonte
Carlo simulation data, which are readily available and sufficient to evaluate the effectiveness of
particle identification (PID) methods. The simulations involve a pure kaon and pion particle
gun that simulates particle tracks and potential decay from the collision point, including some
background radiation that creates noise. This is to simulate real-world noise encountered by
the models. The simulations fix the particle gun to one point in phase space, shooting all par-
ticle tracks at angles of θ = [10.0, 170.0] at the origin and collision point with the quartz bar,
respectively, with a range of momentum of P = 0.2 ∼ 0.5 GeV [10]. Classification models
that performwell on this simulation data can be extended to a larger portion of the phase space
and potentially integrated into the real Belle II particle identification process. The dataset ini-
tially contains 1466586 events each, but for simplicity, events with only one registered particle
track in themodule, positively chargedparticles, and events registeredonModule 3 are selected,
resulting in a reduced dataset of 1056529 kaons and 830675 pions. The data is randomly split
into 60% training data, 20% validation data for tuning hyperparameters during training, and
20% testing data for final model evaluation.

3.3 Convolutional neural network (CNN)

A convolutional neural network (CNN) is a type of deep neural network used to recognize
visual patterns from pixel images. The PIDML project trains two separate CNNs with 7x7
pixel images of kaons and pions, crystal positions, and transverse momentum of the track in
the laboratory frame [11]. Separate CNNs are trained for positive and negative charged tracks
due to the geometry of the detector. The CNN architecture has the desirable property of local
connectivity, which allows it to summarize spatial and temporal correlation in the data. The
sameCNNarchitecture is used forboth thequantile anduniformly spacedbinning approaches.
The testing approach involves a relatively small CNN consisting of two convolutional layers,
followed by amax-pooling layer and then three dense layers. The CNNuses the rectified linear

0”The B2BIIConvertMdst module converts the information stored in the Bell PANTHER tables and writes
it to the Belle II DataStore. The beam-energy and IP-profile is collected in the Basf2 BeamParameters object and
stored in the condition Database of Belle II[1].”

28

activation function. The image-like representation of the hit grid approaches is a commonway
to solve this problem, but it has certain shortcomings. One is that it reduces temporal resolu-
tion,which is one of the great strengths of theTOPdetector. There are also unforeseen impacts
on model performance due to hyperparameter choices and data distribution. Approximately
100,000 single kaon and pion candidates are generated, and each track is first reconstructed in
the inner tracking detectors and then extrapolated into the Belle II detector with Geant4. Two
types of inputs are used for the CNN, the energy depositions in the 7x7 pixel images, and a set
of inputs fed after the convolutional layers that include pT, thetaID, and phiID of the extrapo-
lated tracks. A threshold value of 1MeV on the energy depositions in the pixels is applied, and
the pT is already in the range of 0.2 - 1.0GeV/c, so no scaling is applied. The thetaID andphiID
are used as categorical variables, which are implemented as an embedding in the network. The
CNN includes two parts, the first of which involves the 7x7 pixel images of kaons and pions as
inputs for a convolutional layer. The second part of the training involves a feed-forward neural
network (FNN). In this part, the results from the convolutional layer must be flattened and
added on top of pT, thetaID, and phiID. The dropout layer is used between the first two layers
of FNN [12].

3.4 Evaluation the Performance

Basically our initial approach involves using the confusion matrix calculation. A confusion
matrix is a table used to evaluate the performance of a classification model. It compares the
predicted class labels with the true class labels of a set of data, and shows the number of correct
and incorrect predictions for each class. Thematrix is often used to calculate several evaluation
metrics, including accuracy, precision, recall, and F1-score. In Python, the scikit-learn (sklearn)
package provides a simple way to generate a confusion matrix.

This entails identifying the predicted particle type for each event, and then constructing a
matrix where each element in row i and column j represents the number of actual particles
of type i that were classified as type j. If there are no misclassifications, the values in the off-
diagonal elements of the matrix will be zero.

Two ways to normalize the matrix are [10] [9]:

• Efficiency matrix, where each row is normalized so that the sum of each row equals one.
The value in the ith row and jth column represents the fraction of particles that are truly

29

of type i that are identified as type j:

efficiency(i) =
N(predicted i and true i)

N(true i)
(3.1)

• Purity matrix, where each column is normalized so that the sum of each column equals
one. The value in the ith row and jth column represents the fraction of particles that are
identified as type j that are truly of type i:

purity(i) =
N(true i and predicted i)

N(predicted i)
(3.2)

and
fake rate =

N(false i and predicted i)
N(true i)

(3.3)

To assess howwell a particle detector performs based onmomentum and track angle (specifi-
cally θ), we summarize the information from the confusionmatrix into a simplermetric, which
involves the signal efficiencies and the overall accuracy.

accuracy =
∑
i

N(true i ∧ predicted i)
N(events)

(3.4)

The accuracy represents the proportion of particles that are correctly identified out of all the
events, and can be seen as a weighted average of the signal efficiencies, where the weight is the
number of events of each particle type. To examine how the performance varies with
momentumand track angle, it could be categorized the events into bins based on p and θ, which
are the same as those used for correcting the Belle II systematics. Due to the underlying
assumptions and symmetries of the problem, the focus is primarily placed on the pion
efficiency and the fake rate associated with kaon identification. To elaborate, when studying
the decay chain of D mesons, we make specific assumptions and consider certain symmetries
of the problem. As a result, we narrow down our attention to evaluating the effectiveness of
detecting pions accurately and determining the rate at which kaons are falsely classified.

Thepion efficiency refers to the ability of theneural network to correctly identify and classify
pions within the decay chain. It measures the proportion of true positive pion identifications
out of all the actual pions present. A high pion efficiency indicates that the neural network is
effectively detecting and classifying pions.

On the other hand, the kaon fake rate evaluates the rate at which the neural network

30

misidentifies a kaon instead of a pion. This rate measures the proportion of false positive kaon
identifications among all the identified kaons. A lower kaon fake rate implies that the neural
network is accurately distinguishing between pions and kaons.
By focusing on these specific aspects, we can assess the performance of the neural network

within the constraints of the assumptions and symmetries relevant to the decay chain of D
mesons in the Belle II experiment. The confusion matrix provides a comprehensive overview
of the network’s performance, considering true positive, false positive, true negative, and false
negative classifications, which are then used to derive various evaluation metrics such as preci-
sion, recall, and F1-score.
For each (p, θ) bin, we calculate the efficiencies and accuracy for the six particle types. It

can be demonstrated these values as a function of p and θ using two-dimensional visualization
techniques that are similar to those used for the confusion matrices.

