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Abstract

B0 → ϕK0
S decay process is dominated by b → ss̄s penguin transition, which

is sensitive to the contribution from new physics. B0 → ϕK0
S decay is particu-

larly suited for the search of new physics due to the small theoretical uncertainty
and suppressed tree diagram contribution within Standard Model. However, the
measurement of CP asymmetry for B0 → ϕK0

S is affected by other resonant and
non-resonant decays due to the same final state B0 → K+K−K0

S . In order to
solve interference between decay processes and measure CP violating parameters of
B0 → ϕK0

S decay precisely, a study of time-dependent CP asymmetries including
multiple decay processes is carried out with Dalitz plot technique. B0 → f0K

0
S ,

B0 → fXK
0
S , B0 → χc0K

0
S and non-resonant B0 → K+K−K0

S are taken into
consideration to solve possible interference.

This thesis describes a study of time-dependent CP asymmetry using e+e−

energy-asymmetric collision data including 387 × 106 B0B̄0 pairs collected at Belle
II experiment. The result is

ϕ1(ϕK
0
S) = 28.9± 10.1(stat)± 1.7(syst)◦

ACP (ϕK
0
S) = 0.07± 0.18(stat)± 0.04(syst).

The existence of CP violation is confirmed at 2.4σ significance, and the result is
consistent with SM within 0.6σ.
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Personal Contribution and Outline

The CP asymmetry measurement reported in this thesis is based on the contribution and
effort from all the member of Belle II collaboration and the SuperKEKB accelerator group.
The maintaining of the Belle II experiment and the development of analysis frameworks
are done by the collaboration. The main personal contribution by the author is the
development of the K0

S selection method called KsSelector as mentioned in Sec. 5.4.
The selection of K0

S through K0
S → π+π− is critical to good CP asymmetry measure-

ment due to large number of mis-reconstructed K0
S candidates originating from continuum

background evetns. The K0
S selection method based on multivariate machine-learning al-

gorithm was developed previously from other collaborator, but the previous method suffers
from the problem due to the correlation between discriminant calculated by K0

S selection
method and K0

S mass itself. The author improved the K0
S selection method and offered

this method as a common tool called KsSelector which can be use widely among Belle
II collaboration. The author also analyzed the performance of K0

S selection method, and
showed that KsSelector have no significant correlation between discriminant calculated
by KsSelector and important observables related to K0

S. The author also showed that
the performance of KsSelector is also improved from the K0

S selection method that was
previously adopted in the Belle experiment.

In this thesis, the CP violating mechanism in B meson system is described in Sec. 2.
The Belle II experiment and Belle II detector are explained in Sec. 3. The Dalitz-plot
analysis technique used for the analysis is described in Sec. 4. The method of recon-
structing B meson candidates and calculating signal fraction is explained in Sec. 5 and
Sec. 6. The detailed description for CP asymmetry measurement procedure and expected
systematic errors is described in Sec. 7 and Sec. 8. The discussion and conclusion is given
in Sec. 9 and Sec. 10.
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1 Introduction

The current elementary particle physics is largely described by the Standard Model (SM),
which provides a framework for describing electromagnetic, weak, and strong interactions.
The SM describes three generations of quarks and leptons, gauge bosons that mediate the
interactions, and the Higgs boson. Nevertheless, certain phenomena remain unexplained
within the framework of the SM. One notable example is the observation of CP asymme-
try in the universe, manifesting as the absence of antimatter, which cannot be entirely
explained by the CP violation mechanism within the SM. Such discrepancies between the
predictions of the SM and observations act as a motivation for the exploration of new
physics beyond the SM. Consequently, diverse experiments have been conducted world-
wide in search for new physics.

The first observation of CP violation in the K meson system was accomplished in
1964 [13]. Subsequently, in 1973, the Kobayashi-Maskawa theory emerged, establishing a
framework for CP violation within the confines of the SM [27]. Starting data collection in
1999, the Belle experiment aimed to generate a substantial quantity of B meson pairs via
energy-asymmetric e+e− collisions and observe CP violation within the B meson system.
This experiment was conducted at the High Energy Accelerator Research Organization
(KEK) situated in Tsukuba, Japan. The B meson pairs were produced using KEKB
accelerator, while their decay processes were observed by the Belle detector. Consequently,
the Belle experiment verified the existence of CP violation in the B meson system, and
thus providing experimental evidence supporting the Kobayashi-Maskawa theory.

The Belle experiment, despite its success in confirming CP violation in the B meson
system, did not yield any significant hints, beyond a 3-sigma level, of new physics beyond
the SM. This limitation was primarily due to the large statistical uncertainties in the
measurements. Based on these background, the Belle II experiment is planned as an
upgrade to the original Belle experiment. The Belle II experiment involves the upgrade
of the KEKB accelerator to the more powerful SuperKEKB accelerator. The primary
objective of the Belle II experiment is to obtain a dataset with statistics approximately 50
times larger than that of the Belle experiment. By significantly increasing the amount of
data collected, Belle II aims to enhance its sensitivity to potential new physics phenomena
that lie beyond the SM.

In this thesis, the CP violating mechanism in B meson system is described in Sec. 2.
The Belle II experiment and Belle II detector are explained in Sec. 3. The Dalitz-plot
analysis technique used for the analysis is described in Sec. 4. The method of recon-
structing B meson candidates and calculating signal fraction is explained in Sec. 5 and
Sec. 6. The detailed description for CP asymmetry measurement procedure and expected
systematic errors is described in Sec. 7 and Sec. 8. The discussion and conclusion is given
in Sec. 9 and Sec. 10.
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2 CP asymmetries in B Meson Decay

This section explains the mechanism of CP violation within the B meson system, accom-
panied by an explanation of the precise measurement of CP asymmetries in B meson
decay. This measurement serves as a probing instrument for identifying potential new
physics phenomena that lie beyond the scope of the Standard Model.

2.1 Unitarity Triangle

With mass eigenstates of quarks, a Lagrangian governing the charged-current weak inter-
action can be expressed as

Lint = − g√
2
(ūL, c̄L, t̄L) γ

µVCKM

 dL
sL
bL

Wµ + h.c. (1)

where Wµ is the W-boson field, γµ is gamma matrices, g is the gauge coupling of SU(2)L
gauge group, and VCKM is the Cabbibo-Kobayashi-Maskawa (CKM) matrix.

Here we introduce weak interaction doublets of quarks denoted as (u, d′)T , (c, s′)T , and
(t, b′)T . Here, u, c, and t represent the mass eigenstates of up-type quarks, while d′, s′,
and b′ correspond to the weak interaction doublet partners. The CKM matrix is a unitary
matrix of dimensions 3 × 3, which characterizes the relationship between (d′, s′, b′) and
the mass eigenstates of down-type quarks (d, s, b). It can be represented by the following
equation:  d′

s′

b′

 = VCKM

 d
s
b

 . (2)

The CKM matrix, denoted as VCKM, can be explicitly written as:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (3)

It is possible to parametrize the CKM matrix using three rotation angles and six phases.
However, five out of the six phases can be absorbed by rotating the individual left-handed
quark fields. Consequently, the CKM matrix can be represented using three angles,
namely θ12, θ13, and θ23, along with one phase denoted as δ, as initially proposed by
Kobayashi and Maskawa [27]. Thus, the CKM angles can be parametrized as follows:

VCKM =

 c12c13 s12s13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
−s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 . (4)

where cij = cos(θij), sij = sin(θij), and δ is the complex phase.
In order to highlight the observed hierarchy in the mixing angles, namely |Vub| ≪

|Vcb| ≪ |Vus|, the Wolfenstein parametrization [36] is commonly employed. Using the
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Figure 1: Unitarity triangle of the CKM matrix. The closed triangle can be drawn from
the unitarity of VCKM.

Wolfenstein parametrization, the CKM matrix can be expressed as:

VCKM =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (5)

Here, the parameter λ ≃ 0.22, while the other parameters are of order O(1).
VCKM is unitary matrix, and thus VCKM satisfies

V †
CKMVCKM = 1. (6)

This equation leads to

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0. (7)

The terms V ∗
ijVik can be interpreted as vectors on the complex plane. Therefore, Eq. 7

represents the unitarity triangle on the complex plane, as depicted in Fig. 1.
Those ϕ1, ϕ2, and ϕ3 can be represented using Vij in CKM matrix as

ϕ1 = arg

(
−V

∗
cbVcd
V ∗
tbVtd

)
, (8)

ϕ2 = arg

(
−V

∗
ubVud
V ∗
tbVtd

)
, (9)

ϕ3 = arg

(
− V ∗

cbVcd
V ∗
ubVud

)
(10)

and the unitarity of CKM matrix is expressed as a closure of the unitarity triangle.
The scaled unitarity triangle has three vertices located at (0, 0), (1, 0) and (ρ, η), where

(ρ, η) is defined as

ρ =

(
1− λ2

2

)
ρ, η =

(
1− λ2

2

)
η. (11)

The latest constraints of Wolfenstein parameters (ρ, η) from various experiments is shown
in Fig. 2 [12].
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Figure 2: The constraints of Wolfenstein parameters (ρ, η) [12]. Each colored area repre-
sents the 95% CL area. The red hashed region represents the 68% CL region of the vertex
of unitarity triangle.

b

d

d

b

t

t

W W

B
0

B0

Figure 3: Feynman diagram for B0-B
0
mixing through box diagram, where neutral B

mesons can change its flavor via loop diagram.

2.2 B meson decay and CP asymmetries

We describe the time evolution of the B-meson system, followed by an introduction to CP
asymmetries within this system.

The B0 meson and its antiparticle, B̄0, can mix through a weak interaction mediated
by a loop diagram, as illustrated in Fig. 3. Consequently, the initial state of the B-meson
system and its time evolution can be expressed as a superposition of the B0 and B̄0 states:

|ψ(0)⟩ = a(0)
∣∣B0
〉
+ b(0)

∣∣B̄0
〉
, (12)

|ψ(t)⟩ = a(t)
∣∣B0
〉
+ b(t)

∣∣B̄0
〉
+
∑
i

ci(t) |fi⟩ (13)

Here, fi represents the final states to which the B-meson system can decay, and a(t), b(t),
and ci(t) are coefficients that depend on time.

|ψ(t)⟩ follows time-dependent Schrödinger equation as

9



iℏ
∂

∂t
ψ(t) = Hψ(t) (14)

where ψ(t) = (a(t), b(t))T . The matrix H is given as

H = M− i

2
Γ (15)

=

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)
(16)

where M and Γ are 2×2 Hermitian matrices, and representing mass and decay respec-
tively. With CPT invariance, the diagonal elements of M and Γ obeys the relation

M11 =M22,Γ11 = Γ22 (17)

The B0 and B̄0 mesons are flavor eigenstates, and thus they can be expressed in terms
of mass eigenstates as follows:

|BL⟩ = p
∣∣B0
〉
+ q

∣∣B̄0
〉

(18)

|BH⟩ = p
∣∣B0
〉
− q

∣∣B̄0
〉

(19)

Here, p and q are complex parameters, and |BL⟩ and |BH⟩ represent the light and heavy
mass eigenstates, respectively. The ratio between p and q can be determined by solving
the mass eigenvalue of the system, and it is given by:

q

p
=

√
M∗

12 − i
2
Γ∗
12

M12 − i
2
Γ12

. (20)

The eigenvalues for the mass eigenstates are expressed in terms of the mass and decay
width of BH and BL as

ML = mL − iΓL,MH = mH − iΓH , (21)

wheremi and Γi (for i = H,L) represent the mass and decay width of each mass eigenstate.
The time evolution of the mass eigenstates is given by

|BL(t)⟩ = e−imLte−ΓLt/2 |BL⟩ (22)

|BH(t)⟩ = e−imH te−ΓH t/2 |BH⟩ . (23)

By solving the time evolution equation in Eq. 15, the time evolution of the flavor eigen-
states is obtained as ∣∣B0(t)

〉
= g+(t)

∣∣B0
〉
− q

p
g−(t)

∣∣B̄0
〉

(24)∣∣B̄0(t)
〉
= g+(t)

∣∣B̄0
〉
− p

q
g−(t)

∣∣B0
〉
. (25)

where

g± =
1

2
(e−imH t−ΓH t/2 ± e−imLt−ΓH t/2). (26)
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Using this result, one can proceed to compute the decay amplitudes of B0 and B̄0

transitioning into a CP eigenstate denoted as fCP . The expressions for the time-dependent
decay rates AfCP

= ⟨fCP |H |B0⟩ and ¯AfCP
=
〈
fCP

∣∣H ∣∣ B̄0
〉
are given as

Γ(B0(t) → fCP ) = |
〈
fCP

∣∣H ∣∣B0
〉
|2 (27)

= e−Γt

[(
|AfCP

|2 + |q
p

¯AfCP
|2
)
cosh(

1

2
∆Γt)

+

(
|AfCP

|2 − |q
p

¯AfCP
|2
)
cos(∆mdt)

+ 2Re

(
q

p
A∗
fCP

¯AfCP

)
sinh(

1

2
∆Γt)

−2 Im

(
q

p
A∗
fCP

¯AfCP

)
sin(∆mdt)

]
,

Γ( ¯B0(t) → fCP ) = |
〈
fCP

∣∣H ∣∣ B̄0
〉
|2 (28)

= e−Γt

[(
|p
q
AfCP

|2 + | ¯AfCP
|2
)
cosh(

1

2
∆Γt)

+

(
|p
q
AfCP

|2 − | ¯AfCP
|2
)
cos(∆mdt)

+ 2Re

(
p

q
AfCP

¯A∗
fCP

)
sinh(

1

2
∆Γt)

−2 Im

(
p

q
AfCP

¯A∗
fCP

)
sin(∆mdt)

]
,

where ∆Γ = ΓH −ΓL and ∆md = mH −mL. Using these decay amplitudes and assuming
∆Γ/Γ ≪ 1 and |q/p| = 1, the time-dependent CP asymmetry for fCP is given as

ACP (t) =
Γ(B̄0(t) → fCP )− Γ(B0(t) → fCP )

Γ(B̄0(t) → fCP ) + Γ(B0(t) → fCP )
(29)

= SCP sin∆mdt+ ACP cos∆mdt

where we introduce CP asymmetry parameter SCP and ACP as

λCP =
q

p

Āf
Af

, (30)

SCP =
2 ImλCP
1 + |λCP |2

(31)

ACP =
|λCP |2 − 1

|λCP |2 + 1
. (32)

The parameters SCP and ACP represent the mixing-induced and direct CP violation
respectively. For the sake of convenience, the parameter λCP , which is independent of
phase conventions, is introduced.

Mixing-induced CP violation occurs when the imaginary part of λCP takes non-zero
values, indicating a disparity between the phase of B0 − B̄0 mixing and the decay phase.
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Figure 4: The diagrams contributing to the tree (left) and penguin (right) amplitude for
B0 → J/ψK0

S decay [6].

CP violation also manifests itself through the direct CP violation term ACP when |λCP |2 ̸=
1. This form of CP violation arises when multiple diagrams contribute to the decay of
B-mesons, each possessing distinct weak and strong phases.

2.3 Measurement of CP asymmetries

In this section, we discuss CP asymmetries for b → qq̄s trainsition to measure sin 2ϕ1 or
ϕ1.

2.3.1 Measurement of sin 2ϕ1 in b→ cc̄s transition

The decay process B0 → J/ψK0
S is suitable for the precise measurement of ϕ1 due to its

small theoretical uncertainty from SM prediction, substantial branching fraction, and low
background yield.

The B0 → J/ψK0
S decay occurs via the b → cc̄s transition and is primarily governed

by tree and penguin Feynman diagrams, as depicted on the left side of Fig. 4. The loop
diagram, commonly referred to as the penguin diagram, makes a significantly smaller
contribution compared to the tree diagram [11].

Utilizing the relationship between CKM matrix elements VusV
∗
ub/VcsV

∗
cb ≃ O(λ2), the

ratio of decay amplitudes can be expressed as follows:

Ā(J/ψK0)

A(J/ψK0)
=
V ∗
csVcb
VcsV ∗

cb

. (33)

In terms of q/p, combined with the explicit calculation of Γ12/M12 ≃ 10−2, an estimation
for q/p can be obtained to be

q

p
≃ V ∗

tbVtd
VtbV ∗

td

. (34)

Since the B0 → J/ψK0
S includes K0

S in the final state, the K0-K̄0 mixing should be taken
into consideration in the same manner with B0-B̄0, resulting in the expression

Ā(J/ψK0
S)

A(J/ψK0
S)

=
V ∗
cdVcs
VcdV ∗

cs

Ā(J/ψK0)

A(J/ψK0)
(35)
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Figure 5: The example of diagrams contributing to the penguin amplitude for B0 → ϕK0
S

decay.

Following these discussions, λJ/ψK0
S
is calculated to be

λJ/ψK0
S
= −V

∗
tbVtd
VtbV ∗

td

V ∗
cdVcs
VcdV ∗

cs

V ∗
csVcb
VcsV ∗

cb

= −e2iϕ1 . (36)

where the negative sign incorporates the effect of J/ψK0
S being a CP-odd eigenstate.

Consequently, the CP-violating parameters are calculated as

ACP = 0, SCP = sin 2ϕ1 (37)

As indicated in Eq. 37, the unitarity angle sin 2ϕ1 can be accurately determined through
the measurement of time-dependent CP asymmetries in the B0 → J/ψK0

S decay. How-
ever, an ambiguity between ϕ1 and π − ϕ1 still persists.

2.3.2 Measurement of sin 2ϕ1 in b→ ss̄s transition

In contrast to the B0 → J/ψK0
S decay channel, the measurement of SCP and ACP in

penguin-dominated decay channels involving b → qq̄s transitions (where q = u, d, s)
serves as a good probe for investigating contributions from new physics. The B0 → ϕK0

S

decay occurs through a b→ ss̄s flavor-changing neutral current, proceeding via a second-
order loop diagram, as depicted in Fig. 5. Owing to the suppression of the CKM tree-level
diagram and the relatively small penguin-level diagram, it becomes feasible to detect the
effects of new physics through contributions to the loop diagram in the penguin amplitude.

By neglecting the small contribution from the CKM-suppressed tree diagram, the
decay amplitude of B0 → ϕK0

S can be expressed as

AϕK0
S
=
∑
q=u,c,t

(V ∗
qbVqs)P

q

ϕK0
S

(38)

where P q

ϕK0
S
represents the penguin amplitude involving the quarks u, c, and t in the

loop with a W boson. Utilizing the unitarity of the CKM matrix, this expression can be
transformed into the following form:

AϕK0
S
= V ∗

cbVcs

(
(P c

ϕK0
S
− P t

ϕK0
S
) +

V ∗
ubVus
V ∗
cbVcs

(P u
ϕK0

S
− P t

ϕK0
S
)

)
. (39)
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Based on the relation |Vub| ≪ |Vcb| ≪ |Vus| < |Vcs|, the ratio of decay amplitudes can be
approximated as

Ā(ϕK0
S)

A(ϕK0
S)

≃ V ∗
csVcb
VcsV ∗

cb

, (40)

which yields the same value as the calculation for B0 → J/ψK0
S. Consequently, the

parameter λϕK0
S
and the CP asymmetry parameters for B0 → ϕK0

S can be determined in

a similar manner to the B0 → J/ψK0
S decay, resulting in the following expressions:

λϕK0
S
≃ −e2iϕ1 . (41)

ACP = 0, SCP = sin 2ϕ1 (42)

where the odd CP eigenvalue of ϕK0
S is taken into consideration.

2.4 Possible effect of new physics on time-dependent CP asym-
metry

In the previous section, the contamination from the tree diagram was neglected in the
calculation of CP asymmetries. However, the presence of the tree diagram and potential
contributions from new physics can lead to a deviation between sin 2ϕ1 and the measured
value of SCP [8]. This deviation can be expressed as follows:

−ηCPSCP = sin 2ϕ1 +∆SCP (43)

where ∆SCP is given by

∆SCP = 2 cos 2ϕ1 sinϕ3|ϵuc|Re rTCP +∆SNPCP . (44)

In the equation, ϵuc = VusV
∗
ub/VcsV

∗
cb = O(λ2), where λ represents a parameter associated

with CKM matrix elements. The ratio rTCP denotes the ratio between penguin and tree
diagram amplitudes. The term ∆SNPCP corresponds to a possible contribution from new
physics. According to the calculation using QCD factorization [8], the predicted value for
∆SCP in the ϕK0

S final state is ∆SCP = 0.02+0.01
−0.01. This value is notably small compared

to other charmless two-body final states. Currently, there is no tension between the
predictions for ∆SCP and experimental results. Furthermore, the theoretical uncertainties
associated with ∆SCP are much smaller than the experimental measurements. Therefore,
the measurement of the time-dependent CP asymmetry in B → ϕK0

S decay provides a
theoretically clean analysis for investigating contributions from new physics.

The parametrization of the amplitudes for B → ϕK0
S decay in the presence of new

physics (NP) can be expressed as

ASM(ϕK0
S) = |ASM |eiδSM , ANP (ϕK0

S) = |ANP |eiθNP eiδNP , (45)

ĀSM(ϕK0
S) = |ĀSM |eiδSM , ĀNP (ϕK0

S) = |ĀNP |e−iθNP eiδNP . (46)

where δi (with i = SM or NP) represents the CP-conserving phase, and θNP is the
CP-violating phase associated with new physics. Using this parameterization, the CP
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Figure 6: The standard model contribution (a) and gluino-down contributions (b) to (f)
for B → ϕK0

S decay [15]. The cross denotes mass insertion (δdAB)23 term in SUSY.

asymmetry for B → ϕK0
S decay is given by

SCP =
sin 2ϕ1 + 2 |ANP |

|ASM | cos δ12 sin(θNP + 2ϕ1) +
(

|ANP |
|ASM |

)2
sin(2θNP + 2ϕ1)

1 + 2 |ANP |
|ASM | cos δ12 cos θNP +

(
|ANP |
|ASM |

)2 , (47)

where δ12 = δSM − δNP . By measuring the CP asymmetry SCP in B → ϕK0
S decay, it

becomes possible to constrain the weak phase θNP associated with CP violation in the
presence of new physics.

One of the NP candidates that affects the CP asymmetries in the decay of B → ϕK0
S

is the supersymmetric (SUSY) model [18]. The Fig. 6 presents candidates for the b→ ss̄s
process through SUSY particles with the mass insertion approximation [15], wherein loop
diagrams involving gluinos and squarks are considered. Within the basis adopted by mass
insertion approximation, the coupling of fermions and sfermions to neutral gauginos leads
to flavor violation due to the off-diagonal term of the sfermion mass matrix.

2.5 Measurement of CP violation in Belle II experiment

In the Belle II experiment, pairs of B mesons are coherently produced through the
Υ(4S) → B0B̄0 decays. The B mesons originating from the Υ(4S) → B0B̄0 decay
conserve the quantum number C = −1, establishing an initial state where B0 and B̄0

are correlated with C = −1. B0 is a pseudo-scalar particle, leading to an orbital angular
momentum of L = 1 for the B meson pairs. Consequently, according to Bose-Einstein
statistics, if one of the B mesons is observed as B0 at time t = 0, the other B meson is
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expected to be B̄0; thus, the formation of B0B0 and B̄0B̄0 pairs is forbidden. The time
evolution of B meson pairs can be represented as follows:

|BCPBtag(tCP = 0, ttag = 0)⟩ = 1√
2

(∣∣B0
CP B̄

0
tag

〉
−
∣∣B̄0

CPB
0
tag

〉)
. (48)

Then by using Eq. 24 and Eq. 48 leads to the description of the time evolution of B
meson system as

|BCPBtag(tCP , ttag)⟩ =
1√
2
e−Γ(tCP+ttag)/2 (49)

[cos
∆md∆t

2

(∣∣B0
CP B̄

0
tag

〉
−
∣∣B̄0

CPB
0
tag

〉)
+

i sin
∆md∆t

2

(
p

q

∣∣B0
CPB

0
tag

〉
− q

p

∣∣B̄0
CP B̄0

tag

〉)
]

(50)

where ∆t is defined as ∆t = tCP − ttag.
Here we examine the case where one B meson decays into the CP eigenstate fCP while

the other B meson decays into a flavor-specific state ftag, allowing us to determine the
flavor of the B meson. We assume that B0 only decays into ftag and B̄0 only decays
into ¯ftag. Under the assumption of no direct CP violation in Btag decays, which implies
Aftag = Ā ¯ftag and |q/p| = 1, the time-dependent decay rate for the states |fCPftag⟩ and∣∣fCP ¯ftag

〉
can be expressed as follows:

dΓ

dttagdtCP
∝ e−Γ(tCP+ttag)[(|AfCP

|2 + |Āf̄CP
|2) (51)

− qtag(|AfCP
|2 − |Āf̄CP

|2) cos(∆md∆t)+

qtag Im(2ηCP
q

p
ĀfCP

A∗
f̄CP

) sin(∆md∆t).

Here, the value of qtag represents the flavor of the tag-side B meson and can take on the
values of ±1. Specifically, qtag = +1(−1) when the tag-side decays into ftag (f̄tag), and
ηCP denotes the eigenvalue of the CP-side decay channel. By integrating the decay rate
over tCP and ttag and normalizing the overall decay width, the time-dependent decay rate,
as a function of the decay time difference ∆t, is given by:

dΓ

d∆t
∝ e−Γ|∆t| (1 + qtagACP cos(∆md∆t) + qtagSCP sin(∆md∆t)) (52)

Here, ACP and SCP are defined in the same manner as the notation used in Eq. 31.
Therefore, the CP-violating parameters can be determined by measuring the asymmetry
of the decay rate with respect to the decay time difference ∆t, which can be measured
precisely in the Belle II experiment.

2.6 Experimental results from previous analyses

Both Belle [31] and BaBar [29] previously measured CP asymmetries of B → ϕK0
S decay

using B → K+K−K0
S Dalitz analysis. The Belle analysis obtained four solutions for
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ϕ1(B
0 → ϕK0

S) as

ϕ1 = (32.2± 9.0± 2.6± 1.4)◦ (53)

ϕ1 = (26.2± 8.8± 2.7± 1.2)◦ (54)

ϕ1 = (27.3± 8.6± 2.8± 1.3)◦ (55)

ϕ1 = (24.3± 8.0± 2.9± 5.2)◦ (56)

where errors are statistical, systematic, and Dalitz model uncertainties.
The BaBar analysis obtained single solution as

ϕ1 = (21± 6± 2)◦ (57)

where errors are statistical and systematic uncertainties.
The comparison of this analysis against those previous analyses is discussed in Sec. 9.4.
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3 Belle II experiment

The Belle II experiment, conducted at KEK in Tsukuba-city, Japan, is a B-factory ex-
periment that started operating from 2019. The SuperKEKB accelerator is responsible
for accelerating electrons to 7 GeV and positrons to 4 GeV and have them colliding with
high luminosity, where the center-of-mass energy of electrons and positrons is set to 10.58
GeV corresponding to the Υ(4S) resonance which subdominantly decays into B meson
pairs. These high-energy beams collide at an interaction point where the Belle II detector
is positioned.

3.1 SuperKEKB accelerator

The overview of SuperKEKB accelerator is shown in Fig. 7. In SuperKEKB, the energy of
electron and positron is changed to 7.0 GeV and 4.0 GeV respectively. SuperKEKB con-
sists of a linear accelerator with 600m length and a ring accelerator with the circumstance
of 3km.

The electron and positron is accelerated to 7.0 GeV and 4.0 GeV in linear accelerator,
and injected to electron storage ring called high energy ring (HER) and positron storage
ring called low energy ring (LER). The electron and positron collide at one collision point
on these rings. Belle II detector is positioned around the collision point. The center of
mass energy is set to 10.58 GeV, which is the mass of Υ(4S).

The number of collision event per unit time R [event/sec] can be represented as

R = Lσ (58)

where L and σ represents instantaneous luminosity [m−2s−1] and interaction cross section
[cm−2] for target event respectively. In SuperKEKB accelerator, the luminosity is 40 times
higher luminosity than that of KEKB accelerator.

The luminosity can be written as is in Eq. 59.

L =
γ±
2ere

(
1 +

σ∗
y∓

σ∗
x∓

)
I±ξy±
β∗
y±

, (59)

where γ is lorentz factor, e is elemental charge, re is classical electron radius, I is beam
current, σx,y is beam size along each axis, and β∗

y∓ is beta function along y axis. ξy±
represents beam-beam parameter, which means the effect of interaction between electron
and positron beams. Each + and − represents positron and electron.

When we squeeze β∗
y∓, hourglass effect and synchrobetatron resonance disturb the

luminosity to be maximized. In order to avoid these difficulty, the new schematics called
“nano beam scheme” is adopted. The concept of nano beam scheme is shown in Fig. 9.
In nano beam scheme, the large crossing angle of electron and positron bunches leads to
the smaller β∗

y∓ in the interaction region. Together with the enforcement of beam current,
the luminosity in SuperKEKB is expected to become 30 times larger than KEKB.
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Figure 7: Overview of SuperKEKB accelerator [2].

Figure 8: The table of machine parameters of SuperKEKB accelerator.
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Figure 9: The concept of nano beam scheme. The left is the schematics of beams in
Belle, and the right is the nano beam scheme in Belle II. The angle between the bunch of
electron and positron is enhanced in nano beam scheme.

3.2 Belle II detector

The Belle II detector is constructed in the vicinity of the collision point in SuperKEKB. It
comprises 7 sub-detectors that measure energy, momentum, charged particle trajectory,
and decay vertex of the produced particles. The overview and top view of the Belle II
detector is shown in Fig. 10 and Fig. 11

3.2.1 Aerogel ring imaging Cherenkov counter (ARICH)

ARICH is located on the end cap of the Belle II detector and serves as an observer of
Cherenkov light that comes from the aerogel radiator. The identification of particles
is achieved by measuring the Cherenkov angle. A visual representation of the ARICH
concept can be found in Fig. 12.

The aerogel radiator is comprised of multiple layers, each with a varying refractive
index. This arrangement facilitates the focusing of photons within the aerogel radiator
and subsequently eliminates the uncertainty that may arise from the emission point of
Cherenkov photons within the radiator. The Cherenkov ring is collected by the Hybrid
Avalanche Photon Detector (HAPD), which is positioned at a distance of 20cm from the
aerogel radiator.

3.2.2 Central drift chamber (CDC)

The CDC, located exterior to the Silicon Vertex Detector (SVD), which is explained
in Sec. 3.2.7, functions as a drift chamber and serves to measure the tracks of charged
particles. It is filled with a gas mixture comprising of 50% Helium and 50% C2H6. Axial
and stereo wires are arranged along the beam direction. As charged particles travel
through the CDC, electrons are produced and subsequently collected by the anode wire.
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Figure 10: Overview of Belle II detector

Figure 11: Top View of Belle II detector [6]
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Figure 12: The concept of ARICH, where the radiation angle is dependent upon the mass
and velocity of the particle.

Figure 13: The composition of aerogel material. The left figure depicts a single layer
of aerogel, while the right figure shows multiple layers of aerogel with varying refractive
indices. The dependence of the radiation angle on the emission point of Cherenkov light
is notably diminished in the multi-layer radiator.

In addition to facilitating the reconstruction of particle tracks, CDC also enables particle
identification through the analysis of energy loss within its gas volume.

The wire placement configuration has been upgraded in Belle II with the goal of im-
proving position resolution and managing the higher event rate and background. Specif-
ically, the wire density in the inner layer has been increased. The information gathered
by CDC is also utilized in the generation of triggers.

3.2.3 Electromagnetic calorimeter (ECL)

The Electromagnetic Calorimeter (ECL) is a detector designed to measure the energy of
photons, electrons and hadrons, and is located in both end cap regions and barrel region.
The energy and number of clusters detected by ECL are utilized in the generation of
triggers.
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Figure 14: The wire configuration of CDC is illustrated in the provided figures, with the
upper diagram corresponding to Belle and the lower diagram to Belle II. Notably, the
wire density in Belle II CDC has been increased as compared to Belle.

Figure 15: The unit of ECL with 2 pin diodes connected to CsI crystal.

In the Belle II experiment, the photon energy ranges from 20 MeV to 4 GeV. To achieve
a high energy resolution, CsI(Tl) is implemented as the scintillation crystal owing to its
high light output and short radiation length. Photons, electrons, and positrons deposit
their energy in the scintillator and subsequently generate an electromagnetic shower, with
the energy of the particles being measured by the scintillation light. ECL is capable of
measuring luminosity via the detection of Bhabha scattering process. When combined
with momentum information acquired from CDC, ECL can distinguish electrons and
positrons from other charged particles by analyzing their respective energies.

The structure of an ECL unit is depicted in Fig. 15. The energy deposited in the crystal
is collected by two pin photodiodes located behind the crystal and then transmitted to
the electronics. The overall structure of ECL, as demonstrated in Fig. 16, has not been
modified since the Belle experiment. However, the readout electronics have been updated
in order to handle signal pileup that arises from the higher event rate and increased
background.
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Figure 16: Overall configuration of ECL.

Figure 17: The configuration of KLM in the Belle II detector involving two distinct
component, the Barrel KLM and the End-cap KLM respectively.

3.2.4 KL and muon detector (KLM)

The K0
L and µ detector, or KLM, functions to identify K0

L and µ particles from other
particles. This detector is located externally to the ECL and is partitioned into two
distinct regions: the endcap region KLM (EKLM) and the barrel region KLM (BKLM).
KLM’s coverage spans an angle ranging from 20◦ to 155◦ in total, relative to the beam
axis. The overall layout of KLM is depicted in Fig. 17.

KLM is comprised of an alternating sandwich of iron plates and detector layers. The
interaction of µ with the material occurs via electromagnetic interaction, while charged
hadrons such as π experience the effects of strong interaction. Using this property, µ
particles are identified through their penetration of the iron plates. On the other hand,
KL particles produce a hadronic shower within the iron plate layer, and are thus identified
by observing the resultant particles from hadronic shower.

In the Belle experiment, glass-electrode resistive plate chambers (RPC) serve as the
detector layer. However, these chambers possess a notable disadvantage in that they
exhibit a large dead time of several seconds due to the long recovery period of the electric
field following a discharge. In the Belle II experiment, a significant amount of neutrons
generated by background processes within the electromagnetic shower produces a large
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Figure 18: The structure of TOP. Cherenkov lights collected at the photon detector
located at the side of the scintillator.

dead time, particularly in the endcap region and the innermost layers of the barrel region,
thereby reducing the efficiency of particle detection.

In order to avoid this issue, a detector layer employing scintillator strips and wavelength-
shifting fibers was developed and installed specifically for the endcap region and the two
innermost layers of the barrel region. This detector layer utilizing scintillator strips has
a lower dead time compared to the Belle experiment, while also displaying a heightened
capacity to tolerate increased background levels within the Belle II experiment.

3.2.5 Time of propagation counter (TOP)

The Time of Propagation counter (TOP) is located in the barrel region outside the CDC
and serves to identify charged particles through the use of Cherenkov light detection.
Quartz bars serve as the radiator of Cherenkov light, with 16 × 2 microchannel plate
PMTs (MCP-PMTs) attached at the side of each quartz bar, as depicted in Fig. 18.

The Cherenkov light produced is transmitted to the end of the scintillator, where it is
detected by the MCP-PMT. Given that the angle of the Cherenkov light varies between
different particle types, the time interval required for the Cherenkov light to reach the
MCP-PMT differs across particles. Consequently, particle types are identified through
the measurement of time-of-flight (TOF). The difference in propagation time amounts to
approximately 200 ps, necessitating the MCP-PMT to possess a time resolution of less
than 50 ps.

3.2.6 Pixel detector(PXD)

The Pixel Detector, positioned as the innermost sub-detector and covering an angle of
17◦ < θ < 150◦ along the direction of the beam, serves to measure the tracks of charged
particles and precisely reconstruct decay vertices, in combination with SVD.

The Pixel sensor is based on a pixelated DEPleted p-channel Field Effect Transistor
(DEFPET) and comprises two layers of sensors surrounding the interaction point. The
structure of DEFPET is shown in Fig. 19. When charged particles enter the depletion
layer, the electron-hole pair produced is accumulated to the internal gate in Fig. 19 and
then read out. Due to the large number of channels, it is impossible to read out all
channels simultaneously. Thus, data is read out for each line of the DEFPET matrix by
controlling the gate voltage of FET. It takes 100 ns to read out and clear the charge per

25



Figure 19: The structure of DEFPET adopted for PXD.

Figure 20: The overview of PXD, which consists of two layers of sensors.

line, and 20 µs to read out all the pixel channels. As the full data size of the PXD reaches
30 GB/s under 30 kHz trigger rate, it is not feasible to read out the entire PXD data.
Therefore, the tracks of particles are reconstructed and extrapolated to the PXD region,
and only the PXD data within the region of interest is read out in order to reduce the
data volume of the PXD.

3.2.7 Silicon vertex detector(SVD)

The Silicon Vertex Detector (SVD) is positioned externally to the PXD, and is utilized
to reconstruct the trajectory of charged particles. Comprising four layers of double-sided
silicon strip detectors (DSSDs), as illustrated in Fig. 21, the SVD is configured with silicon
strips on both sides of the sensor in such a way that the n-side strip is perpendicular to the
beam direction. When charged particles pass through the n bulk, electron-hole pairs are
generated, and the electron and hole are collected in the n-side and p-side, respectively,
and then read out.

In order to achieve fast data readout, the SVD uses ASIC called APV25. In the Belle
II experiment, we expect a 30 kHz trigger rate at a target luminosity of L = 6 × 1035.
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Figure 21: The structure of DSSD. Silicon strips are put on both sides of N bulk orthog-
onally.

Figure 22: The detection mechanism of DSSD. The produced electron and hole are col-
lected to silicon strips and read out by electrodes.

However, due to the limited buffer capacity of the APV25, the SVD is expected to have
a 3.4% dead time at the 30 kHz trigger rate.