3.5 Area Under Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) is a graphical representation of the performance of
a binary classification model. It is a plot of the true positive rate (sensitivity) against the false
positive rate (1-specificity) for various thresholds of the model’s predicted probabilities.

The true positive rate (TPR) is the proportion of actual positives that are correctly identified
by the model, while the false positive rate (FPR) is the proportion of actual negatives that are
incorrectly classified as positive by the model. The ROC curve shows how the TPR and FPR
change as the threshold for classification is varied.

The Area Under the ROCCurve (AUC-ROC) is a scalar value that summarizes the overall
performance of the model across all possible thresholds. It ranges from 0 to 1, with 0.5 indi-
cating a random model and 1 indicating a perfect model. A model with a high AUC-ROC
indicates that it can distinguish between the positive and negative classes with high accuracy,
regardless of the threshold used. Amodelwith anAUC-ROCof 0.5 is no better than a random
guess.

3.6 Random Forest Regression

To date, various methodologies have been employed in the Belle II experiment to address PID,
includingDeepNeutralNetwork, BDT, and feed-forwardNeuralNetwork. Thismotivatedus
to utilize the random forest approach. The random forest (RF)method is an ensemble learning

31

algorithm used for classification, regression, and feature selection. It involves creatingmultiple
decision trees, each using a randomly selected subset of features and training data. The decision
trees learn to predict based on the features and target values of the training data.
When a new data point is presented, the algorithm uses each decision tree to make a pre-

diction and combines the results to produce a final prediction. This approach is less prone to
overfitting than a single decision tree and can handle high-dimensional datawithmany features.
The RF method can also provide insights into the relative importance of different features

in the prediction task. It has been applied to various domains, including image classification,
gene expression analysis, and fraud detection.
One advantage of using RF in HEP is that it can be used for both regression and classifica-

tion tasks, allowing researchers to predict continuous variables or classify events into different
categories. Additionally, Random Forest can handle missing or noisy data, making it robust to
experimental uncertainties.
The Random Forest Regression is a type of supervised learning algorithm that utilizes an

ensemble learning technique for regression and works by following a two-step process. First,
it creates a specified number of decision tree regressors (called n-estimators), which are built
based on predefined hyperparameters like the minimum number of samples required at leaf
nodes and the maximum depth of the trees. Second, the algorithm combines the predictions
from each of the decision tree regressors by taking the average of their outputs. This averaging
process is what produces the final output of the random forest regression algorithm.

32

4
Methodology

4.1 Monte Carlo Simulation

First step in methodology as usual is the simulation. Monte Carlo (MC) simulation is used
to generate sample data for various purposes, such as testing detector performance on Particle
Identifications, optimizing data analysismethods, and predicting the outcomes of experiments.
To generate MC data, a number of steps are typically taken. First, the physics processes of
interest are modeled using theoretical calculations and/or experimental measurements. Next,
software programs such as Pythia, Geant4 etc are used to simulate the interactions between
particles and the detector, taking into account the energy, momentum, and other properties of
the particles involved.

4.1.1 Generating ParticleGun Simulations as Background

ParticleGun (PG) events are simulated events where particles are generated with specific prop-
erties such as momentum, direction, and vertex location. These events are typically used for
detector studies, optimization of event selection criteria, and testing of reconstruction algo-
rithms.

To generate the PG samples, by executing a python script, the ParticleGun module is used
to generate events with a specified PDG code (six type charged particles), number of tracks (1),
and momentum, theta, phi, and vertex generation parameters. The momentum is generated

33

uniformly between 0.2 and 5GeV/c, the theta angle is generated uniformly (in cosine), between
10 and 170 degrees, and the phi angle is generated uniformly between -180 and 180 degrees.
The vertex location is fixed at (0, 0, 0).

The generated events are then simulated and reconstructedusingothermodules added to the
main path. The final output is in the form ofmDST (minimumbias) data, which corresponds
to the center of the detector, the nominal point of collision of electron and positron beam, and
can be further analyzed using basf2.

4.1.2 Generating Signal Samples

To generate signal samples (Charmed Particles) for this study, a Python script is used that im-
ports several modules including generators, simulation, L1trigger, reconstruction, and mDST.
The main function creates a path where all the modules will be added. The script generates
CCbar events using a decay file, simulates the detector response, performs reconstruction, and
produces anmDSToutput file (see 1.6.3)with the specifiedfile number. Thenumber of events
to be generated is set to 500000. The script needs a decay filewhich defines the decay of a virtual
photon (vpho) into a charm-anticharm quark pair using the PYTHIA 91 definition. It also de-
fines the decay of an anti-D meson into an anti-D0 meson and a negative pion (π−) using the
VSS (Vector, Scalar, Scalar) model, and the decay of the anti-D0 meson (charmed particles)
into a positive kaon (K+) and a negative pion using the PHSP (Phase Space) model. In addi-
tion to the decaymodels, the code also sets values for various Pythia parameters such as etaSup,
stopMass, and rFactC. These parameters control aspects of the hadronization process in the
simulation. The script checks if there is only one command line argument, which should be
the file number.

4.1.3 MakingNtuple

The Ntuple is typically stored in a binary file, with each event represented by a single row or
entry in the file. Ntuples are typically produced by detector simulation and reconstruction
software, and can be used for a variety of purposes, including performance studies, physics
analysis, and detector calibration.

0TheVSSmodelwhich is used to describe a decay process and assumes that the decay proceeds via the emission
of a virtual vector meson, which then decays into two scalar mesons.

0The PHSPmodel is an assumption to interpret a decay process. Themodel takes that the decay products are
emitted randomly in phase space, subject only to conservation laws such as energy andmomentum conservation.

34

The script by exploiting PG and CCbar samples, reconstructs a decay chain of Dmesons

D∗+ → D0π+
(slow) and D0 → K−π+

InD∗ decay, pion is called slowpion. Slowpions are produced in strong interactionprocesses
and have lowermomenta compared to other pions in the event. The term ”slow” indicates that
the pion has relatively low energy, which means it has a small momentum and short lifetime.
Therefore, slow pions are important as criterion for theD∗+ decay.

The script first loads in the input data file containing the simulated events, then loads stan-
dardparticles (chargedparticles andphotons) for use in the analysis. It tightens the selection for
pions and kaons by selecting only those with a transverse momentum greater than 0.3 GeV/c,
and cuts on the distance of closest approach to the interaction point (d0) and longitudinal po-
sition (z0).