3.2.8 Trigger system (TRG)

The trigger system (TRG) fulfills the role of issuing triggers. In Belle II experiment,
it is necessary to acquire data at a high trigger rate of up to 30 kHz due to the high
luminosity of SuperKEKB. Consequently, the trigger system is required to achieve a high
efficiency for physics event triggering, while simultaneously minimizing the number of
events originating from beam background. The expected cross section and trigger rate for
the dominant process, given a target luminosity of L = 6× 1035cm−2s−1, are presented in
Table. 1. The trigger system is subject to the following requirements:

• Maximum trigger rate of 30kHz

• Trigger distribution latency under 5µs
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Table 1: Table of expected trigger rate for each process under SuperKEKB target lumi-
nosity [35]. Due to the 30kHz upper limit of trigger rate, the trigger rate from beam
background signals must be below 15kHz.

.

Process σ (nb) Rate (Hz)
Υ(4S) 1.2 960
Continuum 2.8 2200
µ+µ− 0.8 640
τ+τ− 0.8 640
Bhabha 44 350
γγ 2.4 19
Two photon 12 10000
Total 67 15000

Figure 23: The overview of trigger system [22]. Level 1 trigger is generated using infor-
mation from four sub-trigger systems.

• The timing resolution under 10ns

Fig. 23 provides an overview of the trigger system, which comprises four distinct sub-
triggers: CDC, ECL, TOP, and KLM. Each sub-trigger system operates independently,
and the information gathered from these four detectors is transmitted to the Global Deci-
sion Logic (GDL), where the final trigger signal determination takes place. The primary
trigger decision for physics events relies on the sub-triggers from CDC and ECL. The
TOP sub-trigger is primarily used to achieve better timing resolution for triggering, while
the muon identification obtained from the KLM sub-trigger is employed in conjunction
with the CDC and ECL sub-triggers.

3.2.9 Data acquisition system (DAQ)

In Belle II experiment, the SuperKEKB accelerator exhibits an instantaneous luminosity
that is 30 times higher than that of the KEKB accelerator in Belle. Due to the upgraded
detectors in Belle II, the data size per event is expected to exceed 1 MB/s in total, given
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Figure 24: The overview of data acquisition system [21]

the target luminosity of L = 6× 1035 cm−2s−1. With an expected maximum trigger rate
of 30 kHz, the online data processing necessitates handling a data flow of 30 GB/s.

The overall structure of the Belle II data acquisition system is illustrated in Fig. 24. A
common clock signal, derived from the 508 MHz radio frequency of SuperKEKB, is utilized
across all modules in the data acquisition system. This 508 MHz clock signal is divided
by four, generating a common clock of 127 MHz. The trigger signal, originating from the
GDL, is then distributed to all front-end electronics located near the Belle II detector.
The acquired data is digitized by these front-end electronics and transmitted to modules
which is responsible for receiving data from the front-end electronics, performing data
formatting, and sending the data to a readout PC. A module called Common Pipelined
Platform for Electronics Readout (COPPER) was used to be adopted for this purpose,
but these COPPERs are currently replaced with a PCI-express-based high-speed readout
modules known as PCIe40 [40]. Optical fiber connections are employed to link the front-
end electronics with the PCIe40 modules, and the data from sub-detectors is transmitted
using an original communication protocol named Belle2link.

Each readout PC undertakes partial event reconstruction using the data collected by
the readout PC. The partially reconstructed data is then transmitted to the High-Level
Trigger (HLT). The HLT is responsible for carrying out full event reconstruction and
selecting which events to record. When combined with the PXD data, the final event
reconstruction is accomplished, and the event data is stored in the storage system.

3.2.10 High level trigger

The High-Level Trigger (HLT) is a system designed to reconstruct events and gener-
ate software triggers. By employing software triggers, only essential events are selected,
thereby reducing the data size that needs to be recorded in the storage system. Measured
data, excluding the PXD, is transmitted to the HLT from the a network switch through a
10 Gbit connection. Each HLT node consists of a multi-core PC, and event data is stored
in a sizable ring buffer and processed in parallel by multiple CPUs.

Within the HLT, particle tracks are reconstructed, enabling the selection of specific
regions in the PXD to be read. These particle tracks are extrapolated to the PXD, defining
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regions of interest (ROIs). The ROI information is then transmitted to the PXD readout
system. Only the PXD data within the ROIs is subsequently sent to EB2. EB2 receives
data from both the HLT and the PXD readout system, facilitating event reconstruction
using the entire Belle II detector. The collected data is ultimately transmitted to the
storage system.
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4 Dalitz-plot analysis

This section provides the motivation for the analysis of time-dependent CP violating
parameters using Dalitz-plot technique. Additionally, the formalism of decay amplitude
using Dalitz plane and square Dalitz plane are delivered.

4.1 Motivation and target of Dalitz-plot analysis

As explained in the section 2, the decay channel B0 → ϕK0
S is suited for the search of new

physics through the measurement of CKM unitarity angle ϕ1. However, the measurement
of CP violation parameters for B0 → ϕ(→ K+K−)K0

S is intricate due to the interference
arising from other modes that decay to the same B0 → K+K−K0

S final state. To account
for the effect of interference among the decay modes, the Dalitz-plot technique is employed
in this analysis. Moreover, the utilization of Dalitz-plot technique allows us to measure
ϕ1 instead of sin 2ϕ1 which is typically measured by a quasi-two-body approach, thereby
solving the ambiguity between ϕ1 and π − ϕ1.

The resonant and non-resonant decay channels to be considered in this analysis are
presented in Table. 2, along with the respective parameters for each channel. The final
state K+K−K0

S does not generally possess a definite CP eigenvalue, as the eigenvalue
of the K+K−K0

S three-body system depends on the angular momentum l of the K+K−

system. By employing the Dalitz-plot technique, the interference arising from CP-odd
and CP-even final states can be effectively addressed, thereby enabling a more precise
determination of ϕ1 without the dilution caused by the final state’s mixture of CP-odd
and CP-even eigenstates.

Resonance Parameters (MeV) Line Shape

ϕ(1020) M = 1019.445± 0.020 RBW
Γ = 4.26± 0.020

f0(980) M = 990± 20 Flatté
gππ = 0.165± 0.018

gKK/gππ = 4.21± 0.33
fX M = 1506± 6 RBW

Γ = 112± 9
χc0 M = 3414.71± 0.20 RBW

Γ = 10.8± 0.6
(K+K−)NR α = 0.14 e−αs0

(K+K0
S)NR α = 0.14 e−αs+

(K−K0
S)NR α = 0.14 e−αs−

Table 2: The list of all 7 decay channels included in this analysis and its physics parame-
ters. The non-resonant component is divided into three component. The parameters for
f0 resonance are cited from Ref. [3], and the rest of parameters are cited from Ref. [31].
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4.2 Modeling for decay amplitude

The expression for the decay rate of the B0 → K+K−K0
S three-body decay, involving

pseudo-scalar mesons, can be calculated as follows:

Γ(B0 → K+K−K0
S) =

1

(2π)3
|A|2

32mB0

ds+ds−. (60)

Here, A denotes the Lorentz invariant decay amplitude. The quantity s+ and s− represent
the squared invariant masses of the K0

SK
+ and K0

SK
− systems, respectively. To describe

the amplitude A, we employ an isobar approximation, where A is modeled as the coherent
sum of amplitudes for each decay channel, as expressed by:

A =
∑
i

a′iFi (61)

Ā =
∑
i

ā′iF̄i (62)

The amplitude Fi is dependent on the Dalitz plane and incorporates only strong dynamics,
while a′i is a complex coefficient including the influence of weak phases. The index i denotes
each decay channel listed in Table. 2.

In the analysis of B0 → K+K−K0
S, the Dalitz-plane dependent amplitude for the

resonant decay process B → rK0
S, where r represents a resonance, can be expressed using

four terms as follows:

Fi(L, s+, s−) = ZL(p⃗, q⃗)×XB
L (|p⃗∗|)×Xr

L(|q⃗|)×Rr(s+, s−), (63)

Here, L denotes the orbital angular momentum between K0
S and the resonance. p⃗∗ repre-

sents the momentum of K0
S in the rest frame of the B meson, while p⃗ and q⃗ represent the

momenta of K0
S and K+, respectively, in the rest frame of the resonance. The terms Z,

X, and R correspond to the angular distribution, the Blatt-Weisskopf barrier factor[10],
and the line shape of the resonance, respectively.

The term Z represents the angular distribution, which is dependent on the orbital
angular momentum L of the resonance r. It can be expressed as

Z0(p⃗, q⃗) = 1, (64)

Z1(p⃗, q⃗) = −4p⃗ · q⃗ (65)

XB
L and Xr

L represent the Blatt-Weisskopf barrier factors[10] for the production and
decay of the resonance, respectively. The maximum angular momentum L is limited
by q⃗ in a strong decay process, implying that slowly decaying particles have difficulty
in generating angular momentum while still conserving the spin of the resonance. The
Blatt-Weisskopf barrier factor is introduced to account for this effect and can be written
as:

X0 = 1 (66)

X1 =

√
1 + z0
1 + z

(67)
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Here, z = (|q⃗|d)2, z0 = (|q⃗0|d)2, and q⃗0 represents the value of q⃗ when the invariant mass
mK+K− is equal to the resonance mass mr. The parameter d corresponds to the meson
radius, which is fixed at 1 fm in this analysis.

The term Rr represents the form factor of the resonance, which varies for each decay
channel. In this analysis, the Relativistic Breit-Wigner function [38] is employed for the
B → ϕK0

S, B → fXK
0
S, and B → χc0K

0
S decay channels. The Breit-Wigner function is

parameterized as:

RBW (s) =
1

M2
0 − s− iM0Γ(s)

(68)

Here, M0 denotes the nominal mass of the resonance, and s represents the invariant mass
of the K+K− system. The mass-dependent width Γ(s) is given by:

Γ(s) = Γ0

(
|q⃗|
|q⃗0|

)2L+1
m0

m
X2
L(z), (69)

where m =
√
s denotes the invariant mass of K+K− system, and Γ0 corresponds to the

nominal width of the resonance.
The Flatté function[16] is used exclusively for the B → f0K

0
S decay channel, where

the kinematic threshold for the creation of the resonance from the K+K− pair is very
close to the mass of the resonance f0(890). In this analysis, the following parametrization
is adopted to describe the f0 lineshape:

Flatté(s) =
1

M2
0 − s− i (gππρππ + gKKρKK)

(70)

ρππ = 2

√
1− 4m2

π/s√
s

(71)

ρKK = 2

√
1− 4m2

K/s√
s

. (72)

Here, gππ and gKK denote the coupling constants. For this analysis, the values of these
coupling constants are fixed to gππ = 0.165 ± 0.018 GeV2/c4 and gKK/gππ = 4.21 ± 0.33
[3].

For the non-resonant component, an empirical exponentially decaying model is adopted,
which parameterize the line-shape of the non-resonant component in terms of three com-
ponents as

FNR = FNR0 + FNR+ + FNR− (73)

FNR0 = e−αs (74)

FNR+ = e−αs+ (75)

FNR− = e−αs− . (76)

The parameter α is fixed to 0.14, which is cited from a previous analysis[31].
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4.3 Parametrization of the isobar model and CP asymmetry

The coefficients for each decay channel in the isobar approximation are parametrized as:

a′i = ai(1 + ci)e
i(bi+di), (77)

ā′i = ai(1− ci)e
i(bi−di). (78)

In this notation, ai, bi, ci, and di are real numbers representing the amplitude, phase, direct
CP asymmetry, and mixing-induced CP asymmetry for each decay channel, respectively.

Using these parameters, the quasi-two-body expression of CP asymmetry for each
decay channel can be calculated from the Dalitz parameters ci and di. The direct CP
asymmetry is given by:

AiCP =
|āi′|2 − |a′i|2

|āi′|2 + |a′i|2
=

−2ci
1 + c2i

, (79)

Furthermore, the CKM angle ϕi1 for each decay channel is determined as:

ϕ1(i) =
arg(āi

′a′∗i )

2
= di. (80)

Here, the parameter di, which is one of the fitting parameters, is directly connected to
the CKM unitarity angle. Along with the phase term bi, the event distribution exhibits
asymmetry between di and 90◦ − di, and thus resolving the two-fold ambiguity in the
quasi-two-body approach and enable us to measure ϕ1 diectly.

4.4 Dalitz Plot and square Dalitz Plot

The kinematics of a three-body decay can be described using two variables, as expressed
in Eq. 60. Therefore, the kinematics of a three-body decay can be represented by the dis-
tribution of events over a two-dimensional plane. The parametrization that uses two inde-
pendent variables as the invariant masses (s+, s−), is referred to as the Dalitz parametriza-
tion. By utilizing Eq. 63, the squared decay amplitudes for each channel, |Fi(s+, s−)|2,
can be visualized on the Dalitz plane, as illustrated in Fig. 25.

As depicted in Fig. 25, the event distribution for resonances such as ϕK0
S or f0K

0
S

exhibits a sharp peak near the boundaries of the three-body decay kinematics. Both signal
and background events tend to concentrate in regions close to the kinematic boundary
on the Dalitz plane. This characteristic poses challenges in modeling the background
distribution and accounting for the reconstruction efficiency accurately. To address these
challenges and enhance the regions of interest where B0 → ϕK0

S events populate, the
square Dalitz plane [1] (m′, θ′) is employed to describe the event distribution in this
analysis. The parametrization of the square Dalitz plane is given by:

m′ ≡ 1

π
arccos(2

m−mmin
0

mmax
0 −mmin

0

− 1) (81)

θ′ ≡ 1

π
θ0 (82)
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(a) ϕK0
S (b) f0K

0
S (c) fXK

0
S

(d) χc0K
0
S (e) K−(K+K0

S)NR (f) K+(K−K0
S)NR

(g) K0
S(K

+K−)NR

Figure 25: Distribution of |Fi(m′, θ′)|2 over Dalitz plane for each decay channels. Horizon-
tal and vertical axes represents the squared invariant mass between K0

S-K
+ and K0

S-K
−,

and the z axis represents |Fi(s+, s−)|2.
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Here, mmax
0 = mB0 − mK0

S
and mmin

0 = 2mK± represent the maximum and minimum
kinematically allowed invariant masses of the K+K− system, respectively. The parameter
θ0 corresponds to the angle between K+ and K0

S in the rest frame of K+ and K−.
The range of both m′ and θ′ is defined to be within the interval [0, 1]. The Jacobian

of the transformation, denoted as detJ , can be calculated as follows:

detJ = 4|p∗
K+ ||p∗

K0
S
|∂m0

∂m′
∂ cos θ0
∂θ′

(83)

Here, p∗
K+ and p∗

K0
S
represent the momenta ofK+ andK0

S in the rest frame ofK+ andK−.

The distribution |detJ ||Fi(m′, θ′)|2 is depicted in Fig. 26. By utilizing the square Dalitz
plot to analyze the event distribution, the sharpness of the distribution is broadened,
enabling a more precise handling of histogram probability density functions (PDFs) over
the square Dalitz plane. Additionally, it make it easier to calculate the normalization of
the PDF over the entire kinematically allowed region.
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(a) ϕK0
S (b) f0K

0
S (c) fXK

0
S

(d) χc0K
0
S (e) K−(K+K0

S)NR (f) K+(K−K0
S)NR

(g) K0
S(K

+K−)NR

Figure 26: Distribution of |detJ ||Fi(m′, θ′)|2 over square Dalitz plane for each decay chan-
nels. Horizontal and vertical axes represents the square Dalitz plot parameters m′ and θ′,
and the z axis represents |detJ ||Fi(m′, θ′)|2.
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5 Event reconstruction and selection

In this section, we first deliver explanation for the flavor tagging and the measurement of
decay time difference ∆t, then provides strategy for event reconstruction and selection.

5.1 Flavor Tagging

The flavor tagger plays a crucial role in determining the flavor of the tag-side B meson,
which is necessary to establish the flavor of the fully-reconstructed CP-side B meson.
In the process of generating BB̄ pairs at the Υ(4S) resonance, no additional particles
are expected to present. Therefore, tracks and clusters that are not used in the full
reconstruction of the CP-side B meson can be attributed to the tag-side B meson. Certain
decay channels of B mesons exhibit flavor-specific final states, such as B̄0 → D∗+l−ν̄l,
where the information from the tracks and clusters on the tag side directly provides the
flavor of the tag-side B meson.

The flavor tagger serves as a tool that utilizes an inclusive technique with a multivariate
method to extract information about the tag-side flavor from flavor-specific signatures. It
returns two values: q and r. The value of q is +1 or -1, indicating whether the flavor of the
tag-side B meson is B0 or B̄0, respectively. The parameter r represents the dilution factor,
which is defined as r = 1−2w, where w is the wrong tag fraction. The wrong tag fraction
corresponds to the fraction of incorrectly identified events among the total number of
tagged events. A value of r = 0 implies that no flavor information is available for the
tag-side B meson, while r = 1 signifies that the flavor determination is unambiguous.

The flavor tagging parameters are determined separately for each of the 7 bins defined
by the values of the flavor tagger output |qr|. These 7 bins have edges located at:

|qr| = [0, 0.1, 0.25, 0.45, 0.6, 0.725, 0.875, 1]. (84)

For each bin, the performance of flavor tagger is then represented as

w =
1

2
(wB0

tag
+ wB̄0

tag
)

∆w = (wB0
tag

− wB̄0
tag
)

µ =
ϵB0

tag
− ϵB̄0

tag

ϵB0
tag

+ ϵB̄0
tag

(85)

where wB0
tag

and wB̄0
tag

are the wrong tag fraction and ϵ is the tagging efficiency defined as
the fraction of events to which the flavor tagger can assign any flavor tag over the number
of total events.

The flavor tagging parameters have been calibrated using 361.6 fb−1 of real data for
the B0 → D(∗)−π− decay channels [20]. The calibration results, which determine the
performance of the flavor tagger, are presented in Table. 3. These calibrated parameters
are used in the construction of the CP asymmetry fitting PDF.

5.2 ∆t measurement

The concept of the measurement of decay time difference ∆t is shown in Fig. 27. The
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qr-bin wB0
tag

wB̄0
tag

µ

[0, 0.1] (0.4770 ± 0.0077) (0.4838 ± 0.0076) (－ 0.0240 ± 0.0122)
[0.1, 0.25] (0.4430 ± 0.0076) (0.4049 ± 0.0078) (0.0138 ± 0.0123)
[0.25, 0.45] (0.3315 ± 0.0072) (0.3504 ± 0.0073) (－ 0.0115 ± 0.0118)
[0.45, 0.6] (0.2327 ± 0.0073) (0.2397 ± 0.0076) (0.0088 ± 0.0126)
[0.6, 0.725] (0.1774 ± 0.0073) (0.1577 ± 0.0077) (0.0368 ± 0.0135)
[0.725, 0.875] (0.1070 ± 0.0068) (0.1075 ± 0.0068) (－ 0.0202 ± 0.0133)
[0.875, 1] (0.0286 ± 0.0042) (0.0262 ± 0.0042) (－ 0.0123 ± 0.0108)

Table 3: The parameters of flavor tagger calibrated for B0 → D(∗)−π− decay channels
with 361.6fb−1 real data[20].

Figure 27: The concept of ∆t measurement in Belle II experiment, where ∆t is measured
through the difference of the position of B meson decay vertices.

center-of-mass system of B meson pairs are boosted along beam axes with Lorentz boost
factor βγ = 0.286 due to the asymmetric energy between electrons and positrons. This
enables us to measure the difference of B meson decay time, which is typically around 1
ps and cannot be observed directly, through the difference in the decay vertex position of
each B meson. A BB̄ pair created by Υ(4S) decay is almost at rest in the center-of-mass
frame, and thus we can approximate the boost factor of each B meson to be βγ = 0.286
as same as BB̄ system. Then the ∆t can be measured as

∆t = tCP − ttag =
lCP − ltag
βγc

(86)

where tCP and ttag denotes the decay time of CP-side and tag-side B meson, and lCP and
ltag denotes the decay vertex position of CP-side B meson and tag-side B meson projected
to the direction of boost vector.
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5.3 Data set used for analysis

For the measurement of CP violating parameters in B → K+K−K0
S decays, the electron-

positron collision events at Υ(4S) resonance are collected by Belle II experiment. The
collected events corresponds to integrated luminosity 361.6 ± 3.9fb−1[23], and contains
(387±4)×106 BB̄ pairs. For analysis using Monte Carlo simulation, events corresponding
to 1 ab−1 are generated for each event type of uū, dd̄, ss̄, cc̄, B+B− and B0B̄0 decays.

5.4 Event reconstruction and selection

In this section, the event reconstruction and selection criteria are explained. The list of
the cut criteria is shown in Table. 7. In the analysis we are only concerned with hadronic
events, and thus events originating from Bhabha scattering need to be vetoed. An event
is identified as a Bhabha event by satisfying all the following condition:

• The number of good tracks with pt > 0.2 GeV/c, |d0| < 2 cm and |z0| < 4 cm is
two or more, where pt is the transverse momentum of a track, d0 is the distance
between a track and interaction point in r − ϕ plane, and z0 is the z coordinate of
the closest point of a track against interaction point.

• The maximum opening angle between two charged tracks in the CMS frame of e+e−

is larger than 2.88 radian.

• The number of tracks identified as electron is one or more.

• The number of tracks with p∗/Ebeam > 0.35, where p∗ and Ebeam are the momentum
of a track and beam energy in the CMS frame of e+e−, is two or more.

• The total energy of ECL clusters is more than 4 GeV.

The Bhabha events satisfying those conditions are rejected, and in addition to that we
require existence of three or more good tracks in order to identify a event to be hadronic
event.

K± selection

For K± selection, the selection with |d0| < 0.5cm and |z0| < 2.0cm are applied. For
particle identification, tight requirements are set for K± as kaonID > 0.6, where kaonID
is the particle identification for each particle to be K±, in order to reject possible peaking
background from BB̄ background due to mis-identification of K± from ohter particles,
especially π±. The kaonID is defined as

kaonID =
LK∑

i=e,µ,π,K,proton,deuteron Li
, (87)

where Li is the likelihood of a particle to be each charged hadron and lepton [6]. The
K± selection efficiency against the mis-identification rate of π± to K± is evaluated using
MC dataset as shown in Fig. 28. For the cut with kaonID > 0.6, we have 76.8% selection
efficiency with 1.3% mis-identification rate of π± to K±.
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Figure 28: The K± selection efficiency against the mis-identification rate of π± to K±

evaluated with MC simulation.

K0
S reconstruction, selection

K0
S is reconstructed fromK0

S → π+π− decay with conditions of 0.485 < mK0
S
< 0.515GeV/c2

and the flight length of K0
S to be larger than 0.05 cm. Additional cut for K0

S candidates
is applied based on a multivariate classification technique known as FastBDT[25]. In
order to achieve higher performance for selecting K0

S, mva-based selection method called
KsSelector is developed. The KsSelector consists of two FastBDT: V0Selector and Lamb-
daVeto. The V0Selector FastBDT discriminate long-lived true K0

S from mis-reconstructed
fake K0

S which tend to originate from interaction point. The LambdaVeto FastBDT dis-
criminate true K0

S from Λ using variables including different mass-hypothesis for K0
S

daughter π±. The full list of variables for those FastBDT training is listed in Table. 4
and Table. 5. The distributions of the multivariate analysis output for V0Selector and
LambdaVeto in 1 ab−1 training MC dataset are shown in Fig. 29 and Fig. 30. The cut
condition mva(V0Selector) > 0.90,mva(LambdaVeto) > 0.11 are then applied so that the
figure of merit in terms of the number of trueK0

S against the number of remaining fake K0
S

is maximized. As a result of those K0
S selection, we obtained 89.0% signal K0

S selection
efficiency with 0.45% background K0

S efficiency for the selection using ksSelector.
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Figure 29: The output distribution of the V0Selector algorithm for true K0
S (Blue) and

mis-reconstructed K0
S excluding Λ (Red).

Figure 30: The output distribution of LambdaVeto algorithm for true K0
S (Blue) and Λ

which is mis-reconstructed as K0
S (Red).

CP-side B0 reconstruction and selection

CP-side B candidates, or BCP , are reconstructed from B → K0
SK

+K− decay with vertex
fitting method called TreeFitter [28], where B decay vertex is constrained to IP. Here we
require tracks which are used for vertex fitting to have VXD hits sufficient for TreeFitter
requirement. The decay vertex of a BCP is constrained to the region extrapolated from
interaction point region along the momentum of BCP . The concept of vertex fitting for
BCP is shown in Fig. 31, where pBCP

is the momentum of BCP . All the kinematics of
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Variable Description
cosVertexMomentum The angle between K0

S vertex and K0
S momentum

FlightDistance Flight Distance of K0
S

significanceOfDistance Significance of the distance between K0
S vertex

and interaction point
cosHelicityAngleMomentum The angle between

momentum difference of π± in K0
S rest frame

and K0
S momentum in lab frame

ImpactXY The distance between K0
S vertex and IP in the xy plane

decayAngle(i) (i=0,1) The angle between momentum of daughter π± and K0
S

in K0
S rest frame

daughterAngleDiffInMother The angle between π+ and π− in K0
S rest frame

daughtersDeltaZ The difference of z position between π+ and π−

drπ± Track parameter of π+ and π−

nSVDHitsπ± The number of hits in SVD for π+ and π−

nCDCHitsπ± The number of hits in CDC for π+ and π−

Table 4: Variables used for V0Selector algorithm, which mainly discriminate true K0
S

from mis-reconstructed K0
S originating from IP.

Variable Description
protonIDπ± Particle identification of π± for proton
MΛ The mass of K0

S assuming proton mass hypothesis for π+

MΛ̄ The mass of K0
S assuming proton mass hypothesis for π−

pπ± The momentum for each π±

cosThetaπ± The cos θ for each π± defined as the polar angle of momentum

Table 5: Variables used for LambdaVeto algorithm, which mainly discriminate true K0
S

from Λ.

daughter particles are updated using the fitting result for vertex position. CP-side B
candidates satisfying |∆E| < 0.2GeV and 5.2 < Mbc < 5.3GeV/c2 is then adopted,
where Mbc and ∆E are defined as

Mbc =
√
E2

beam − p∗2B , (88)

∆E = E∗
B − Ebeam. (89)

Here Ebeam and p∗B is the beam energy and momentum of CP-side B meson in the center-
of-mass frame, and E∗

B is the reconstructed B meson energy in the center-of-mass frame.
Each candidate is ranked by B vertex quality χ2 and used for selecting best B candidate
when there exists multiple candidate for CP-side B meson within one event.

In this analysis, the region |∆E| < 0.05GeV and 5.27 < Mbc < 5.29GeV/c2 is defined
as a signal region, and the region |∆E| < 0.2GeV and 5.2 < Mbc < 5.26GeV/c2 is defined

43



Figure 31: The concept of vertex fitting for the CP-side B candidates.

Figure 32: The concept of vertex fitting for the tag-side B candidates.

as a side-band region.

Tag-side B0 reconstruction

Tag-side B meson, or Btag, are reconstructed using remaining tracks and clusters which
are not used for the reconstruction of CP-side B meson. The condition |d0| < 0.5cm, |z0| <
2.0cm, p ≧ 0.05GeV/c and the existence of hits in CDC and SVD are required for tracks
to be used for vertex fitting of Btag. The Btag is then reconstructed using KFit algorithm
with tube constraint. The concept of vertex fitting for Btag is shown in Fig. 32. In the
fitting with tube constraint, the Btag vertex position is constraint to the tube region along
the Btag flight direction extrapolated from the intersection region of interaction point and
BCP vertex.

Additional tag-side vertex quality cuts are applied as σ∆t < 2 ps,TagVpValue > 0 and
TagVNDF > 0.5, where σ∆t is the error in the estimation of decay time difference between
BCP and Btag, TagVpValue and TagVNDF is the p-value and the degree of freedom of
the Btag vertex fitting.

Flavor tagging

The flavor of Btag is determined by identifying signatures through flavor-specific final
states, as briefly mentioned in Sec. 5.1. In this section, we elaborate on the particle
reconstruction process used for flavor tagging. To determie the flavor of B mesons, we
employ multivariate algorithms utilizing a category-based flavor tagger [4] in this analysis.
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Figure 33: The list of tagging categories along with their corresponding targets (left) and
the considered decay modes for each category (right) [4]. The parameter p∗ represents
the momentum in the center-of-mass frame, l± corresponds to charged leptons, and X
denotes other potential particles involved in the decays.

This involves first categorizing the information related to the decay products of the B
mesons and subsequently combining it to determine the flavor.

In the initial stage, kinematics, track hits, and Particle IDentification information
(PID) are utilized as input values for each track. These are employed to identify particles
among the candidates for the tag-side decay product, as listed in Fig. 33. For all categories
except for the Maximum-p∗ category, PID variables are employed. In the case of the
Maximum-p∗ category, PID variables are determined based on PID likelihoods for charged-
particle hypotheses.

In the subsequent step, the category information obtained in the first step is integrated
using the schematics presented in Fig. 34. The multivariate algorithm employed is based
on FastBDT [25] classifiers. For each event, the decay products are categorized according
to flavor signatures such as e, µ, K, π, and Λ, denoted by the green box in Fig. 34.
The FBDT classifier calculates the qr value for each event, with the category information
serving as input variables.

5.5 Charmed Veto

The contribution of the charmed decay of B mesons through the b → c transition adds
to the background component originating from BB̄ background. Consequently, it is nec-
essary to reject this contribution in the analysis by applying cuts on the invariant mass
of K+K−, K+K0

S, and K−K0
S. Table. 6 illustrates the charmed decays that are vetoed

in this analysis through the application of the invariant mass cut. The B0 → χc0K
0
S

decay channel, however, is not vetoed in this analysis due to the substantial width of χc0 .
Instead, it is included in the CP fitting procedure, with the CP asymmetry parameters
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Figure 34: A schematic representation illustrating the second stage of the category-based
flavor tagger [4].
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of B0 → χc0K
0
S fixed to the Particle Data Group (PDG) value [17] in the CP fitting.

The potential BB̄ background resulting from the mis-identification of B meson daughter
particles is rejected by applying stringent kaonID criteria and therefore not vetoed in this
analysis.

Mode Vetoed Mass
B0 → D−(→ K0

SK
−)K+ |mK±K0

S
−mD− | < 15MeV/c2

B0 → D−
s (→ K0

SK
−)K+ |mK±K0

S
−mD−

s
| < 15MeV/c2

B0 → D̄0(→ K+K−)K0
S |mK+K− −mD0 | < 15MeV/c2

Table 6: Charmed decays to be vetoed in this analysis by applying cut to the invariant
mass between two of the B meson daughters.

5.6 Continuum suppression

In order to reject contribution from qq̄ background events, FastBDT is trained using
variables representing event shape. The following variables are used for training :

• KSFW variables [9] : R2,M2
miss, Et, H

so
ij (i = 0, 1, 2 : j = 0, 2, 4), Hoo

i (i = 0, 1, 2, 3, 4).
The definition of these variables are given in Appendix B.

• cosTBTO : Cosine of the angle between BCP and Btag thrust axes

• cosTBz : Cosine of the angle between BCP thrust axis and z axis

• thrustOm : the magnitude of Btag daughters thrust

The thrust axis is defined as a unit vector t maximizing the thrust magnitude T defined
as

T =

∑
i |pi · t|∑
i pi

, (90)

where pi is a momentum of a daughter track of BCP or Btag, and i denotes all daughter
tracks of BCP or Btag. The FastBDT is trained with a sample consists of 20000 true
samples from signal MC Dalitz events and 40000 false samples coming from qq̄ continuum
event. The checking of over-training is checked using independent sample than the sample
used for FastBDT training. The result of training and over-training check is shown in
Fig. 35 and Fig. 36. The cut threshold for the FastBDT output OCS are calculated to be
0.55 as a value which maximize nsig/

√
nsig + nbkg.
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Figure 35: The result of continuum suppression FastBDT along with over training check
and the distribution of multivariate output for signal event (Blue) and qq̄ background
events (Red).

Figure 36: The plot of efficiency and purity of the continuum suppression FastBDT (left),
and the true/false positive rates (right).
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Figure 37: The relation between the threshold of continuum suppression FastBDT output
and the figure of merit defined as FoM = nsig/

√
nsig + nbkg.

5.7 Summary of event selection and reconstruction

The summary of all the cut criteria is shown in Table. 7. The breakdown of selection
efficiency for each cut criteria are shown in Table. 8. The remaining number of event
after all the cut in this section is listed in Table. 9, and the selection efficiency for signal
events is estimated to be 14.25 ± 0.04 %. The tracking efficiency of charged particle
including detector acceptance is expected to be 0.85 ∼ 0.9 for high momentum region
with pT > 1GeV and 0.7 ∼ 0.8 for low momentum region with pT < 1GeV [39], where pT
is the transverse momentum of a track. We need all the daughter particles of BCP to be
reconstructed, leading to the dominant contribution to the signal reconstruction efficiency
for the pre-selection step in Table. 9.
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Pre-selection
K± |d0| < 0.5cm

|z0| < 2.0cm
kaonID > 0.1

K0
S 0.485 < mK0

S
< 0.515GeV/c2

flightLength > 0.05cm
BCP 5.2 < Mbc < 5.3GeV/c2

|∆E| < 0.2GeV
χ2 > 0

Btag TagVpValue > 0
TagVNDF > 0.5

Selection
Vertex quality σ∆t < 2 ps
ksSelector mvaV0Selector > 0.90

mvaLambdaVeto > 0.11
K± kaonID > 0.6
Charmed Veto |mK±K0

S
−mD− | < 15MeV/c2

|mK±K0
S
−mD−

S
| < 15MeV/c2

|mK+K− −mD0 | < 15MeV/c2

Best Candidate Selection largest χ2

Continuum Suppression O > 0.55

Table 7: List of selection criteria applied for the reconstruction of event candidates in this
analysis.

Signal Dalitz MC Background MC Real Data
Pre-Selection 100.00 100.00 100.00
σ∆t < 2ps 98.23 (98.23) 98.42 (98.42) 98.35 (98.35)

K0
S Selection 94.81 (96.52) 82.74 (84.07) 78.13 (79.44)

kaonID > 0.6 78.95 (83.27) 53.93 (65.18) 45.65 (58.43)
Charmed Veto 75.99 (96.25) 52.10 (96.61) 44.13 (96.67)

Best Candidate Selection 74.75 (98.37) 50.71 (97.33) 43.18 (97.85)
Continuum Suppression 58.90 (78.80) 6.13 (12.09) 7.37 (17.07)

Signal Region Cut 58.09 (98.62) 0.23 (3.75) 0.52 (7.06)

Table 8: The breakdown of the selection efficiency for each cutting criteria for signal
MC, generic background MC and real data in the unit of %. The number in a bracket
represents the selection efficiency for each cut criteria.
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Selection Criteria 1 ab−1 background MC 1M signal Dalitz MC
PreSelection 763043 245229
All the cuts 1755 142454

Table 9: The remaining number of event after all the event selection for 1 ab−1 background
MC and 1M signal Dalitz MC. The criteria for Pre-selection is shown in Table. 7.
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6 Signal Extraction Fitting

After all the event selection and reconstruction explained in Section.5, there still exists
background events originating from qq̄ or BB̄ decays in addition to signal events. In
order to calculate expected number of yield for each qq̄, BB̄ and signal event, the signal
extraction fitting is performed. In this section, the method to estimate signal yield and
event-by-event fraction is explained, which is used in the CP fitting procedure later in
Sec. 7 .

6.1 Method to extract event fraction

In order to obtain event-by-event fraction and the yield of signal, qq̄ and BB̄ events,
simultaneous fitting to Mbc, ∆E and qr-bin are performed. The event distributions for
the Mbc and ∆E before or after event selection are shown in Fig. 38. The simultaneous
fit is then executed by extended maximum likelihood fit with the following PDF,

(a) Mbc before selection (b)

(c) (d) ∆E after selection

Figure 38: Distribution of Mbc or ∆E for 361.6 fb−1 real data. The left figures represents
distribution with only pre-selections, and the right figures represents distribution with all
cuts including continuum suppression.

Pext
total(x⃗, l) = Nsigf

ext,l
sig Pext

sig (x⃗) +Nqqf
ext,l
qq̄ Pext

qq̄ (x⃗) +NBB̄f
ext,l

BB̄
Pext
BB̄(x⃗) (91)

where x⃗ = (Mbc,∆E), l is the qr-bin determined by flavor tagging, Nsig, Nqq̄, NBB̄ is the

total number of yield for each event type, and f ext,l
sig , f ext,l

qq̄ , f ext,l

BB̄
is the fraction of the

number of event in qr-bin l for each event type. The individual yield of each event type
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for qr-bin l is then given as
N l
x = Nxf

ext,l
x (92)

where x = sig, qq̄, or BB̄. The PDF modelling of (Mbc,∆E) is common for all the qr-bin
[0-6] in this analysis.

6.2 Models of PDF

In this subsection, PDF modelling for each event type are described. The summary of
the (Mbc,∆E) modeling is listed in Table. 10

Mbc ∆E

Signal Double Gaussian Double Gaussian

qq̄ Argus First Order Polynomial

BB̄ Argus+Gaussian Second Order Polynomial

Table 10: PDF models of signal, qq̄ and BB̄, which is used for signal extraction fit.