The script then reconstructs the decay chain using the modularAnalysis package. It first
reconstructs theD0meson from theK− and π+ tracks, and applies amass cut of 1.794 < M <

1.934 GeV/c2. The decay is then matched to Monte Carlo truth information. Next, the D∗+

meson is reconstructed from the D0 and π+ tracks, with a mass cut of 1.960 < M < 2.060
GeV/c2. The decay is also matched to Monte Carlo truth information. The script then adds
aliases for several additional variables to be saved in the output file, including variables related
to the kinematics in the center-of-mass frame and extra particle identification (PID) variables
for each detector type and particle types.

4.2 Particle identification calibration

The PID calibration is a crucial step in the data analysis of any high-energy physics experiment,
including Belle II. The aim of PID calibration is to determine the response of the detector to
different particle types and momenta, and to establish the particle identification criteria used
in the analysis.

PID calibration involves several steps:

• TOP Calibration: The process of calibrating the Time of Propagation (TOP) detec-
tor in Belle II involves measuring the time it takes for charged particles to travel from
the interaction point to the detector. To perform the calibration, the time response of
the TOP detector is measured using cosmic rays and charged particles that come from
known decay modes. From these measurements, the time offsets and resolutions for
each detector module are determined.

35

• Calibration of ARICH: The ARICH measures the Cherenkov radiation emitted by
charged particles traveling through aerogel. The Cherenkov angle, which is the angle
between the particle trajectory and the emitted radiation, is used to identify the particle
type. The calibration involves measuring the Cherenkov angle using charged particles
from known decaymodes and then determining the particle identification criteria based
on the Cherenkov angle distribution.

• Calibration ofCDC:The process of calibrating theCDC involves using cosmic rays and
charged particles with known decay modes to measure the drift velocity and magnetic
field in the CDC. This allows the CDC to accurately measure the momenta of charged
particle tracks. The calibration also includes determining the momentum resolution
and scale for each layer of the detector.

• Calibration of ECL: The ECLmeasures the energy of photons and electrons. The
calibration involves measuring the energy response of the ECL using electrons and pho-
tons from known decay modes, and then determining the energy resolution and scale
for each detector module.

After the calibration process is accomplished, PID criteria can be set for each detector by
analyzing the measured responses. The iterative process of PID calibration involves refining
the criteria based on the analysis of more data as it is collected.

In this study, we try to find the optimal combination of the detectors likelihood by adjusting
the likelihood of the detectors by extracting a 6 × 6 Weighted matrix which each element be-
longs to represent the likelihood of each six detectors and thereafter, evaluating their likelihood
ratios.

4.2.1 OptimizationofCalibrationandExtractionofWeighted
Matrix

The Weighted Matrix refers to a matrix that the columns of the matrix correspond to the de-
tectors (SVD, CDC, TOP, ARICH, ECL, KML) and the rows correspond to the charged
particles (e, μ, π, K, p, d) and if take each elements as wh,d (as discussed in Chapter 2), then:

log(L̃h) =
∑
d′

wh,d′ logLh,d′ → wd logLh,d (4.1)

where a tilde denotes that the quantity is derived from a weighted combination of detector

36

information and let wh,d = wd for ∀ h, we would find

P̃(h) =
exp(wd logLh,d)∑
h′ exp(wd logLh′,d)

→ exp(log L̃h)∑
h′ exp(log L̃h′)

(4.2)

Note that in the case where all weights are unity, e.g. wh,d = 1 for all h, d, we exactly recover
the standard PID quantities.

The weight matrix has been trained on a dataset to learn the optimal set of weights for a par-
ticle identification (PID) algorithm. The matrix consists of a set of weights that are applied to
various input variables in the PID algorithm to optimize the identification of different parti-
cle species. The weights are trained using a machine learning algorithm on a training dataset,
and are then applied to a test dataset to evaluate the performance of the PID algorithm. The
weighted matrix is a set of weights that are loaded from a file (‘models/net_wgt.npy‘) and ap-
plied to the PID variables in the weighted DataFrame to produce a set of weighted PID vari-
ables. These variables are then used to evaluate the performance of the PID algorithm on the
test dataset. Theweightedmatrix is also used to create a PIDCalibrationWeight object that can
be used to apply the same set of weights to PID variables in other analysis tasks.

4.3 TuningML algorithms

4.3.1 Data Preparation

The initial stage in addressing amachine learningproblem is data preparation andmanagement,
which is also true for this problem. The script, PrepPIDTrainingSample.py, reads a ROOTfile
containing Monte Carlo data into a pandas DataFrame, and then employs the pidDataUtils
module to create slimHDF5 files for each particle type, which are subsequently merged into a
singleHDF5file. Themergeddata is subsequently divided into training, validation, and testing
sets for PID optimization weights training. Lastly, the pidTrainWeights.py script is invoked to
train the weights with the slim_dstar data and a pre-trained neural network model. The script
has the following steps:

1. Import required packages/modules: basf2, uproot, pidDataUtils, and subprocess.

2. Define the filename of the input ROOT file.

3. Using uproot, read the data from the ROOT file into a pandas DataFrame.

37

4. Employ themake_h5 function from pidDataUtils to generate slimHDF5 files for each
particle type (π, K) and store them in the ’data’ directory.

5. Utilize the merge_h5s function from pidDataUtils to merge the slim HDF5 files into
one large file and store it in the ’data’ directory.

6. Using the split_h5 function from pidDataUtils, divide the data in themergedHDF5 file
into training, validation, and testing sets and save them to the ’data/slim_dstar’ directory.

7. Invoke the pidTrainWeights.py script using the subprocessmodule to train the PID cali-
bration weights with the slim_dstar data and a pre-trained neural network model. The
script’s arguments which can be changed are as follows:

• The directory that contains the slim_dstar data.
• The path to the pre-trained neural network model.
• The number of epochs for training.
• The particle types for which to train the weights.

4.3.2 TrainingModels: Deep Neural Network

Figure 4.1: Visualization of the PyTorch neural network model (WeightNet) with nn.Linears that is trained over the dataset
and gets a six by six matrix as an output called weighted matrix (left). Schematic of a typical neural network (right).

The PID calibration weights are trained using a Deep Neural Network with the PyTorch
framework. The pidTrainWeights.py script begins with importing libraries and defining
a private function to define constant lists. Next, a PyTorch neural network module called
WeightNet is defined with several methods. The script also defines a function train_net() that

38

takes in several arguments to loop over the training set for the specified number of epochs and
train the network using backpropagation. The function prints out the training loss and accu-
racy, aswell as the test loss and accuracy at each log interval and saves themodel after each epoch.
Finally, a main function is defined to parse command-line arguments and run the train_net()
function with specified arguments such as the directory containing the training and test data,
the path to save the trained model, and the number of training epochs.

4.3.3 Random Forest

The RF_NET class contains an RF Regressor with fit(), predict(), and score() methods. Ad-
ditionally, it contains a get_weights() method to return the feature importances as a six by six
matrix.

The class ROC_Analysis is also defined to compute and plot the ROC curve for a given
model’s predictions. The method Compute_ROC_Curve() computes the FPR (False Pos-
itive Rate), TPR (True Positive Rate), and AUC score of the ROC curve, and the method
Plot_ROC_Curve() is used to plot the ROC curve with the relevant points and threshold val-
ues. Themethod Find_Closest_Parameters() finds the closest FPR,TPR, and threshold values
for a given threshold list fpr_th. The method Display_Results() returns a DataFrame contain-
ing information about the False Positive Rate, True Positive Rate, and threshold values for a
given fpr_th.

Finally, a functionRF_Best_Model() is defined toperformagrid searchoverRF_NETusing
a given hyperparameter dictionaryHparams and return the bestmodel. TheRFWeightMatrix
gets at the end.

4.3.4 SamplePIDAnalysis

SamplePIDAnalysis.py shows how to use trained weights to perform particle identification
(PID) in an analysis. The script assumes that the training data has already been prepared using
PrepPIDTrainingSample.py script, and the weights have already been trained using some
machine learning algorithm.

The script first imports necessary modules and reads in a test dataset in npz format using
pdu.read_npz() function from the pidDataUtils module. Then, it makes a copy of the
DataFrameand loads the trainedweights usingnp.load(). The script prepares twoDataFrames
for analysis: one for standard PID and the other forweightedPIDusing the calibrationweights.
The pdu.produce_analysis_df() function is used to prepare the DataFrames.

39

Figure 4.2: Schematic Random Forest Regression Model

Next, the script defines a function compute_accuracy() to compute the overall accuracy
and the pion and kaon efficiencies for both standard and weighted PID. The accuracy is com-
puted as the fraction of events where the predicted particle type matches the true particle type.
The pion and kaon efficiencies are computed as the fraction of true pions and true kaons that
are correctly identified by the algorithm.

Finally, the script prints out the accuracy and the pion and kaon efficiencies for both stan-
dard and weighted PID, and creates a PIDCalibrationWeight data object using the PID-
CalibrationWeightCreator module. The PIDCalibrationWeight data object can be used to
apply the calibration weights in other analyses.

4.3.5 ApplyWeight

The ApplyWeight.py script shows how to apply the PID optimization weights to data and
analyze the performance of the weighted PID variables. The script sets up the local database,
loads an input ROOT file, fills a particle list, and uses variablesToNtuple() to create an
ntuple with the PID variables. The resulting ntuple can be used to analyze the performance of
the weighted PID variables. Finally, process() is called to run the analysis.

40

5
Conclusion

Results and Outcomes
This section is dedicated to assessing two machine learning models for pion and kaon PID.

The accuracy and efficiency of these models are investigated using MCData and real data pro-
duce at Belle II. The neural network and random forest models were evaluated, and their per-
formances were compared [12].

The results show that the pion identification accuracy significantly improved from 0.711
to 0.897 after implementing the neural network model. This improvement is reflected in the
area under the curve (AUC) of the receiver operating characteristic (ROC) curve, as shown in
Fig. 5.1.

Additionally, the randomforestmodel increased thepion identification accuracy from0.711
to 0.919, as demonstrated in Fig. 5.2. As mentioned before, pion identification accuracy is
the measure of how well a particle detector can correctly identify pions among other charged
particles. Pion identification accuracy is typically expressed in terms of two quantities: the
efficiency and the fake rate. The pion efficiency is the fraction of true pions that are correctly
identified as pions by the detector, while the fake rate is the fraction of particles identified as
pions that are actually kaons (or different particle types).

The weightedmatrices of the neural network and the random forest model, along with their
visualizations, are reported in Figures 5.3 and 5.4, respectively. Additionally, the normalized
matrix of the random forest’s weightedmatrix is demonstrated in Fig. 5.5. Upon analyzing the
provided matrices, we can compare the weighted matrix of the neural network (Fig. 5.3) with

41

Figure 5.1: The Area Under the Receiver Operating Characteristic Curve (AUC ROC) of the neural network. To compute
the AUC ROC of a neural network, first it is needed to calculate the true positive rate (TPR) and false positive rate (FPR)
for each possible threshold of the predicted probabilities, then plot the TPR against FPR for all possible thresholds to
create the ROC curve. The AUC ROC is the area under this curve, which ranges from 0 to 1, with a higher value indicating
better performance.

Figure 5.2: The Area Under the Receiver Operating Characteristic Curves of performing random forest models by Grid‐
Search (top). The AUC ROC of the best Random Forest model (bottom).

42

Figure 5.3: The weighted matrix contains dimensionless quantities extracted from aneural network model (right) and its
visualization by heat map (left)

Figure 5.4: The weighted matrix contains dimensionless quantities extracted from a Random Forest (right) and its visualiza‐
tion by heat map (left)

Figure 5.5: Normalized Random Forest’s weighted matrix (right) and its visualization by heat map (left)

43

the random forestmatrix (Fig. 5.4). The neural network’sweightedmatrix displays values rang-
ing from approximately 0.77 to 1.23, indicating the relative importance assigned to different
sub-detectors and particle types. In contrast, the random forest matrix exhibits considerably
smaller values, ranging from approximately 0.0039 to 0.2759, suggesting a significant differ-
ence in the assignment of importance by the random forest model across various sub-detectors
and particle types.
When comparing the neural network and random forest matrices, we observe distinct distri-

butions. The neural network’s weighted matrix exhibits diverse patterns and a broader range
of values, implying amore intricate and nuanced allocation of importance. On the other hand,
the random forest matrix appears more uniform, indicating a balanced assignment of feature
importance across the sub-detectors and particle types.
Furthermore, by comparing the normalizedweightedmatrix of the random forest in Fig. 5.6

with the neural network’sweightedmatrix, we findnotable similarities. The normalizedmatrix
reflects the relative importance of features within the random forest model. Remarkably, both
the neural network and the normalized random forestmatrix demonstrate similar trends in the
allocation of feature importance. This suggests that, despite differences in range and behavior,
the neural network and random forest model exhibit comparable patterns when prioritizing
the sub-detectors and particle types.
According to the presented plots in Figures 5.6 to 5.9, it can be observed that the efficiencies

of kaon and pion decrease as momentum increases, while their respective false detection rates
increase. Furthermore, particle tracks that are in closer alignment with the Belle II detector
are detected with greater efficiency for both types of particles, as opposed to tracks that have a
more oblique angle.