Signal events

For signal event, PDF is defined as

Pext
sig (x⃗) = (GMbc

main(Mbc;µ
Mbc
main, σ

Mbc
main) + fMbc

tail G
Mbc
tail (Mbc;µ

Mbc
tail , σ

Mbc
tail ))

×(G∆E
main(∆E;µ

∆E
main, σ

∆E
main) + f∆E

tailG
∆E
tail(∆E;µ

∆E
tail , σ

∆E
tail ))

(93)

where both Mbc and ∆E are modeled as a double Gaussian. The parameters for tail
fraction and tail Gaussian are fixed to the values obtained by fitting to 1M signal only
Dalitz MC samples. The main Gaussian parameters are obtained in the simultaneous
fitting to the real data.

qq̄ background events

For qq̄ background events, PDF is defined as

Pext
qq̄ (x⃗) = Argus(Mbc;mqq̄, kqq̄)× Pol1(∆E; p1qq̄) (94)

where Mbc is modeled as an Argus function [5] and ∆E is modeled as a first order poly-
nomial. The Argus function is defined as

Argus(m;m0, k) = N ·m ·

√
1−

(
m

mo

)2

· exp

(
k ·

(
1−

(
m

mo

)2
))

. (95)

The shape parameters for qq̄ background are determined by the simultaneous fitting to
the real data.
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BB̄ background events

For BB̄ background events, PDF is defined as

Pext
BB̄(x⃗) = (Argus(Mbc;mBB̄, kBB̄) + fBB̄G GMbc

BB̄
(Mbc;µ

Mbc

BB̄
, σMbc

BB̄
))× Pol2(∆E; p1BB̄, p2BB̄)

(96)
where Mbc is modeled as the sum of Argus function and Gaussian, due to the peaking
BB̄ background component. ∆E distribution is modeled as a second order polynomial.
The parameters for BB̄ background shapes are fixed to the value obtained by fitting to
1 ab−1 MC dataset due to the small statistics of BB̄ background events in the real data.
In addition to the PDF parameters, the event fraction f ext,l

BB̄
is fixed to the value obtained

from 1ab−1 background MC dataset.

PDF parameters from fitting to MC samples

In order to determine part of PDF parameters, fitting to (Mbc,∆E) distribution with 1M
signal MC samples and 1 ab−1 background MC are performed. Here free parameters to
be fitted is Nsig,qq̄,BB̄, f

ext,l
sig,qq̄ in addition to Pext

sig,qq̄ parameters. The comparison between
(Mbc,∆E) distribution and fitted PDF for all qr-bin region is shown in Fig. 40, and the
fitted PDF parameters are listed in Table. 11.

6.3 Validation of signal extraction fit with Toy MC

The signal extraction fitting is then performed using unbinned maximum likelihood by
minimizing log-likelihood defined as

−2 logL = −2
∑
i

log(P ext
total(x⃗)) (97)

The fitting procedure of signal fraction is validated using Toy MC study. 150 Toy
MC datasets are generated based on the PDF described above. The mean and sigma of
the pull distribution of the fit result of f ext,l

sig and f ext,l
qq̄ from nominal values are shown

in Fig. 39. For all the event fractions to be fitted in the simultaneous fitting, the pull
distribution of the fit result are consistent with normal distribution.

6.4 Signal extraction fit to real data

The simultaneous fitting are performed to the real dataset with 361.6fb−1, where part of
the PDF parameters is fixed to the value obtained by fitting to MC dataset as mentioned
in Sec. 6.2. The result of the fitting parameters and parameters fixed from MC is shown
in Table. 12. The yield of each event type is shown in Table. 13 and Table. 14. The
comparison between event distribution and fitted PDF are shown in Fig. 41, Fig. 42, and
Fig. 43. The comparison of the event distribution in signal region and the PDF shapes
projected to signal region is shown in Fig. 44. As seen in Fig. 44, no bias between event
distribution and projected PDF was observed in the signal region, and thus event fractions
in the signal region is correctly estimated by fitting to all the events including side-band
region.
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Figure 39: The result of the linearity check of signal extraction fitting procedure using
Toy MC study. The left (right) figures shows the mean (σ) of the pull distribution of the
fitted event fraction f ext,l

sig and f ext,l
qq̄ obtained by Gaussian fitting to the pull distribution.
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(a) Mbc for signal event (b) ∆E for signal event

(c) Mbc for qq̄ event (d) ∆E for qq̄ event

(e) Mbc for BB̄ event (f) ∆E for BB̄ event

Figure 40: Distribution of Mbc and ∆E for MC datasets with fitted PDF for signal, qq̄
and BB̄ event respectively. The solid line represents fitted PDF, and the dotted line in
signal events represents one of Gaussian component among the double Gaussian.
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Parameter Fit result
Signal Event

µMbc
main 5.2797±0.0000 GeV/c2

σMbc
main 0.0025±0.0000 GeV/c2

µMbc
tail 5.2775±0.0030 GeV/c2

σMbc
tail 0.0029±0.0005 GeV/c2

fMbc
tail 0.2403±0.0500
µ∆E
main -0.0013±0.0002 GeV
σ∆E
main 0.0214±0.0004 GeV
µ∆E
tail -0.0010±0.0003 GeV
σ∆E
tail 0.0245±0.0004 GeV
f∆E
tail 0.2710±0.0420

qq̄ Event
mqq̄ 5.2898±0.0005 GeV/c2

kqq̄ -19.8969±0.9557
p1qq̄ -0.8163±0.0730

BB̄ Event

µMbc

BB̄
5.27945±0.0004 GeV/c2

σMbc

BB̄
0.0039±0.0005 GeV/c2

kBB̄ -54.4695±4.9340
p1BB̄ -5.19385±0.3704
p2BB̄ 19.8175±3.4388 (GeV/c2)−1

fBB̄G 0.8086±0.0236

Table 11: The list of parameters describing PDF for signal extraction fitting, calibrated
with 1 ab−1 MC dataset for qq̄ and BB̄ background, and 1M signal MC for signal event.

(a) Mbc qr-bin 0 (b) ∆E qr-bin 0

Figure 41: Distribution of Mbc and ∆E summed over all qr-bin and including both signal
region and side-band region. The dot, dashed and solid line represents qq̄,BB̄, and signal
yield respectively. The bottom plot represents pull of the event distribution from fitted
PDF.
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Parameter Fit result
Signal Event

µMbc
main 5.2797±0.0001 GeV/c2

σMbc
main 0.0024±0.0001 GeV/c2

µMbc
tail 5.2775 GeV/c2

σMbc
tail 0.0029 GeV/c2

fMbc
tail 0.2403
µ∆E
main 0.0027±0.0053 GeV
σ∆E
main 0.0289±0.0049 GeV
µ∆E
tail -0.0010 GeV
σ∆E
tail 0.0245 GeV
f∆E
tail 0.2710

qq̄ Event
mqq̄ 5.2889±0.0005 GeV/c2

kqq̄ -15.3462±1.2870
p1qq̄ -0.7792±0.0840

BB̄ Event

µMbc

BB̄
5.27945 GeV/c2

σMbc

BB̄
0.0039 GeV/c2

kBB̄ -54.4695
p1BB̄ -5.19385
p2BB̄ 19.8175(GeV/c2)−1

fBB̄G 0.8086

Table 12: The list of shape parameters used for signal extraction fit obtained by simulta-
neous fitting to the 361.6 fb−1 real data. The errors is statistics. Values without statistical
error is fixed to the value calibrated using MC sample as listed in Table. 11.

All Region Signal qq̄ BB̄
qr-bin 0 95.1±11.7 3077.5±57.1 154.1±37.2
qr-bin 1 82.5±10.8 3018.2±56.4 136.3±32.9
qr-bin 2 106.6±12.2 2887.4±55.2 137.6±33.2
qr-bin 3 90.9±11.1 2220.2±48.5 110.2±26.6
qr-bin 4 75.3±10.2 1813.5±43.9 95.5±23.1
qr-bin 5 63.4±9.3 1365.7±38.3 91.7±22.2
qr-bin 6 119.3±11.6 513.9±25.2 123.5±29.9
Total 633.2±29.2 14896.5±126.0 848.9±205.1

Table 13: The number of event yields for each event type obtained by signal extraction
fit to 361.6 fb−1 real data. This table includes both signal region and side-band region.
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Signal Region Signal qq̄ BB̄
qr-bin 0 92.9±11.4 98.3±1.9 11.7±2.8
qr-bin 1 80.6±10.6 97.8±1.8 10.4±2.4
qr-bin 2 104.1±11.9 93.6±1.8 10.5±2.5
qr-bin 3 88.8±10.8 72.0±1.6 8.5±2.0
qr-bin 4 73.6±10.0 58.8±1.4 7.3±1.7
qr-bin 5 61.9±9.1 44.3±1.2 7.0±1.6
qr-bin 6 118.6±11.3 16.7±0.8 9.4±2.2

Total 620.5±28.5 481.4±4.1 64.8±15.2

Expected from MC 708.5 600.0 35.1

Table 14: The number of event yields for each event type obtained by signal extraction
fit to 361.6 fb−1 real data. This table includes only signal region.
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(a) Mbc qr-bin 0 (b) ∆E qr-bin 0

(c) Mbc qr-bin 1 (d) ∆E qr-bin 1

(e) Mbc qr-bin 2 (f) ∆E qr-bin 2

(g) Mbc qr-bin 3 (h) ∆E qr-bin 3

Figure 42: Distribution of Mbc and ∆E for qr-bin 0-3 including both signal region and
side-band region. The dot, dashed and solid line represents qq̄, BB̄, and signal yield
respectively. The bottom plot represents pull of the event distribution from fitted PDF.
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(a) Mbc qr-bin 4 (b) ∆E qr-bin 4

(c) Mbc qr-bin 5 (d) ∆E qr-bin 5

(e) Mbc qr-bin 6 (f) ∆E qr-bin 6

Figure 43: Distribution of Mbc and ∆E for qr-bin 4-6 including both signal region and
side-band region. The dot, dashed and solid line represents qq̄, BB̄, and signal yield
respectively. The bottom plot represents pull of the event distribution from fitted PDF.
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(a) Mbc qr-bin 0 (b) ∆E qr-bin 0

(c) Mbc qr-bin 1 (d) ∆E qr-bin 1

(e) Mbc qr-bin 2 (f) ∆E qr-bin 2

(g) Mbc qr-bin 3 (h) ∆E qr-bin 3

Figure 44: Distribution of Mbc and ∆E for qr-bin 0-3 projected to signal region. The dot,
dashed and solid line represents qq̄, BB̄, and signal yield respectively. The bottom plot
represents pull of the event distribution from PDF.
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(a) Mbc qr-bin 4 (b) ∆E qr-bin 4

(c) Mbc qr-bin 5 (d) ∆E qr-bin 5

(e) Mbc qr-bin 6 (f) ∆E qr-bin 6

Figure 45: Distribution of Mbc and ∆E for qr-bin 4-6 projected to signal region. The dot,
dashed and solid line represents qq̄, BB̄, and signal yield respectively. The bottom plot
represents pull of the event distribution from PDF.
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7 CP Fitting

In this section, we first provide the modelling of ∆t distribution for each signal, qq̄ and
BB̄ event type, which is critical for the measurement of CP asymmetries through ∆t
distribution. Then the full PDF to extract CP violating parameters is introduced.

7.1 ∆t modeling

Signal event

For signal resolution function, we adopt the ∆t resolution function which is developed
and calibrated for B0 → D(∗)−π− and B0 → J/ψK0

S decay channels [20]. The resolu-
tion function consists of a double Gaussian with exponentially decaying tails and outlier
Gaussian, which is written as

Rsig(δ∆t; σ∆t) = (1− fOL)Rcore(δ∆t; σ∆t) + fOLROL(δ∆t; σ∆t) (98)

where δ∆t is defined as the difference between measured ∆t and true ∆t′ defined as
δ∆t ≡ ∆t−∆t′, and fOL is the fraction of outlier. Rcore is expanded to

Rcore(δ∆t; σ∆t) =(1− ftail)G(δ∆t;µmainσ∆t, smainσ∆t)

+ (1− fexp)ftailG(δ∆t;µtailσ∆t, stailσ∆t)

+ fexpftailG(δ∆t;µtailσ∆t, stailσ∆t)

⊗ (1− fR) exp−(δ∆t/(cσ∆t)) + fR exp+(−δ∆t/(cσ∆t))

(99)

where σ∆t is the uncertainty of ∆t measurement from vertex fitting quality and exp+(x) =
exp(x) where x > 0, and similar for exp−(x). The tail fraction ftail is a function of σ∆t as

ftail(σ∆t; fmax, fµ, fσ) =
1

2
fmax

(
erf

(
fµ

fσ
√
2

)
− erf

(
fµ − σ∆t

fσ
√
2

))
, (100)

where the error function erf(x) is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (101)

The outlier of the resolution function ROL(δ∆t; σ∆t) is described as a Gaussian with
mean 0 and width independent of σ∆t as

ROL(δ∆t; σ∆t) = G(δ∆t; 0, σOL) (102)

All the parameters for the resolution function are common for qr-bin = [0, 5] region,
expect for the qr-bin = 6 region where c, fexp, fR, µmain and µtail are allowed to be indepen-
dent from parameters for qr-bin = [0, 5] region. The list of resolution function parameters
calibrated for B0 → D(∗)−π− decay channels with 1 ab−1 MC dataset and 361.6 fb−1 real
data is shown in Table. 15.
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Parameter MC15ri [1 ab−1] Data [361.6 fb−1]

µmain (-0.1561 ± 0.0271) (-0.0658 ± 0.0389)
µ6
main (-0.0756 ± 0.0586) (-0.0263 ± 0.0854)
µtail (-0.7940 ± 0.1036) (-0.7604 ± 0.1887)
µ6
tail (-0.7280 ± 0.1975) (-0.5369 ± 0.3238)
σmain (1.1875 ± 0.0335) (1.0588 ± 0.0544)
σtail (2.4129 ± 0.1318) (2.4328 ± 0.2466)
fmax (0.3074 ± 0.0251) (0.2868 ± 0.0432)
c 4.2767 4.2767
c6 3.9239 3.9239
fR 0.2478 0.2478
f 6
R 0.2454 0.2454
fexp 0.2097 0.2097
f 6
exp 0.2216 0.2216
fµ 0.2361.6 0.2361.6
fσ 0.0934 0.0934
fOL 0.0001 0.0001

Table 15: Resolution function parameters calibrated for B0 → D(∗)−π− decay channel
[20]. The fitting parameters without uncertainty is fixed from the fitting to ∆t residual
fit.

qq̄ background event

For qq̄ background event, the following function is used to describe ∆t distribution :

Pqq̄(∆t) = ((1− fδ)
1

2τ
exp(−|∆t− µ|

τ
) + δ(∆t− µ))

⊗ ((1− ftail)G(∆t; 0, smainδ∆t) + ftailG(∆t; 0, stailδ∆t))
(103)

where the double Gaussian is convoluted with the sum of exponentially decaying term and
delta function. In this parametrization, fδ, ftail, µ, τ, smain and stail is floated, and fitted
to 1 ab−1 MC or ∆t side-band region of 361.6 fb−1 real data. The comparison of fitted
Pqq̄(∆t) against event distribution for MC and real data are shown in Fig. 46. The fitting
result of 6 parameters are shown in Table. 16 and Table. 17.

BB̄ background event

For BB̄ background event, the same resolution function as signal events is adopted, but
with smaller lifetime as

PBB̄(∆t) =
1

2τ
exp(−|∆t|

τ
)⊗Rsig(δ∆t; σ∆t) (104)

where τ is a parameter to be fitted to 1 ab−1 MC. Due to low statistics in data, the ∆t
modeling for BB̄ background is fixed to the value obtained by fitting to MC. The fitting
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(a) MC (b) Data

Figure 46: Fit result of ∆t distributions to qq̄ continuum events for 1 ab−1 MC dataset
(left) and 361.6 fb−1 side-band data(right). The upper figures shows the comparison
between event distribution and fitted PDF, and bottom figures shows the pull distrubiton
of event distribution from PDF line shape.

Fit result

fδ 0.973 ± 0.004
ftail 0.190 ± 0.011
µ [ps] -0.006 ± 0.003
τ [ps] 2.164 ± 0.141
σmain [ps] 1.243 ± 0.014
σtail [ps] 3.265 ± 0.111

Table 16: The parameters of ∆t distribution function for qq̄ background events calibrated
for 1 ab−1 MC15 data sample.

to MC dataset is done for B0B̄0 mixed MC and B+B− charged MC respectively, and the
fitting parameter τ is obtained to be τmixed = 1.29 ± 0.03 ps and τcharged = 1.31 ± 0.03 ps
respectively as shown in Fig. 47.

7.2 Lifetime fitting

For the lifetime fitting including background events, PDF for maximum likelihood is
expressed as

P(∆t; σ∆t, l) = f lsigRsig(∆t; σ∆t)⊗
1

2τB0

exp(−|∆t|
τB0

) + f lqq̄P
qq̄(∆t) + f lBB̄P

BB̄(∆t) (105)

where τB0 is the fitting parameters representing the lifetime of B0, l is the qr-bin for each
event, and f lx(x = sig, qq̄, BB̄) is the event fraction obtained by signal extraction fit. The
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Fit result

fδ 0.935 ± 0.007
ftail 0.160 ± 0.017
µ [ps] -0.004 ± 0.003
τ [ps] 1.896 ± 0.104
σmain [ps] 1.210 ± 0.019
σtail [ps] 3.086 ± 0.201

Table 17: The parameters of ∆t distribution function for qq̄ background events calibrated
for 361.6fb−1 real data.

(a) BB̄ background (b) B+B− background

Figure 47: Fit result of ∆t distributions to mixed(left) or charged (right) background
events for 1 ab−1 MC dataset. The upper figures shows the comparison between event
distribution and fitted PDF, and bottom figures shows the pull distrubiton of event dis-
tribution from PDF line shape.

event fraction f lsig, f
l
qq̄ and f

l
BB̄

are calculated for each event as

f lx =
N l
xPext

x (Mbc,∆E, l)∑
x=sig,qq̄,BB̄ N

l
xPext

x (Mbc,∆E, l)
(106)

where N l
x is the number of event of each event type in the given qr bin and calculated

using the result of signal extraction fitting.

7.2.1 Validation using ToyMC

In order to check the validity of the resolution function for this B0 → K+K−K0
S analysis,

lifetime fitting using the signal resolution function to a signal only Dalitz MC samples
are performed with resolution function parameters calibrated for MC dataset as shown in
Table. 15. Here only the B lifetime τfitB0 is floated as a fitting parameter. Then B lifetime
is fitted to be τfitB0 = 1.490 ± 0.033 ps as shown in Fig. 48, which is consistent with MC
input value τB0 = 1.519± 0.007 ps.
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Figure 48: The result of lifetime fitting to signal only MC samples. The line and point
represent fitted PDF and event distribution in MC dataset respectively.

Then we also checked lifetime fitting procedure including qq̄ and BB̄ background using
Toy MC. 500 datasets corresponding to 361.6 fb−1 are generated based on the lifetime
fitting PDF in Eq. 105, and for each dataset residual and pull distribution of the fitted
lifetime τB0 is calculated as shown in Fig. 49. Those distribution is consistent with MC
input values within statistical errors from fitting, and thus the resolution function and ∆t
modeling is describing distribution of ∆t correctly.

Figure 49: The result of Toy MC study of lifetime fitting including background events.
The left figure shows the residual distribution of the lifetime fitting result, and the right
figure shows the pull distribution. The red line represents Gaussian function fitted to
each distribution.

7.2.2 Lifetime fitting to real data

Lifetime fitting to 361.6 fb−1 real data is performed, where signal resolution function or
qq̄ distribution is calibrated for data or data side-band respectively. The result of lifetime
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fitting is shown in Fig. 50 and Table. 18. The B0 lifetime is obtained to be 1.48± 0.09 ps,
which is consistent with PDG average value of B0 lifetime.

Fit Result MC

τB0 [ps] 1.489±0.093 1.519

Table 18: Lifetime fitting result using 361.6 fb−1 real data

7.3 PDF for CP fitting

The event-by-event PDF for extracting CP asymmetry parameters is defined as following:

Ptotal = f lsig(Mbc,∆E, qr)Psig(m
′, θ′,∆t, qr)+

f lqq̄(Mbc,∆E, qr)Pqq̄(m
′, θ′,∆t, qr)+

f lBB̄(Mbc,∆E, qr)PBB̄(m
′, θ′,∆t, qr). (107)

where l is the qr-bin, and f lsig, f
l
qq̄ and f

l
BB̄

is defined as the same way with Eq. 106.

7.3.1 Signal event

For signal events, PDF is written as

Psig(m
′, θ′,∆t, qr)

= ϵ(m′, θ′)|detJ |
(
(1− wl)

dΓ

d∆t
(∆t, qtag) + wl

dΓ

d∆t
(∆t,−qtag)

)
⊗Rsig(∆t)

= ϵ(m′, θ′)|detJ |e
−|∆t|/τB0

4τB0

(
(1− qtag∆wl)

(
|A|2 + |Ā|2

)
−

qtag (1− 2wl)
(
|A|2 − |Ā|2

)
cos∆md∆t+

2qtag (1− 2wl) Im
(
ĀA∗) sin∆md∆t

)
⊗Rsig(∆t) (108)

where decay amplitude |A|2 is defined using isobar model as Eq. 62. The term ϵ(m′, θ′)
represents the reconstruction efficiency of signal events over square Dalitz plane defined
as

ϵ(m′, θ′) =
nrecon

ngen
. (109)

where ϵ(m′, θ′) is implemented as a histogram PDF over square Dalitz plane, and cali-
brated using 1M Dalitz signal MC samples. The MC samples are generated to be dis-
tributing flatly over square Dalitz plane. The square Dalitz plane is then divided into 50
bins for bothm′ and θ′ direction, and the ratio of the number of reconstructed events nrecon

against the number of generated events ngen is calculated for each bin. The calculated
ϵ(m′, θ′) is shown in Fig. 51.
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(a) Fitting to events in qr-bin 0-5

(b) Fitting to events in qr-bin 6

Figure 50: The lifetime fitting results of B0 lifetime to 361.6 fb−1 real data for qr-bin [0-5]
(a) and qr-bin [6] (b). The upper figures show comparison between event distribution and
fitted ∆t PDF, while bottom figures represent pull distribution of event distribution from
fitted ∆t model.
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Figure 51: The result of ϵ(m′, θ′) calibrated using 1M Dalitz signal sample. The whole
square Dalitz plane is divided into 50 bins for both m′ and θ′ and implemented as a
histogram PDF.

The signal PDF is normalized over square Dalitz plot and ∆t, where normalization
factor N is calculated as

N =

∫
sDP

∫
∆t

1

2
(Psig(m

′, θ′,∆t, qr = +1) + Psig(m
′, θ′,∆t, qr = −1))dm′dθ′d∆t (110)

where the normalization for qtag = +1 or qtag = −1 event are set to be equal in order to
enhance the sensitivity of PDF against the direct CP asymmetry. In order to calculate
the normalization factor efficiently, part of the PDF integration in Eq. 110, which is
independent of CP fitting parameters, is calculated beforehand for each event numerically
before CP fitting as

Iij =

∫
sDP

∫
∆t

ϵ(m′, θ′)|detJ |e
−|∆t|/τB0

4τB0

Fi(m
′, θ′)F̄j(m

′, θ′)⊗Rsig(∆t)dm
′dθ′d∆t, (111)

where i and j represents decay channels. Using the result of pre-calculation, the normal-
ization factor N is then calculated by just linearly combining Iij with CP asymmetry
parameters a′i, which is explained in Eq. 62.

7.3.2 qq̄ background event

The PDF for continuum background events are implemented as a histogram PDF written
as

Pqq̄ = Hqq̄(m
′, θ′)Pqq̄(∆t), (112)

where Hqq̄(m
′, θ′) is the histogram PDF of the distribution of events over square Dalitz

plane with 50 bins each. Hqq̄(m
′, θ′) is calibrated using event distribution in the Dalitz
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side-band region of the real data defined as (5.24 < Mbc < 5.29GeV/c2) ∧ (|∆E| <
0.1GeV), which is defined apart from the side-band region used for signal extraction and
∆t calibration. The histogram PDF obtained by the side-band data of 361.6 fb−1 real
data is shown in Fig. 52.

Figure 52: The Hqq̄(m
′, θ′)Pqq̄ distribution obtained from 361.6 fb−1 real data in the re-

stricted side-band region defined as (5.24 < Mbc < 5.29GeV/c2) ∧ (|∆E| < 0.1GeV).

The Dalitz side-band is defined as the narrow range closed to the signal region due
to the difference in the event distribution on square Dalitz plane between signal region
and normal side-band, which is defined as Mbc < 5.26GeV/c2. The m′ distribution
sliced by ∆E is shown in Fig. 53, and there exists large discrepancy of m′ distribution
between |∆E| > 0.1GeV region and |∆E| < 0.1GeV region. The m′ distribution is also
analyzed with real data as shown in Fig. 54, where m′ distribution is compared between
Dalitz side-band region and normal side-band region. We observed large discrepancy of
m′ distribution between those two regions especially at m′ region where non-resonant
component populates, and thus determined to model qq̄ background events from only
Dalitz side-band region.

7.3.3 BB̄ background event

The PDF for BB̄ background events are defined as a histogram PDF written as

PBB̄ = fB+B−HB+B−(m′, θ′)
1 + qtagA

l
B+B−(θ′)

2
PB+B−(∆t)

+ fB0B̄0HB0B̄0(m′, θ′)
1 + qtagA

l
B0B̄0(θ

′)

2
PB0B̄0(∆t), (113)

where HB+B− or HB0B̄0 is the histogram PDF of the background event distribution orig-
inating from B+B− charged pairs or B0B̄0 mixed pairs. The histogram PDF is divided
into 20 bins in each m′ and θ′. The events distributions from 1ab−1 MC dataset are shown
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Figure 53: The scaled m′ distribution for qq̄ background events in MC dataset sliced by
∆E, where each color represents scaled m′ distribution within each of ∆E region having
edge at ∆E = [−0.2, 0.1, 0, 0.1, 0.2]GeV.

Figure 54: The scaled m′ distribution for Dalitz side-band (blue) defined as (5.24 < Mbc <
5.29GeV/c2) ∧ (|∆E| < 0.1GeV) or ∆t side-band (red) defined as Mbc < 5.26GeV/c2 in
real data.
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in Fig. 55 and Fig. 56. The histogram PDF for the CP fitting is then implemented as

HBB(m
′, θ′) = HMC

BB (m′, θ′) +HMC
BB (m′, 1− θ′) (114)

in order to compensate for low statistics and to have the distribution over square Dalitz
plot symmetry over θ′, because the asymmetry along θ′ is taken into account by the
parameter AlB+B− and Al

BB̄
in Eq. 113. fB+B− or fB0B̄0 is the fraction of charged or mixed

background component respectively, and is fixed to fB+B− = 0.5724 or fB0B̄0 = 0.4276,
which is obtained from 1ab−1 MC sample. AB+B− or AB0B̄0 describes the asymmetry of
event distribution over square Dalitz plane according to the qr bin, and calculated as

AlBB(θ
′) =

nqr>0 − nqr<0

nqr>0 + nqr<0

. (115)

The θ′ distribution in each qr bin of B+B− or BB̄ background component is shown in
Fig. 57 and Fig. 58, and each distribution is fitted by a linear function as AlBB(θ

′) =
xi(2θ

′− 1) . Events for high qr bins tends to show large θ′ distribution asymmetry due to
BB background such as particle mis-identification of π± to K±. The effect of the small
statistics of BB background on the determination of PDF parameters will be taken into
the systematic uncertainty. Those PDF parameters for BB̄ background is fixed to the
values obtained from 1ab−1 generic MC sample due to the low statistics in the 361.6fb−1

real data sample.

Figure 55: The HB+B−(m′, θ′) distribution obtained from 1 ab−1 generic MC dataset.
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Figure 56: The HB0B̄0(m′, θ′) distribution obtained from 1 ab−1 generic MC dataset.

Figure 57: The AB+B−(m′, θ′) distribution for each qr bin obtained from 1 ab−1 generic
MC dataset. Each figure shows the raw asymmetry of the number of events with flavor
tagging qr > 0 or qr < 0 in each θ′ bin. Each figure is fitted by a 1 dimension polynomial
and used for CP fitting PDF.

Figure 58: The AB0B̄0(m′, θ′) distribution for each qr bin obtained from 1 ab−1 generic
MC dataset. Each figure shows the raw asymmetry of the number of events with flavor
tagging qr > 0 or qr < 0 in each θ′ bin. Each figure is fitted by a 1 dimension polynomial
and used for CP fitting PDF.
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7.4 CP fitting procedure

In the full PDF as written in Eq. 107, there exists 4 × 7 = 28 parameters describing
decay amplitude and event distribution over square Dalitz plane and ∆t, as described
in Eq. 77. Among those parameters, Dalitz CP asymmetry parameter ci and di for four
decay channels, for fXK

0
S,K

0
S(K

+K−)NR, K
−(K+K0

S)NR andK+(K−K0
S)NR respectively,

are merged into one parameter denoted as cothers and dothers. CP asymmetry parameters
for χc0K

0
S is fixed to the world average of PDG value where ci = 0 and di = 21.5 deg. The

amplitude ai and the phase difference bi is relative parameters, and thus aϕK0
S
and bϕK0

S
is

fixed as a reference for amplitudes and phases for other decay channels. The list of fixed
or floated parameters are shown in Table. 19.

The CP fitting is then performed using unbinned maximum likelihood by minimizing
log-likelihood −2 lnL = −2

∑
i ln(Ptotal(x⃗)), where i runs over all event candidates in the

signal region.
Due to the overlapping of multiple resonances over square Dalitz plane , there are

expected to be multiple local minimums obtained by CP fitting. In order to find best
local minimum, fitting to a single dataset is performed from random initial values of Dalitz
fitting parameters repeatedly, and adopt local minimums to where fit result is converged
from multiple random initial values of fitting parameters.

ai bi ci di

ϕK0
S fix fix float float

f0K
0
S float float float float

χc0K
0
S float float fix fix

fXK
0
S float float float float

K0
S(K

+K−)NR float float
K+(K0

SK
−)NR float float

K−(K0
SK

+)NR float float

Table 19: The list of parameters used for CP fitting.

7.5 CP fitting validation using Toy MC

In order to validate the CP fitting procedure described above, validation of fitting proce-
dure using Toy MC dataset are performed. In order to check the linearity between input
value of a Dalitz fitting parameter cinputi , dinputi and fit result cfiti , d

fit
i , toy MC dataset are

generated based on the CP fitting PDF.
In the Toy MC dataset, the set of Dalitz CP violating parameters for B0 → ϕK0

S

decay channels (cϕK0
S
, dϕK0

S
) are set to (cϕK0

S
= 0, dϕK0

S
= [0, 22.5, 45.0, 67.5, 90]) for dϕK0

S

linearity test, and (cϕK0
S
= [−0.5,−0.25, 0, 0.25, 0.50], dϕK0

S
= 32.2◦) for cϕK0

S
linearity

test. Here the value of dϕK0
S
= 32.2◦ is quoted from the result of previous Belle analysis

[31]. For each set of (cϕK0
S
, dϕK0

S
), 1000 individual datasets corresponding to 361.6fb−1

integrated luminosity are generated, and the CP fitting is performed to obtain the fit
result distribution of (cϕK0

S
, dϕK0

S
).

76



The same linearity check is also conducted for both (cf0K0
S
, df0K0

S
) and (cothers, dothers),

where df0K0
S
is fixed to 30.5◦ for cf0K0

S
linearity test and dothers is fixed to 24.4◦ for cothers

linearity test quoted from the previous analysis.
The result of the linearity check using toy MC is shown in Fig. 59, and no obvious

deviation of the fit result of CP violating parameters from input value are observed. The
possible fit bias due to the CP fitting procedure or low statistics in real data will be
discussed in the systematic uncertainty section.
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(a) cϕK0
S

(b) dϕK0
S
[◦]

(c) cf0K0
S

(d) df0K0
S
[◦]

(e) cother (f) dother[
◦]

Figure 59: The result of linearity validation using toy MC datasets for ϕK0
S, f0K

0
S and

other. Horizontal and vertical axes represents Dalitz CP violating parameters use for the
generation of Toy MC dataset and fitted value of CP violation parameters respectively.
Each point represents the mean and its error of the fit result distribution obtained by
Gaussian fitting.
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8 Systematic Uncertainties

In this section, the possible systematic uncertainty is discussed. In the discussion below,
the systematic uncertainty of the measurement of Dalitz CP violating parameters ci, di is
discussed first, and then the uncertainty of ci and di is converted to that of ϕ1(i) and ACP(i)
followed by the relation as shown in Eq. 79 and Eq. 80, where i = ϕK0

S, f0K
0
S, and other.

The expected sources of systematic uncertainties are listed in Table. 20. The total
systematic uncertainty is calculated as the square root of the squared individual systematic
uncertainties.

Parameter δϕ1 δACP
Decay Mode ϕK0

S f0K
0
S others ϕK0

S f0K
0
S others

Analysis Model
Fit bias 0.74 0.64 0.27 0.015 0.021 0.005
Observable correlation 0.15 0.24 0.13 0.007 0.006 0.006
Fixed Parameters 0.82 0.98 0.75 0.019 0.021 0.014
τd,∆md 0.44 0.40 0.35 0.008 0.007 0.009
BB̄ background 0.17 0.46 0.38 0.011 0.022 0.015
qq̄ background 0.10 0.21 0.19 0.004 0.006 0.009
Multiple Candidate 0.15 0.12 0.12 0.004 0.003 0.003
Tag-side interference 0.54 0.27 0.42 0.004 0.005 0.005

∆t measurement
Detector misalignment 0.19 0.21 0.17 0.009 0.008 0.006
Momentum scale 0.02 0.02 0.02 0.001 0.001 0.001
Beam spot 0.09 0.09 0.09 0.002 0.002 0.002
Kinematic Approximation 0.33 0.27 0.30 0.007 0.006 0.006

Dalitz Model

Non-resonant modeling 0.79 1.22 1.16 0.013 0.019 0.021
Possible resonance 0.50 2.04 0.68 0.004 0.033 0.010
PDF binning 0.18 0.20 0.16 0.005 0.004 0.003
Reconstruction Efficiency 0.03 0.02 0.02 0.000 0.000 0.000

Total 1.69 2.79 1.76 0.035 0.055 0.036

Table 20: Summary Table of all the systematic uncertainty expected in this analysis.

8.1 Systematic for analysis models

8.1.1 Fit bias

The systematic uncertainty due to the CP fitting procedure is estimated using Toy MC
study conducted in the Section 7.5. In order to take the possible fit bias due to the
low statistics into account, the statistics of each Toy MC dataset was set to be equal
with 361.6fb−1 integrated luminosity. For each plot in Fig. 59, the mean of the fit result
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residual µi is calculated by Gaussian fitting. Then µi is fitted by a linear function as
shown in Fig. 60. The systematic uncertainty due to the fit bias is then estimated as the
largest deviation of the linear function from zero within the definition range of each fitting
parameters, where the definition range of Dalitz CP violating parameter is ci = [−1, 1]
and di = [−45◦, 135◦] in this case.

8.1.2 Observable correlation

The systematic uncertainty due to the correlation between observable is estimated. In
the parametrization of observable distribution in signal extraction fitting and CP fit-
ting, there exists possible correlation between observable which is not included into PDF
parametrization as shown in Appendix A. In order to estimated the possible effect of
observable correlation such as Mbc −∆E correlation in the signal event, fully generated
signal MC dataset, where possible correlation between observable are simulated, are gen-
erated 500 times and signal extraction fitting and CP fitting procedures are performed
again. The systematic is then estimated as the mean of the residual distribution for each
CP violating parameter.

8.1.3 Fixed parameters

The following parameters are fixed by MC datasets or fitting to side-band data, in the
process of signal extraction fitting and CP fitting.

• Signal extraction fit : Mbc,∆E shape for qq̄ and BB̄ background events, Mbc,∆E
for signal event.

• ∆t modeling : ∆t shape for qq̄ and BB̄ background events, the resolution function
for signal event.

• Wrong tag fraction : w,∆w

Those fixed parameters are divided into three category as signal extraction fit parame-
ters, ∆t modeling parameters, and wrong tag fraction parameters. In order to estimate
uncertainty due to fixed parameters, the parameters for each category are fluctuated
simultaneously based on the covariance matrix of the fitting result for real data. We re-
peated signal extraction fitting and CP fitting procedure with different fixed parameters
against a same toy dataset, and took a standard deviation of the fitting result ci, di as a
systematic uncertainty due to fixed parameters. The result of systematic uncertainty for
each category is shown in Table. 21.

8.1.4 τd,∆md

The systematic uncertainty due to the uncertainty of the lifetime and mixing frequency
τd and ∆md, which is fixed to the PDG average value in the CP fitting procedure, is
taken into consideration. 500 datasets are generated with different τd and ∆md, which is
fluctuated from PDG average by the statistical error of PDG values[37], and CP fitting
is performed for those datasets with the nominal τd and ∆md values. The systematic
uncertainty is estimated by the standard deviation of the distribution of fitted ci and di.

80



(a) cϕK0
S

(b) dϕK0
S
[◦]

(c) cf0K0
S

(d) df0K0
S
[◦]

(e) cother (f) dother[
◦]

Figure 60: The result of the fit bias estimation using toy MC datasets for ϕK0
S, f0K

0
S

and other. Horizontal and vertical axes represents CP violating parameters use for the
generation of Toy MC dataset and the residual of CP violation parameters respectively.
Each point represents the mean of the residual distribution and its error estimated by
Gaussian fitting.
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Parameter δci δdi
Decay Mode ϕK0

S f0K
0
S others ϕK0

S f0K
0
S others

Signal Extraction Fit 0.30 0.33 0.30 0.005 0.005 0.003
∆t modeling 0.49 0.65 0.40 0.006 0.006 0.004
Wrong tag fraction 0.59 0.66. 0.56 0.006 0.008 0.004

Total 0.82 0.98 0.75 0.009 0.011 0.007

Table 21: The systematic uncertainties for each category of fixed parameters and total
systematic uncertainty in terms of Dalitz CP violating parameters ci and di.

8.1.5 BB̄ background

The systematic uncertainty due to the modeling of BB̄ background are estimated. In the
PDF modeling of BB̄ background, the qr bin dependency of square Dalitz plane distribu-
tion is modeled using 1 ab−1 MC dataset, but mis-modeling of CP characteristics might
lead to the bias in the CP fitting result. CP fitting to a 1ab−1 dataset are performed 500
times with fluctuated CP asymmetries parameters for BB̄ background modeling described
in Eq. 115. The systematic uncertainty is then estimated by the standard deviation of
the fitting result distribution.