The evaluations of the models were demonstrated using histograms for MC data. The pio-
n/kaon binary likelihood ratios of each detector before and after updating weights are shown
in Fig 5.10.

Comparatively, after updating sub-detectors likelihoodsby randomforestweightmatrix, the
likelihoods of any detector before and after correction are compared in Fig. 5.11. In other
words, Fig. 5.10 and Fig. 5.11 depict two sets of plots, each containing six sub-plots represent-
ing binary likelihood ratios of pion/kaon for different sub-detectors. In Fig 5.10, the likelihood
ratios of pion over kaon are shown before and after applying weights derived from a neural net-
work. On the other hand, Fig 5.11 compares the likelihood ratios before and after applying
weights obtained from a random forest model. In the set of Fig. 5.10, the first plot represents
the SVD. After applying the weights from the neural network, the binary likelihood ratios

44

Figure 5.6: K signal efficiency and π misidentification rates as a function of p on collisionD∗ decay MC and data.

Figure 5.7: K signal efficiency and π misidentification rates as a function of cosθ on collisionD∗ decay MC and data.

45

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 [GeV/c]

lab
p

0

0.2

0.4

0.6

0.8

1

pi
on

 ID
 e

ffi
ci

en
cy

 /
K

 m
is

-I
D

 r
at

e

pion ID efficiency (data)

pion ID efficiency (MC)

 mis-ID rate (data)π →K

 mis-ID rate (MC)π →K

 > -0.96labθpionID > 0.8, cos

Belle II
preliminary

-1
 L dt = 404 fb∫

Figure 5.8: Pion signal efficiency and K misidentification rates as a function of p on collisionD∗ decay MC and data.

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8

labθcos

0

0.2

0.4

0.6

0.8

1

pi
on

 ID
 e

ffi
ci

en
cy

 /
K

 m
is

-I
D

 r
at

e

pion ID efficiency (data)

pion ID efficiency (MC)

 mis-ID rate (data)π →K

 mis-ID rate (MC)π →K

pionID > 0.8

Belle II
preliminary

-1
 L dt = 404 fb∫

Figure 5.9: Pion signal efficiency and K misidentification rates as a function of cosθ on collisionD∗ decay MC and data.

46

Figure 5.10: The π/K binary likelihood ratios of the detectors before and after optimization by Neural Network teq.,
plotted separately. In each histograms, binary likelihood ratios of pion of different detectors before and after optimization
are demonstrated by different colors.

Figure 5.11: The π/K binary likelihood ratios of the detectors before and after upgrading weights by Random Forest
model, plotted separately. In this plots, like the before one, the binary likelihood ratios of each detectors, before and after
optimization are demonstrated by different colors

47

exhibit a higher peak and are shifted towards zero, indicating an improved identification of
kaons. Similarly, in Fig 5.11, the likelihood ratios distribution is shifted towards one and the
peak is reduced. For the CDC, both the neural network case in Fig 5.10 and the random forest
case in Fig 5.11 show a slight change. In the neural network case, the peak of the likelihood
ratios increases after applying the weights, while in the random forest case, it decreases slightly.
In the case of the TOP, there is no change in the likelihood ratios before and after applying
weights for the neural network case (Fig. 5.10). In fact, by looking at the Neural Network
Weighted Matrix in Fig. 5.3 and the weights of TOP for pion and kaon hypotheses which are
comparatively equal, it becomes clear why the histograms show no change before and after the
application of weights. However, for the random forest case, the entire likelihood distribution
is shifted to the right (one) without altering its shape. Regarding the ARICH, in Fig 5.10, the
main lag of the likelihood ratios histogram is slightly shifted from approximately 0.51 to 0.48.
In Fig 5.11, for the random forest case, the histogram shifts from around 0.51 to 0.72. The
binary likelihood ratios for the ECL sub-detector remain unchanged in both Fig. 5.10 and Fig.
5.11, as their values are equal to zero. The most interesting binary likelihood ratios distribu-
tion is observed for the KLM. In Fig. 5.10, after applying the weights from the neural network,
the KLM likelihood ratios histogram is slightly shifted towards zero, and the two histograms
overlap. However, in Fig. 5.11 of the random forest case, the entire KLM likelihood ratios his-
togram is shifted to the right (one), and there are no shared points between the two histograms.
The log likelihood differences of K and π are visualised by histograms in Fig. 5.12 and Fig. 5.13.

In set of plots in Fig. 5.14, it is visible that the distribution of likelihood ratios after apply-
ing optimization ratios exhibits a lower peak compared to the original distribution, it indicates
that the optimization has led to a decrease in the likelihood of the observed events. This could
imply that the optimization has introduced some bias or that the chosen optimization ratios
are not suitable for the dataset.
In the set of plots in Fig. 5.15, in contrast, the distribution of likelihood ratios after multi-
plication of weights come out from a random forest model reaches the same peak but shifts,
which it means that the shape of the distribution remains similar, but the position or location
of the peak changes. This shift in the peak indicates that the weights have had an impact on
the distribution by redistributing the events. The shift can be attributed to the influence of
the weights or optimization factors on the underlying data or MC, altering the relative contri-
bution of different events or samples. Thesefore, the shift in the peak suggests a change in the
relative importance or distribution of the events due to the application of weights.

48

Figure 5.12: The log likelihood difference of K and π for MC (green and gold) and data (purple and cyan) with and without
updating weights by NN

Figure 5.13: The log likelihood difference of K and π for MC (green and gold) and data (purple and cyan) with and without
updating weights by RF

49

Figure 5.14: The comparission of likelihood ratios of pion, before and after applying weights by neural network model. The
global likelihood ratios of π; demonstration of MC (pink), weighted MC (blue), data (green) and weighted data(yellow) [top
left], binary likelihood ratios of π; demonstration for MC (pink), weighted MC performed (blue), data (green) and weighted
data(yellow) [top right], the binary likelihood ratios of π before (blue line) and after (red line) applying weights[below left],
the binary likelihood ratios of π before (blue line) and after (red line) applying weights [below right].

50

Figure 5.15: The comparission of likelihood ratios of pion, before and after applying weights by random forest model. The
global likelihood ratios of π; demonstration of MC (pink), weighted MC (blue), data (green) and weighted data(yellow) [top
left], binary likelihood ratios of π; demonstration for MC (pink), weighted MC performed (blue), data (green) and weighted
data(yellow) [top right], the binary likelihood ratios of π before (blue line) and after (red line) applying weights[below left],
the binary likelihood ratios of π before (blue line) and after (red line) applying weights [below right].