8.1.6 qq̄ background

As stated in Sec. 7.3.2, the qq̄ background is modeled by only events in Dalitz side-
band region, but qq̄ background modeled by other region might results in the difference
in the CP fitting result, and thus we included qq̄ background modeling into systematic
uncertainty. To estimate the systematic uncertainty, we performed CP fitting to the real
data with different qq̄ model constructed from region (5.20 < Mbc < 5.29GeV/c2) ∧
(|∆E| < 0.1GeV), where only Mbc region is enlarged from the Dalitz side-band. The
systematic uncertainty is then estimated as the difference in the CP fitting result.

8.1.7 Multiple Candidate

In order to estimated the effect of best candidate selection, CP fitting for the real data
with or without multiple candidate selection are performed. The systematic uncertainty
is estimated by the difference of CP fitting result.

8.1.8 Tag-side interference (TSI)

The interference between CKM-flavored decay and doubly-CKM-suppressed decay affect
the measurement of CP violating parameters when flavor tagging is performed against
coherent B meson pairs originating from Υ(4S)[30]. The systematic uncertainty due to
the TSI is estimated by assuming all the Btag being tagged from hadronic decay modes,
where the effect of TSI on the measurement of CP violating parameter is maximized[19].
We first calculated the systematic uncertainty of SCP and ACP in the quasi-two-body
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approach, and then converted the uncertainty of SCP and ACP back to the uncertainty in
terms of ϕ1 for each of ϕK0

S,f0K
0
S and other component respectively.

8.2 Systematics for ∆t measurement

8.2.1 Detector misalignment

In order to estimate the effect of possible detector alignment, 1M signal MC samples
with the nominal detector alignment and 4 possible misaligned scenario are generated
respectively. CP fitting are performed to those 5 signal only datasets. The systematic
uncertainty is calculated as the maximum deviation of the CP fitting result for mis-aligned
scenarios from the nominal detector alignment.

8.2.2 Momentum scale and Beam spot

Momentum of the reconstructed tracks are calibrated for every bucket, and the variation of
momentum is covered by ±0.1% envelope. However, it is possible that those momentum
have shift from truth value, and thus systematic uncertainty due to the shift in track
momentum is taken into account.

Apart from that, the beam spot parameters are also measured periodically, but there
exist several sources for systematic uncertainty due to beam spot:

• Statistical uncertainty of beam spot measurement with ee→ µµ events

• Fluctuation of the beam spot within the interval of beam spot calibration

• Systematic uncertainty due to the beam spot calibration method.

As a systematic uncertainty for the momentum scale and beam spot, the evaluation of
those systematics in B0 → J/ψK0

S analysis [14] is quoted to this analysis.

8.2.3 Kinematic approximation

The effect of the conversion from ∆t to ∆l is taken into the consideration using MC
study. CP fitting to a signal only MC dataset are performed with or without ∆t → ∆l
approximation as described in Eq. 86, and the difference of CP fitting result are calculated
as the systematic uncertainty.

8.3 Systematic uncertainty from Dalitz modeling

8.3.1 Non-resonant modeling

In the current analysis, the distribution of non-resonant B0 → K+K−K0
S component are

empirically modeled with exponentially decaying model[31], but the possible difference
between modeling of non-resonant component and real data lead to a bias in the CP
fitting result. In order to estimate the effect of non-resonant component modeling onto
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CP asymmetries measurement,, the different non-resonant component modeling are im-
plemented into CP fitting. The parameters for the modeling are quoted from the previous
BaBar analysis [29] where non-resonant component is modeled as :

ANRCP (s12, s23) = (aS0 + aS1x+ aS2x
2) + (aP0 + aP1x+ aP2x

2)P1(cos θ3), (116)

where x ≡ m12 − Ω and Ω is an offset defined as

Ω ≡ 1

2
(mB0 +

1

3
(mK0 + 2mK±)) (117)

and P1 is the first Legendre polynomial. The s12 and s23 denotes the squared invariant
mass of two Kaons. The fitting to the real data is performed with those 2 different
non-resonant component, and the difference of CP fitting result are accounted for as the
systematic uncertainty due to the non-resonant component modeling.

8.3.2 Possible resonance

ϕK0
S, f0K

0
S, fXK

0
S, and χc0K

0
S are included as resonances for this analysis, but there exist

possible resonances as is listed in Table. 22, which is expected to overlap against f0K
0
S

resonance and non-resonant component in the square Dalitz plane. In order to estimate
the effect of the minor resonances which is not included in this analysis on the CP fitting
result, f0(1710)K

0
S and f ′

2(1525)K
0
S are additionally considered into the CP fitting pro-

cedure. The systematic uncertainty is calculated as the difference of CP fitting result to
the real-data with or without the additional minor resonances.

Resonance Parameters (MeV) Line Shape

f0(1710) M = 1704± 12 RBW
Γ = 123± 18

f ′
2(1525) M = 1517.4± 2.5 RBW

Γ = 86± 5

Table 22: Possible Resonances to be included in the estimation of systematic uncertainty.
The parameters for those resonances are cited from Ref. [31]

8.3.3 PDF binning

qq̄ and BB̄ background distribution are implemented as PDF histograms over square
Dalitz plane. The number of binning of those histogram PDF will affect CP fitting
result, and thus need to be taken into systematic uncertainty. In order to estimate this
uncertainty, the number of binning for qq̄ and BB̄ background are changed from 50 to
20 for qq̄ histogram PDFs, and BB̄ from 25 to10 respectively. Then CP fitting for a
MC dataset are performed and the systematic uncertainty is calculated as the maximum
difference of CP fitting result between different binning of histogram PDFs.
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8.3.4 Reconstruction Efficiency

The systematic uncertainty due to the different K selection efficiency between MC and
real data needs to be included due to the efficiency term ϵij(m

′, θ′), which is a component
of signal PDF. For K± systematic uncertainty, the K± selection efficiency ϵdataK± (p),ϵMC

K± (p)
for cut condition kaonID > 0.6 are calculated for both real data and MC, and the ratio of
the selection efficiency rK±(p) = ϵdataK± (p)/ϵMC

K± (p) are calculated. The selection efficiency
and the selection efficiency ratio for K± is shown in Fig. 61.

For K0
S systematic uncertainty, the K0

S selection efficiency ϵdata
K0

S
,ϵMC
K0

S
using KsSelector

with mvaV0 > 0.90 and mvaLambda > 0.11 cut criteria are calculated using the real data
and 1 ab−1 MC samples, and the ratio of the K0

S selection efficiency between data/MC
is also calculated as rK0

S
(p). The selection efficiency and the selection efficiency ratio

between data and MC for K0
S is shown in Fig. 62.

Figure 61: The upper figure shows the relation between K± momentum and K± recon-
struction efficiency for MC (blue) and data (orange). The lower figure shows the ratio of
the reconstruction efficiency data/MC for each momentum bin.

Those K selection efficiency ratios depends on its momentum, and thus each bin value
of histogram PDF ϵij(m

′, θ′) is fluctuated by Gaussian distribution with standard devia-
tion σij given as

σij =
√
(1− rK±(pK+))2 + (1− rK±(pK−))2 + (1− rK0

S
(pK0

S
))2 (118)

where pK+ , pK− , pK0
S
are the momentum of K with the given square dalitz parameters

(m′, θ′). CP fitting is performed to a same dataset with fluctuated efficiency term ϵij(m
′, θ′)

500 times, and the standard deviation of the CP fitting result are calculated as the sys-
tematic uncertainty.
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Figure 62: The left figure shows the relation between K0
S momentum and K0

S reconstruc-
tion efficiency for MC (blue) and data (red). The right figure shows the ratio of the
reconstruction efficiency data/MC for each momentum bin.
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9 Result and Discussion

In this section, we discuss the result of CP fitting result applied for real data and show
constraint on new physics and future prospect of the measurement of CP asymmetries in
B0 → K+K−K0

S three body decay.

9.1 Procedure for CP fitting

In order to find best solution, we performed CP fitting multiple times, with each of
CP fitting starting from random initial values for the fitting parameters. The range of
random values are floated within ai = [0.1, 10], bi = [−180◦, 180◦], ci = [−0.5, 0.5] and
di = [0◦, 180◦] respectively. Then a local minimum to which CP fittings converge multiple
times are chosen to be a solution. As a result of 500 successful CP fitting from different
initial parameters, we found a best local minimum in terms of log-likelihood, which is 9
unit better in terms of −2 lnL than the second best local minimum. We also found 2nd,
3rd and 4th best solution. We compared −2 lnL of each local minimum to determine best
fitting result among multiple local minimums and to observe discrepancy between local
minimums.

9.2 Result of CP asymmetries fitting

The result of the best CP fitting result is shown in Table. 23. Results of the 2nd, 3rd
and 4th best local minimums found in this analysis is also summarized in Appendix C.
In terms of the amplitude term ai in the CP fitting, the four solutions are consistent for
B0 → ϕK0

S, B
0 → χc0K

0
S and B0 → (K±K0

S)NRK
∓ amplitude, but the large fluctuation

in the ai for B
0 → f0K

0
S, B

0 → fXK
0
S and B0 → (K+K−)NRK

0
S is observed due to the

large overlapping of the event distribution for those three channels in square Dalitz Plane.
In particularly, the amplitude a(K+K−)NRK

0
S
varies from 2.51 to 7.29 between solutions.

For the direct CP violating term ci, cϕK0
S
is close to zero for all solutions, but cf0K0

S
and

cothers showed different fitting result for each local minimums due to the interference.
For the mixing-induced CP violating term di, the result of CP fitting result is consistent
between four solutions due to the large statistic error, and all showed preference of ϕ1

against 90◦ − ϕ1.

9.2.1 The difference of log-likelihood between minimums

In order to analyze the discrepancy and significance of local minimums found in this
analysis, a study with ToyMC is conducted. We generated 1000 datasets corresponding
to current statistics or 10 times larger statistics respectively based on the CP fitting
PDF with parameters fixed to that of the best local minimum. Then we performed CP
fitting with initial values of fitting parameters set to the values for 1st, 2nd, 3rd and 4th
local minimum respectively, and compared the difference of −2 lnL. Fig. 63a shows the
difference of −2 lnL between local minimums for the current statistics, with Gaussian
fitted for each distribution as shown in Table. 24. From the fitted parameters for the
likelihood difference between 1st and 2nd local minimum, 1st minimum is estimated to
be distinguished from 2nd minimum with over 2σ significance, and thus we selected 1st
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Parameter Fit result
af0K0

S
3.438 ± 0.506

aϕK0
S

1.000

afXK0
S

0.425 ± 0.0612

aχc0K
0
S

0.245 ± 0.022

a(K+K−)NR
7.294 ± 0.544

a(K0
SK

+)NR
4.200 ± 0.224

a(K0
SK

−)NR
3.630 ± 0.217

bf0K0
S
[◦] 92.05 ± 9.73

bϕK0
S
[◦] -33.48

bfXK0
S
[◦] 66.91 ± 9.08

bχc0K
0
S
[◦] 120.53 ± 9.57

b(K+K−)NR
[◦] 110.51 ± 5.18

b(K0
SK

+)NR
[◦] -123.37 ± 5.52

b(K0
SK

−)NR
[◦] 12.25 ± 5.94

cf0K0
S

0.177 ± 0.146

cϕK0
S

-0.034 ± 0.092

cχc0K
0
S

0

cothers 0.078 ±0.046
df0K0

S
[◦] 29.49 ± 13.71

dϕK0
S
[◦] 28.89 ± 10.12

dχc0K
0
S
[◦] 21.9

dothers[
◦] 30.67 ± 9.04

Table 23: Summary of the CP fitting result for the best minimum obtained using 361.6fb−1

data, where the errors is statistical only.

local minimum as the result of this analysis.Fig. 63b also shows the expected likelihood
difference with 10 times larger statistics, where we expect almost no overlap of likelihood
between 1st and 2nd minimum.

9.2.2 Fit Fraction

In addition to the discussion of −2 lnL difference in Sec. 9.2.1, we defined fit fraction to
compare the fit result with other analysis and branching ratio. Here the fit fraction of
each decay channel FFi is defined as

FFi =

∫
sDP

(|a′iFi|2 + |ā′iF̄i|2)dm′dθ′∫
sDP

(|A|2 + |Ā|2)dm′dθ′
, (119)

where the A and Fi is defined in Eq. 62, and i denotes each decay channel. The sum of
those fit fraction

∑
i FFi is not 1 due to the interference between decay channels. We
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(a) (b)

Figure 63: The likelihood difference between local minimums, evaluated using ToyMC
with the current statistics (left) and 10 times larger statistics than the current statistics
(right). The blue, red or green point represents the distribution of difference in −2 lnL
between the 1st minimum and 2nd, 3rd or 4th minimum respectively. The dotted line
represents the Gaussian fitted to each distribution.

−2 lnL difference µ σ
2 lnL1 − 2 lnL2 18.3 ± 0.4 8.9 ± 0.3
2 lnL1 − 2 lnL3 40.0 ± 0.4 11.7± 0.4
2 lnL1 − 2 lnL4 42.0 ± 0.4 19.7± 0.5

Table 24: The summary of the mean µ and width σ of the Gaussian fitted to the likelihood
difference between local minimums. The Li denotes log-likelihood for i-th local minimum.
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additionally define the interference term of fit fraction FFij as

FFij = 2Re

∫
sDP

(a′ia
′∗
j FiF

∗
j + ā′iā

′∗
j F̄iF̄

∗
j )dm

′dθ′∫
sDP

(|A|2 + |Ā|2)dm′dθ′
. (120)

Then FFi and FFij sum to 1 by definition. The fit fractions calculated from the best
fitting result is shown in Table. 25. The sum of the diagonal element of Table. 25 is
calculated to be 213±20 %, and the fit fraction of other solutions are also summarized in
Appendix C. For the fit fractions FFf0K0

S
and FFϕK0

S
, where we expect larger fit fraction

for FFf0K0
S
against FFϕK0

S
due to the large branching fraction of B0 → f0(→ K+K−)K0

S

against B0 → ϕ(→ K+K−)K0
S, 1st, 3rd and 4th minimum is consistent with the branching

fraction. For the fit fraction of B0 → χc0K
0
S, we expect small fluctuation in the amplitude

aχc0K
0
S
due to the fixed CP violating parameter in the CP fitting and its m′ peak position

apart from other resonance decays. The Belle [31] and BaBar [29] analysis measured
FFχc0K

0
S
to be 3.4 and 3.8 respectively, and thus 1st and 2nd minimus is consistent with

previous results. Thus the best local minimum, which have the smallest −2 lnL among
local minimums, is also most consistent with external measurements.

9.2.3 Interpretation of the best fitting result

The following discussion focus on the best local minimum. To validate the fitting result
and error estimation, the log-likelihood scan is performed for the best CP fitting result as
shown in Fig. 64, where the one fitting parameter is fixed to a value and other parameters
are re-fitted. The result of the log-likelihood scan is consistent with the errors obtained
by the CP fitting process. The comparison of the distribution of m(K−K0

S), m(K+K0
S),

and m′ between the data and fitted PDF is shown in Fig. 65, and observed no significant
deviation of PDF from data, while there exist slight underestimate in the event yield for
B0 → f0K

0
S channel.

The CP fitting result is converted to the quasi-two-body approach CP asymmeties,
SCP and ACP. The result is shown in Table. 26, where the statistic and systematic error
is calculated from the errors for dalitz CP parameters ci and di for each decay channels.

Fraction [%] f 0K0
S ϕK0

S fXK
0
S χc0K

0
S (K+K−)NRK

0
S (K+K0

S)NRK
− (K−K0

S)NRK
+

f0K
0
S 15.26 ±5.87 0.00 ±0.00 -0.01 ±0.84 0.06 ±0.05 -48.89 ±19.75 15.33 ±1.57 -4.09 ±2.17

ϕK0
S 14.89 ±0.81 -0.00 ±0.00 -0.00 ±0.00 -0.00 ±0.00 -0.00 ±0.01 0.00 ±0.01

fXK
0
S 2.67 ±0.79 0.03 ±0.01 4.02 ±0.25 2.85 ±0.68 -2.62 ±0.52

χc0K
0
S 3.14 ±0.54 -0.15 ±0.09 1.27 ±0.18 -1.18 ±0.14

(K+K−)NRK
0
S 112.33 ±18.54 -44.02 ±6.71 -9.27 ±0.69

(K+K0
S)NRK

− 37.12 ±4.64 -26.47 ±3.68
(K−K0

S)NRK
+ 27.72 ±3.88

Table 25: Values of the fit fraction FFij calculated from CP fitting result in the unit of
%.
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(a) cϕK0
S

(b) dϕK0
S

(c) cf0K0
S

(d) df0K0
S

(e) cothers (f) dothers

Figure 64: The result of log-likelihood scan for the best local minimum found in this
analysis. The black line represents log-likelihood with only statistical error, and the
blue dashed line represents log-likelihood with both statistical and systematic errors.
The vertical line shows the value of fitting parameters obtained by CP fitting, and the
red vertical line shows 1σ threshold. The log-likelihood is re-calculated by fixing one
parameter and re-fitting other parameters.
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(a) m(K+K0
S) (b) m(K−K0

S)

(c) m′

Figure 65: Distribution of m(K−K0
S), m(K+K0

S), and m
′ for data and PDF. The black

points represent the data distribution with its statistic error, and the blue histogram
represents the fitted PDF projected to each variables.
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ACP SCP
ϕK0

S 0.07± 0.18± 0.04 0.84+0.13+0.03
−0.24−0.03

f0K
0
S −0.34± 0.26± 0.06 −0.81+0.31+0.05

−0.13−0.04

others −0.16± 0.09± 0.04 −0.87+0.19+0.03
−0.10−0.03

Table 26: Summary of the the quasi-two-body CP violating parameters delivered from
Dalitz CP fitting result, where the errors is statistical and systematic respectively.

9.2.4 Raw asymmetry distribution

The ∆t distribution is compared between data and PDF to visualize the CP asymmetries.
Events are divided into two regions: ϕ mass region defined as 1.01 < m(K+K−) <
1.03GeV and not-ϕ mass region defined as the rest of region excluding ϕ mass region.
We also compared distribution for only high qr-bin events defined as qr-bin = 4, 5 or
6, which mean |qr| > 0.6. Here a raw asymmetry for each ∆t interval is defined as
(N+ − N−)/(N+ + N−), where N± is the number of event candidates with q = ±1. The
comparison of ∆t distribution between all the event in the signal region and the full CP
fitting PDF is shown in Fig. 66 for ϕ mass region and not-ϕ mass region respectively, and
the raw asymmetries are shown in Fig. 67. The distribution of signal event and signal
component of PDF is also compared by adopting sPlot technique [33] as shown in Fig. 68
and Fig. 69. As shown in Figures, CP-odd events are dominant in ϕ mass region, and
CP-even events are dominant in not-ϕ mass region.