51

In conclusion, the neural network and random forest models both show promising results
for pion and kaon PID. The random forest model is slightly more accurate in machine learn-
ing aspects, while the neural network model is still significant in its improvement of (charged)
particle identification accuracy in PID study. These findings provide useful insights for the
development of machine learning models in future particle physics research.

52

References

[1] T.Keck,Machine LearningAlgorithms for the Belle II Experiment andTheirValidation
on Belle Data. ETP-KA, 2017, no. ETP-KA/2017-31.

[2] B. I. Collaborator, “The belle ii physics book,” Progress of Theoretical and Experimental
Physics, vol. 2019, p. 123C01, 2019.

[3] Y. Sato, “Introduction to the analysis package,” in Belle II Starter KitWorkshop. KEK,
January 2020.

[4] J. Kemmer and G. Lutz, “New detector concepts,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, vol. 253, no. 3, pp. 365–377, 1987. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0168900287905183

[5] Z. Dolezal and S. Uno, “Belle ii technical design report,” KEK, Tech. Rep.
arXiv:1011.0352 [hep-ex], 2010.

[6] M. Milesi et al., “Muon and electron identification performance with 189
fb1ofbelleiidata,′′ BELLE2-NOTE-TE-2021-011, 2022, internalDraftversion6.1,October19.

[7] Belle II Collaboration. (2021) Belle ii software. [Online]. Available: https://software.belle2.
org/development/sphinx/

[8] B. I. S. Group. (n.d.) Simulation. [Online]. Available: https://software.belle2.org/
development/sphinx/online_book/fundamentals/03-simulation.html

[9] S. Sandilya, “Kaon and Pion Identification Performances in Phase III data,” Belle II
Collaboration, Belle II Public Notes 022. [Online]. Available: https://belle2.cc/downloads/
publications/publicnotes/2019/BELLE2-NOTE-PL-2019-022.pdf

[10] C.Hainje, A.Albert, C.Hadjivasiliou, and J. Strube, “A comprehensive study of belle ii particle
identification performance, efficiencies, and detector effects,” BELLE2-NOTE-TE-2021-022,
2022, dRAFT Version 5.

53

https://www.sciencedirect.com/science/article/pii/0168900287905183
https://software.belle2.org/development/sphinx/
https://software.belle2.org/development/sphinx/
https://software.belle2.org/development/sphinx/online_book/fundamentals/03-simulation.html
https://software.belle2.org/development/sphinx/online_book/fundamentals/03-simulation.html
https://belle2.cc/downloads/publications/publicnotes/2019/BELLE2-NOTE-PL-2019-022.pdf
https://belle2.cc/downloads/publications/publicnotes/2019/BELLE2-NOTE-PL-2019-022.pdf

[11] Y. Glaser, “Physics-informed neural networks for belle ii kaon versus pion particle identifica-
tion,” Master of Science thesis, University of Hawai‘i at Manoa, August 2020.

[12] C. H. et al., “Machine learning methods to evaluate and optimize the charged particle identifi-
cation in belle ii,” Belle II Collaboration, Belle II Note TE-2021-027, January 2022.

54

Appendix:
Random Forest Algorithm python script

\#!/usr/bin/env python3

##
##
This script tune RF Moldel for Charged Particles and extract Weight Matrix
to Correct the loglikelihoods of Belle II Detectors
#
Writtien by Alì Bavarchee
March 2023
##

import basf2
import numpy as np
import pandas as pd
from argparse import ArgumentParser
import h5py
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from os import makedirs
from os.path import join, dirname
from tqdm.auto import tqdm
import itertools
from mpl_toolkits.mplot3d import Axes3D
from scipy import linalg as la
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier

55

from sklearn.metrics import log_loss
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import cross_val_score
import seaborn as sns
import glob
from sklearn import metrics
from sklearn.metrics import mean_squared_error
from os import makedirs
from os.path import join, dirname
import time
import pickle
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.datasets import make_regression

######
data_folder = 'data/slim_dstar'
######

To perforem a GridSearch over RF_Model, defining Hyper Params
Hparams = { 'bootstrap': [True],

'max_features': ['auto'],
'n_estimators': [2, 6, 20],
'max_depth' : [2, 4, 10, 50],'min_samples_leaf': [2, 6, 10],
'min_samples_split': [2, 6, 10]}

######.

56

_make_const_lists gives some cte values ; Particles and their corrispond PDG_code
and detectors
def _make_const_lists():

"""Moving this code into a function to avoid a top-level ROOT import."""
import ROOT.Belle2

PARTICLES, PDG_CODES = [], []
for i in range(len(ROOT.Belle2.Const.chargedStableSet)):

particle = ROOT.Belle2.Const.chargedStableSet.at(i)
name = (particle.repr()[7:-1]

.replace("-", "")

.replace("+", "")

.replace("euteron", ""))
PARTICLES.append(name)
PDG_CODES.append(particle.getPDGCode())

PARTICLES = ["e", "mu", "pi", "K", "p", "d"]
PDG_CODES = [11, 13, 211, 321, 2212, 1000010020]

DETECTORS = []
for det in ROOT.Belle2.Const.PIDDetectors.set():

DETECTORS.append(ROOT.Belle2.Const.parseDetectors(det))
DETECTORS = ["SVD", "CDC", "TOP", "ARICH", "ECL", "KLM"]

return PARTICLES, PDG_CODES, DETECTORS

#This is a common pytorch data loader which loads data and splits them to
#train and test(val) :

def load_training_data(directory, p_lims=None, theta_lims=None, device=None):
"""Loads training and validation data within the given momentum and theta
limits (if given).

Args:

57

directory (str): Directory containing the train and validation sets.
p_lims (tuple(float), optional): Minimum and maximum momentum. Defaults

to None.
theta_lims (tuple(float), optional): Minimum and maximum theta in

degrees. Defaults to None.
device (torch.device, optional): Device to move the data onto. Defaults

to None.

Returns:
torch.Tensor: Training log-likelihood data.
torch.Tensor: Training labels.
torch.Tensor: Validation log-likelihood data.
torch.Tensor: Validation labels.

"""
p_lo, p_hi = p_lims if p_lims is not None else (-np.inf, +np.inf)
t_lo, t_hi = theta_lims if theta_lims is not None else (-np.inf, +np.inf)
t_lo, t_hi = np.radians(t_lo), np.radians(t_hi)

def _load(filename):
data = np.load(filename)
X, y, p, t = data["X"], data["y"], data["p"], data["theta"]
mask = np.logical_and.reduce([p >= p_lo, p <= p_hi, t >= t_lo, t <= t_hi])
X = torch.tensor(X[mask]).to(device=device, dtype=torch.float)
y = torch.tensor(y[mask]).to(device=device, dtype=torch.long)
return X, y

X_tr, y_tr = _load(join(directory, "train.npz"))
X_va, y_va = _load(join(directory, "val.npz"))
return X_tr, y_tr, X_va, y_va

#data_folder = 'data1/slim_dstar'
#df = load_training_data(data_folder)

58

X_tr, y_tr, X_va, y_va = load_training_data(data_folder)

#mask pdg code of pion and kaon (target sets) to 1 and -1

Y_tr = torch.where(y_tr==2,torch.tensor(1),y_tr)
Y_tr = torch.where(Y_tr==3,torch.tensor(-1),Y_tr)

Y_va = torch.where(y_va==2,torch.tensor(1),y_va)
Y_va = torch.where(Y_va==3,torch.tensor(-1),Y_va).

class RF_NET:
def __init__(self, **params):

self.rf = RandomForestRegressor(**params)

def train(self, X_train, y_train):
self.rf.fit(X_train, y_train)

def predict(self, X_test):
return self.rf.predict(X_test)

def score(self, X_test, y_test):
y_pred = self.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
return mse

def get_weights(self, to_numpy=True):
"""Returns the feature importances as a six-by-six array or tensor.

Args:
to_numpy (bool, optional): Whether to return the weights as a numpy

array (True) or torch tensor (False). Defaults to True.

Returns:
np.array or torch.Tensor: The six-by-six matrix containing the

59

feature importances.
"""
feature_importances = self.rf.feature_importances_
weights = np.zeros((6, 6))
idx = 0
for i in range(6):

for j in range(i, 6):
weights[i][j] = feature_importances[idx]
weights[j][i] = feature_importances[idx]
idx += 1

if to_numpy:
return weights

else:
return torch.tensor(weights)

#Hparams = {'bootstrap': [True],
'max_features': ['auto'],
'n_estimators': [2, 10],
'max_depth': [2, 4, 10, 50],
'min_samples_leaf': [2, 6, 10],
'min_samples_split': [2, 6, 10]}

class ROC_Analysis():

def __init__(self, name, true_labels, predictions,
fpr_th=[0.01, 0.02, 0.05, 0.1, 0.2], model=None):

self.name = name
self.true_labels = true_labels
self.predictions = predictions
self.fpr_th = fpr_th
self.fpr = None
self.tpr = None
self.thresholds = None

60

self.AUC_score = None
self.model = model.

\end{lstlisting}
\begin{lstlisting}[language=Python]
def Compute_ROC_Curve(self):

self.fpr, self.tpr, self.thresholds = roc_curve(self.true_labels,
self.predictions)

self.AUC_score = roc_auc_score(self.true_labels, self.predictions)

def Find_Closest_Parameters(self):

s = len(self.fpr_th)
closest_fpr, closest_tpr, indexes = np.zeros(s),
np.zeros(s), np.zeros(s, dtype=int)

for ii in range(s):
indexes[ii] = np.searchsorted(self.fpr, self.fpr_th[ii])

closest_fpr = self.fpr[indexes]
closest_tpr = self.tpr[indexes]
closest_th = self.thresholds[indexes]

return (closest_fpr, closest_tpr, closest_th)

def Plot_ROC_Curve(self, axes=None):

if self.AUC_score == None: self.Compute_ROC_Curve()

if axes == None: fig, axes = plt.subplots(figsize=(7,6))
axes.plot(self.fpr, self.tpr, color="blue", label=self.name+"_ROC")
axes.plot([0, 1], [0, 1], color="darkred", linestyle='--', label="Random Guess")

61

cl_fpr, cl_tpr, cl_th = self.Find_Closest_Parameters()
axes.scatter(cl_fpr, cl_tpr, color="violet", label="Relevant pts,
with thr. values")
for ii in range(len(self.fpr_th)):

plt.annotate('%.3f' % cl_th[ii], (cl_fpr[ii], cl_tpr[ii]),
xytext=(cl_fpr[ii]+0.03,cl_tpr[ii]-0.02),fontsize=11)

txt_roc_auc = "roc_auc = %.3f" % self.AUC_score
props = dict(boxstyle="round", facecolor="gold", alpha=0.5)
axes.text(0.6, 0.4, txt_roc_auc, transform=axes.transAxes,
fontsize=12, verticalalignment='top', bbox=props)

axes.set_xlabel("False Positive")
axes.set_ylabel("True Positive")
axes.set_title("ROC Curve of the " + self.name)
axes.grid()
axes.legend()
plt.savefig('ROC_Curve.png')

def Display_Results(self):

if self.AUC_score == None: self.Compute_ROC_Curve()
cl_fpr, cl_tpr, cl_th = self.Find_Closest_Parameters()

inf_df = pd.DataFrame(np.vstack((np.array(self.fpr_th),
cl_fpr, cl_tpr, cl_th)).round(4))
inf_df.index = ['values', 'False Positive','True Positive','threshold']
inf_df.columns = ['']*5

return inf_df

Define The best RF model function to select the best one

62

def RF_Best_Model(analysis_objects, verbose=False):

fig, ax = plt.subplots(2, 1, figsize=(15,22))

Setup comparison plot
ax[0].plot([0, 1], [0, 1], color="green", linestyle='-.', label="Random Guess")
ax[0].set_xlabel("False Positive")
ax[0].set_ylabel("True Positive")
ax[0].set_title("ROC Curves")

best_model = None
max_auc = 0
auc_values = []

for key in analysis_objects:
analysis_objects[key].Compute_ROC_Curve()
ax[0].plot(analysis_objects[key].fpr, analysis_objects[key].tpr)
roc_auc = analysis_objects[key].AUC_score
auc_values.append(roc_auc)
if roc_auc > max_auc:

best_model = analysis_objects[key]
max_auc = roc_auc

if verbose:
print(key, "AUC ROC = ", roc_auc)

\begin{lstlisting}[language=Python]
Setup best model plot
best_model.Plot_ROC_Curve(axes=ax[1])

hist_ax = fig.add_axes([0.22, 0.23, 0.1, 0.13])
hist_ax.hist(auc_values, bins=len(analysis_objects))
hist_ax.set_yticks([])

return best_model

63

Define a GS Function and then initialize search
def GS_4_BRF():

bulding_forest_start=time.time()
best_RF = {}
#best_RF_ROC = {}
counter = 1
for params in tqdm(list(ParameterGrid(Hparams))):

rff = RF_NET(**params)
rff.train(X_tr, Y_tr)
predii = rff.predict(X_va)
scoreee = rff.score(X_va, Y_va)
mse = mean_squared_error(Y_va, predii)
#poisson = poisson(Y_test, predii)
#evaluate_model(rff, df, pdg_codes=PDG_CODES)
#print("|||N|Z|O||||||")
#print('hparams:=>', params)
#print("=================================>>>>>")
#print("~~~~~~~~~")
#print('accuracy:=>', scoreee)
print("~~~~~~~~~")
#print('mse===>', mse)
#print("<<<<<=================================")
print('--------------------------------------')
#best_RF['RF_'+str(counter)] = evaluate_model(model = rff, df = df,
#pdg_codes=PDG_CODES)
best_RF['RF_'+str(counter)] = ROC_Analysis(name='RF_'+str(counter),
true_labels=Y_va, predictions=predii, model=rff)
print('----------------FIN----------------')
counter+=1

bulding_forest_end=time.time()

return print('wall time=>', bulding_forest_end - bulding_forest_start)

64

#GS_4_BRF()

bulding_forest_start=time.time()
#best_RF = {}
best_RF_ROC = {}
counter = 1
for params in tqdm(list(ParameterGrid(Hparams))):

rff = RF_NET(**params)
rff.train(X_tr, Y_tr)
predii = rff.predict(X_va)
SQORE = rff.score(X_tr, Y_tr)
mse = mean_squared_error(Y_va, predii)
#poisson = poisson(Y_test, predii)
#evaluate_model(rff, df, pdg_codes=PDG_CODES)
print("|||N|Z|O||||||")
#print('hparams:=>', params)
#print("=================================>>>>>")
#print("~~~~~~~~~")
print('SCORE:=>', SQORE)
print("~~~~~~~~~")
print('mse===>', mse)
#print("<<<<<=================================")
print('--------------------------------------')
#best_RF['RF_'+str(counter)] = evaluate_model(model = rff, df = df,
#pdg_codes=PDG_CODES)
best_RF_ROC['RF_'+str(counter)] = ROC_Analysis(name='RF_'+str(counter),

true_labels=Y_va, predictions=predii, model=rff)
print('----------------FIN----------------')
counter+=1

bulding_forest_end=time.time()
print('wall time=>', bulding_forest_end - bulding_forest_start)

Visualise the GS
best_randomforest = RF_Best_Model(best_RF_ROC, verbose=False)

65

#Finding the best RF model and RF_WMat
BestRF = best_randomforest.model
BestRF.train(X_tr, Y_tr)
prediii = BestRF.predict(X_va)
scoreee = BestRF.score(X_tr, Y_tr)
mseee = mean_squared_error(Y_va, prediii)
print('------SCORE:====>', scoreee)
print('mean squared error', mseee)

RF_WMat = BestRF.get_weights()
print('RF Weight Matirix:', RF_WMat)
np.savetxt('test.out', RF_WMat, delimiter=',').

66

Acknowledgments

I would like to express my heartfelt gratitude and appreciation to the following individuals
who have played a significant role in the completion of this thesis:

First and foremost, I am deeply indebted to Professor Alessandro Gaz, my esteemed supervi-
sor, for his unwavering guidance, invaluable insights, and continuous support throughout this
research endeavor. His expertise, patience, and dedication have been instrumental in shaping
my ideas and refiningmywork. I am truly grateful for hismentorship and the knowledge I have
gained under his guidance.

I would also like to extend my sincere thanks to Professor Marco Zanetti, the coordinator
of this study program, for his valuable input, constructive feedback, and meticulous oversight.
His commitment to academic excellence and hiswillingness to share his knowledge have greatly
enriched my research journey.

Inoltre, sono immensamente grato ai miei due fratelli, Signori Giuseppe e Rosario Traina
Tito, per il loro costante sostegno, incoraggiamento e fiducia nelle mie capacità. La loro moti-
vazione costante e la loro presenza ispiratrice sono stati i pilastri di forza chemi hanno sostenuto
durante i momenti difficili. I loro saggi consigli e l’assistenza instancabile sono stati di inestima-
bile valore per il completamento di questa tesi.

Furthermore, I extendmy deepest gratitude toHana Bavarchi, my beloved daughter, whose
love, understanding, and unwavering patience have been a constant source of inspiration and
motivation for me. Despite the demands of my studies, she has been a pillar of support, always
offering encouragement and understanding. Her presence in my life has been a driving force
behind my achievements, and I am truly blessed to have her by my side.

Finally, I would like to express my heartfelt appreciation to all the individuals who have con-
tributed to this thesis in various ways, including my friends, colleagues, and the countless indi-
viduals who participated in my research. Your willingness to share your time, knowledge, and
experiences has been crucial to the successful completion of this work.

To all those mentioned above, and to anyone else who has contributed to this journey in
ways big or small, please accept my sincere gratitude for your unwavering support and encour-
agement. This thesis would not have been possible without your guidance, assistance, and
belief in my abilities. Thank you from the bottom of my heart.

67

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Belle II Experiment
	SuperKEKB
	Data-Taking Status
	Belle II Detector
	Vertex detector (VXD)
	Central Drift Chamber (CDC)
	TOP and ARICH
	Electromagnetic Calorimeter (ECL)
	KL- Muon Detector (KLM)

	Trigger System and Data Acquisition System
	Data Production and Reconstruction
	Belle II analysis software framework (basf2)
	Offline Reconstruction and Monte Carlo Production
	Belle to Belle II dataset
	Tracking
	Reconstruction of Charged Particles

	Particle Identification (PID)
	Introduction
	TOP Simulation
	TOP Reconstruction
	Particle Identification: forward End-cap
	Charged particle identification
	Ionisation Energy Loss Measurement
	Determination of Likelihoods of Charged Particles

	PID in Belle II
	GlobalPID
	Binary PID

	Physics Samples

	Machine Learning For HEP
	Multivariate Analysis (MVA)
	Tuning Model
	Convolutional neural network (CNN)
	Evaluation the Performance
	Area Under Receiver Operating Characteristic
	Random Forest Regression

	Methodology
	Monte Carlo Simulation
	Generating ParticleGun Simulations as Background
	Generating Signal Samples
	Making Ntuple

	Particle identification calibration
	Optimization of Calibration and Extraction of Weighted Matrix

	Tuning ML algorithms
	Data Preparation
	Training Models: Deep Neural Network
	Random Forest
	SamplePIDAnalysis
	ApplyWeight

	Conclusion
	References
	Appendix
	Acknowledgments