9.3 Summary of CP asymmetries and significance

We obtained CP asymmetries to be

ϕ1(ϕK
0
S) = 28.9± 10.1± 1.7◦

ACP (ϕK
0
S) = 0.07± 0.18± 0.04

ϕ1(f0K
0
S) = 29.5± 13.7± 2.8◦

ACP (f0K
0
S) = −0.34± 0.26± 0.06

ϕ1(others) = 30.7± 9.0± 1.8◦

ACP (others) = −0.16± 0.09± 0.04

(121)

where the errors is statistical and systematic respectively.
The log-likelihood scan shown in Fig. 64 is used in order to estimate the significance of

CP violation measurement. The likelihood is convoluted with Gaussian with its width set
to the systematic uncertainty in order to take both statistical and systematic uncertainty
into consideration, then the significance is estimated from log-likelihood distribution. For
ϕ1 measurement with B0 → ϕK0

S channel, we observed 2.8σ deviation from no CP viola-
tion hypothesis ϕ1 = 0, and the result is consistent with SM prediction within 0.6σ. For
the direct CP asymmetry ACP with B0 → ϕK0

S channel, we observed consistent result
with SM prediction ACP = 0 within 0.4σ.
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(a) ϕ mass region, including all bin (b) not-ϕ mass region, including all bin

(c) ϕ mass region, including only good bin (d) not-ϕ mass region, including only good
bin

Figure 66: Comparison of ∆t distribution between data and PDF for all event. The ϕ
mass region is defined as 1.01 < m(K+K−) < 1.03GeV/c2, and the good bin is defined
as qr-bin = 4, 5 or 6. The red (blue) points and lines represent qtag = +1(−1) event
candidates and PDF respectively.
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(a) ϕ mass region, including all bin (b) not-ϕ mass region, including all bin

(c) ϕ mass region, including only good bin (d) not-ϕ mass region, including only good
bin

Figure 67: Comparison of raw asymmetries in each ∆t region between data and PDF for
all event. The ϕ mass region is defined as 1.01 < m(K+K−) < 1.03GeV/c2, and the
good bin is defined as qr-bin = 4, 5 or 6. The red line and black points represent raw
asymmetry calculated from PDF and raw asymmetry in the event candidates respectively.
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(a) ϕ mass region, including all bin (b) not-ϕ mass region, including all bin

(c) ϕ mass region, including only good bin (d) not-ϕ mass region, including only good
bin

Figure 68: Comparison of ∆t distribution between sWeighted data and signal component
of PDF. The ϕ mass region is defined as 1.01 < m(K+K−) < 1.03GeV/c2, and the good
bin is defined as qr-bin = 4, 5 or 6. The red (blue) points and lines represent qtag = +1(−1)
sWeighted event candidates and signal component of PDF respectively.
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(a) ϕ mass region, including all bin (b) not-ϕ mass region, including all bin

(c) ϕ mass region, including only good bin (d) not-ϕ mass region, including only good
bin

Figure 69: Comparison of ∆t raw asymmetries between sWeighted data and signal com-
ponent of PDF. The ϕ mass region is defined as 1.01 < m(K+K−) < 1.03GeV/c2, and
the good bin is defined as qr-bin = 4, 5 or 6. The red line and black points represent
raw asymmetry calculated from signal component of PDF and raw asymmetry in the
sWeighted event candidates respectively.
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9.4 Comparison with previous experiments

Belle and BaBar experiment previously measured CP asymmetries in B0 → K+K−K0
S

three body decay with time-dependent Dalitz plot analysis [31] [29].
Belle experiment measured CP asymmetries with 657 × 106 BB̄ pairs. The most

preferable solution from the Belle experiment is

ϕ1(ϕK
0
S) = 32.0+8.8

−8.3 ± 2.0◦

ACP (ϕK
0
S) = 0.04± 0.20± 0.10

ϕ1(f0K
0
S) = 30.5+8.6

−8.3 ± 3.8◦

ACP (f0K
0
S) = −0.32+0.27

−0.29 ± 0.13

ϕ1(others) = 24.4+6.2
−5.8 ± 3.3◦

ACP (others) = −0.14± 0.11± 0.09,

(122)

where the error is statistical and systematic respectively. When comparing the result
from Belle experiment and this analysis, the measured CP asymmetries in this analysis
is consistent with the previous result within its uncertainties due to the large statistical
errors.

In terms of the statistical uncertainty, the statistic error in this analysis is consistent
with that of Belle experiment analysis when take the effect of small statistics in this
analysis consideration. On the other hand, the systematic uncertainty is estimated to
improve from the previous analysis. The major contribution for this improvement is
expected to be the good ∆t resolution in Belle II experiment. The vertex reconstruction
and ∆t measurement was one of the major systematic uncertainties in the Belle analysis,
but in this analysis the systematic uncertainties from those components are estimated to
be small compared to that of Belle experiment, leading to better systematic uncertainties.

9.5 Future prospect

9.5.1 Improvement of uncertainties

The uncertainties for CP asymmetry measurement are currently dominated by statis-
tic uncertainty in this analysis. With the increase in the integrated luminosity, part of
systematic uncertainties are expected to become smaller along with the statistical uncer-
tainty. Notable improvement in the systematic uncertainties expected in the future is as
follows:

• Fit bias : The uncertainty due to fit bias include the possible effect of data statistics
itself being small, and thus expected to be reduced with the increased statistics.

• BB̄ background : The uncertainty from BB̄ background modeling arise from the low
statistics of background events from BB̄ events. It will also be possible to calibrate
BB̄ background from data side-band with BB̄ background enhanced region such as
(Mbc > 5.26GeV/c2) ∧ (∆E < 0GeV) as shown in Fig. 40.

• qq̄ background : The uncertainty from qq̄ background modeling arise from possible
difference of m′ and θ′ distribution for qq̄ background events between signal region

98



and side-band region. In this analysis we adopt narrow Dalitz side-band conserva-
tively as stated in Sec. 7.3.2, but with more statistics we can investigate m′ and θ′

distribution for qq̄ events in more detail to enlarge Dalitz side-band and might be
possible to model qq̄ background precisely.

• Fixed Parameters : The uncertainty due to fixed parameters include the effect of
uncertainties from flavor tagging and resolution function. The uncertainties for
those parameters are currently dominated by the statistical uncertainty due to the
small statistics used for calibration, and thus expected to improve in the future with
large statistics, although the systematic errors are irreducible.

• Non-resonant modeling : The current non-resonant component modeling and its
shape parameter follows the empirical modeling from the previous analysis[31]. With
increased statistics, it should become possible to include the line-shape parameters
of non-resonant modeling itself into the fitting procedure, which will greatly improve
the uncertainty deriving from the discrepancy between non-resonant modeling and
data distribution.

• Possible resonance : In the current analysis, the minor resonances are excluded
from CP fitting PDF to avoid possible affects from the number of event for minor
resonances being too small. With increased statistics, it will become possible to cor-
rectly handle those resonances and include in CP fitting PDF, leading to reduction
in the systematic uncertainty.

Along with those improvement, systematic uncertainties for fit bias, BB̄ background,
qq̄ background, and part of fixed parameters are expected to be reduced proportional
to 1/

√
L, where L is the integrated luminosity. Under this assumption, the relation

between the integrated luminosity and uncertainties for the measurement of ϕ1 through
B0 → ϕK0

S mode are shown in Fig. 70 along with the uncertainty in Belle analysis and
this analysis. The total uncertainty for ϕ1 measurement is expected to be improved
from Belle experiment result when we collect the same statistics as Belle experiment. In
the Belle experiment, the most dominant systematic uncertainty arose from the vertex
reconstruction, while we expect smaller systematic uncertainty due to the misalignment
of detector and ∆t measurement owing to the larger and more precise vertex detector in
Belle II experiment. We also expect higher K0

S selection efficiency in this analysis. For
the K0

S selection method in Belle experiment, K0
S selection efficiency was 86.9% with K0

S

purity 94.0% [32], and thus we expect higherK0
S selection efficiency and better background

rejection in this analysis compared to the previous analysis.
As shown in Fig. 70, the statistical uncertainty will be comparable against systematic

uncertainty at about 20 ab−1 if we adopt the same analysis method due to the large sys-
tematic uncertainty originating from Dalitz modeling. Above this integrated luminosity,
it will be necessary to improve Dalitz model with more precise non-resonant handling and
additional minor resonances to achieve further precise measurement of ϕ1.
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Figure 70: The future prospect of statistical and systematic uncertainties for the measure-
ment of ϕ1 through B0 → ϕK0

S. The black, blue and red line represent total, statistical
and systematic uncertainty respectively. The black or red point represents uncertainty in
this analysis or Belle analysis respectively.

9.5.2 Improvement of analysis method

In this analysis we adopt analysis strategy with low signal yield and high purity close
to the Belle analysis, but the other approach as BaBar adopted is possible for future
analysis.

They included f ′
2(1525) and f0(1710) into CP fitting, and also they are adopting

different non-resonant component modeling as mentioned in Sec. 8.3.1 in exchange for
the loose cut criteria for event selection and much larger background events. They found
1579 signal events against 6881 continuum events and 116 BB̄ background. The purity of
signal event in BaBar is 0.18 and this is much worse than Belle and this analysis, while it
is possible to make use of the large statistics to construct proper model for non-resonant
component and to include minor resonances which cannot be used for this analysis due
to too small signal yield. The possible disadvantage of this approach is the large affect
of background events onto non-resonant component modeling, but there is possibility
to improve systematic uncertainty by construct detailed background and non-resonant
modeling with large statistics in the future.

The another possible improvement is to include K0
S → π0π0 decay mode in addition

to the current K0
S → π+π− decay channel. BaBar found 160 signal events through K0

S →
π0π0 decay in compensate for 2751 background event. In order to improve sensitivity by
including K0

S → π0π0 we need more precise modeling of background event distribution
and development of K0

S reconstruction method through K0
S → π0π0, nevertheless this

have possibility to reduce statistic uncertainty after collecting full data set in the future.
The flavor tagging is also expected to improve in the near future. Apart from the
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category-based flavor tagger, a flavor tagging method with deep-learning neural network
is currently developed [4]. In this flavor tagging method, the B flavor is directly de-
termined using Graph-Neural-Network (GNN) technique without pre-categorisation of B
meson decay products. The effective tagging efficiency for GNN flavor tagger is expected
to be improved from current category-based flavor tagger [34], and thus we can expect
improvement in the statistical uncertainties for CP asymmetry measurement in the near
future.

In this analysis, we adopted isobar model to describe interference between decay chan-
nels. Theoretically, the K+K−K0

S final state should be treated with the unitarity kept,
while isobar model is an approximate model which does not satisfy the unitarity of the
three-body final state[7]. In Ref.[24], they adopted unitary coupled-channels model to
include the re-scattering effect of multiple resonances and showed a discrepancy be-
tween unitary coupled-channels model and isobar model in three body decays such as
D0 → π+π−π0. The re-scattering effect is expected to be small for B meson decay than
for D meson decay in general, however, it is not fully known yet how large the re-scattering
effect in B meson three-body decay is. This leads to the possibility that the systematic un-
certainty in this analysis is underestimated depending on the discrepancy between isobar
model and unitary coupled-channels model, and we await detailed theoretical prediction
to discuss possible improvement of the treatment of interference in the future analysis.

9.6 Constraint on the new physics parameter

As discussed in Sec. 2.4, the measurement of ϕ1 through B0 → ϕK0
S decay can give a

constraint on the NP parameter. Following Eq. 47, we can plot the relation between θNP ,

which is the weak phase contributing from NP, and S
ϕK0

S
CP for different |ANP/ASM | ratio

as shown in Fig. 71 [15], where we assume δ12=0. The red line represents the central

value of measured S
ϕK0

S
CP , and the gray region represent the excluded region with 95.45%

confidence level. Each line in Fig. 71 represents the relation between S
ϕK0

S
CP and θNP with

assumption of the amplitude ratio |ANP/ASM | to be 0.2 (dashed), 0.4 (dashed-dotted),
0.6 (dotted) and 0.8 (dashed-double-dotted) respectively. We also estimated confidence
regions over (θNP , |ANP/ASM |) plane as shown in Fig. 72, where red or black line shows
68.27% or 95.45% confidence level contour respectively. Here we adopted the frequentist
approach to estimate the confidence interval on (θNP , |ANP/ASM |) plane. As statistics
increase in the future, the yellow region with high confidence level is expected to spread
over the plane, leading to the exclusion of large |ANP/ASM | value for large sin θNP region.

Fig. 72 shows the model-independent constraint on the effect of NP on B0 → ϕK0
S,

while it is also possible to give model-dependent constraint by assuming certain NP model.
One example is the mass insertion as discussed in Sec. 2.4, and the constraint on the mass
insertion parameters is discussed in Appendix D.
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Figure 71: The relation between the NP weak phase θNP and S
ϕK0

S
CP assuming δ12 = 0

[15]. Each line represents the value of S
ϕK0

S
CP as a function of θNP for different ratio of

amplitude |ANP/ASM | = 0.2 (dashed), 0.4 (dashed-dotted), 0.6 (dotted) and 0.8 (dashed-

double-dotted) respectively. The red line represents the central value of measured S
ϕK0

S
CP .

The gray region represent the excluded region with 95.45% confidence level.
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(a) δ12 = 0 (b) δ12 = π/4

(c) δ12 = π/2 (d) δ12 = 3π/4

Figure 72: The confidence interval over the (θNP , |ANP/ASM |) plane assuming different δ12
value. The red or black line shows 68.27% or 95.45% confidence level contour respectively.
The yellow (blue) region represents region with high (low) confidence level.
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10 Conclusion

B0 → ϕK0
S decay process is dominated by penguin transition, and is sensitive to the

effect from new physics. In order to handle the interference between B0 → ϕK0
S and

other channels decaying into the same final state B0 → K+K−K0
S corretly, the Dalitz

plot technique is adopted. We reported measurement of time-dependent CP asymmetries
in the B0 → K+K−K0

S three body decay using 387 × 106 BB̄ pairs collected at Belle II
experiment. We obtained

ϕ1(ϕK
0
S) = 28.9± 10.1(stat)± 1.7(syst)◦

ACP (ϕK
0
S) = 0.07± 0.18(stat)± 0.04(syst)

(123)

which is consistent with the previous measurements from Belle experiment analysis. The
existence of CP violation is confirmed at 2.4σ significance, and the result is consistent
with SM within 0.6σ. We also discussed expected uncertainties for CP asymmetries
measurement, and showed future prospect of the measurement through B0 → K+K−K0

S

three body decay and possible improvement.
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A Observable correlation

The correlation between observable (Mbc,∆E, qr,m
′, θ′,∆t, σ∆t) is analyzed to consider

the effect of observable correlations onto CP asymmetries measurement. The correlation
between Mbc and ∆E in the signal MC samples can be seen in Fig. 73. The distribution
of Mbc and ∆E for signal MC qq̄ background events are also shown in Fig. 74, Fig. 75.
The correlation between square Dalitz parameter m′, θ′ and ∆t is shown in Fig. 76 and
Fig. 77.

Figure 73: The 2-dimension scattering plot of Mbc−∆E distribution in MC signal events.
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(a) Mbc over ∆E slice (b) ∆E over Mbc slice

Figure 74: The distribution of Mbc with ∆E slices(left) and the distribution of ∆E with
Mbc slices(right) for signal MC events.

(a) Mbc over ∆E slice (b) ∆E over Mbc slice

Figure 75: The distribution of Mbc with ∆E slices(left) and the distribution of ∆E with
Mbc slices(right) for background events.
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(a) Correlation m′ −∆t (b) Correlation θ′ −∆t

Figure 76: The 2-dimension scattering plot of m′−∆t (left) and θ′−∆t (right) distribution
in MC background events.

(a) m′ over ∆T slice (b) θ′ over ∆T slice

Figure 77: The distribution of m′ with ∆t slices(left) and the distribution of θ′ with ∆t
slices(right) for background events.
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B KSFW Moment

KSFW moment [9] uses the energy and momentum of particles in the e+e− CMS frame
to discriminate continuum events from signal candidates. Each of the track momentum is
divided into three category : a charged particle, a neutral particle, and a missing particle.
In addition to the normal tracks from particles, the missing momentum of an event is also
treated as an additional particle. Then each KSFW moment is calculated as

Hso
xl =

∑
i

∑
jx

|pjx|Pl(cos θi,jx) (l = 0, 2, 4, x = 0, 1, 2) (124)

Hoo
l =

∑
j

∑
k

|pj||pk|Pl(cos θj,k) (l = 0, 2, 4) (125)

Hoo
l =

∑
j

∑
k

QjQk|pj||pk|Pl(cos θj,k) (l = 1, 3). (126)

Here x denotes track categories as x = 0, 1, and 2 for charged, neutral, and missing track
respectively. The index i runs over BCP daughters, and jx over the Btag daughters for each
track category. The index j and k runs over Btag daughter tracks. Qi or Qjx denotes the
charge of each particle, and pjx denotes the momentum of each particle. Pl(θx,y) denotes
the l-th Legendre polynomial of the cosine of the angle between particle x and particle y.
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C Other local minimums

We also found 3 solutions other than the best local minimum discussed in the text. The
fitting result for all the solutions are summarized in Table. 27. The summary of fit
fractions for 2nd, 3rd and 4th best solution is shown in Table. 28, Table. 29 and Table. 30
respectively.

Parameter 1st 2nd 3rd 4th
af0 3.44 ±0.51 2.68 ±0.56 4.17 ±0.44 3.90 ±0.41
aϕ 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00
afX 0.42 ±0.06 0.31 ±0.06 0.45 ±0.06 0.30 ±0.06
aχc0

0.24 ±0.02 0.25 ±0.02 0.21 ±0.03 0.24 ±0.02
a(K+K−)NR

7.29 ±0.54 6.91 ±0.59 4.73 ±0.65 2.51 ±0.58
a(K0

SK
+)NR

4.20 ±0.22 3.95 ±0.22 3.79 ±0.26 3.78 ±0.26

a(K0
SK

−)NR
3.63 ±0.22 3.86 ±0.22 2.78 ±0.28 2.84 ±0.27

bf0 -87.95 ±9.73 93.16 ±11.52 -117.61 ±8.54 38.35 ±9.65
bϕ -33.48 ±0.00 -33.48 ±0.00 -33.48 ±0.00 -33.48 ±0.00
bfX -113.09 ±9.08 55.71 ±11.59 -118.36 ±9.20 51.40 ±12.65
bχc0

-59.47 ±9.57 132.25 ±9.59 -45.14 ±13.51 170.18 ±10.03
b(K+K−)NR

-69.49 ±5.18 117.50 ±5.69 -84.06 ±5.59 121.65 ±11.58
b(K0

SK
+)NR

56.63 ±5.52 14.93 ±6.44 36.56 ±6.31 66.34 ±7.05

b(K0
SK

−)NR
-167.75 ±5.94 -119.70 ±5.98 -114.58 ±6.76 -144.32 ±7.60

cf0 0.18 ±0.15 0.08 ±0.19 0.05 ±0.14 -0.05 ±0.10
cϕ -0.03 ±0.09 -0.06 ±0.08 -0.00 ±0.09 -0.03 ±0.09
cχc0

0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
cother 0.08 ±0.05 -0.05 ±0.05 0.15 ±0.06 0.03 ±0.06
df0 29.49 ±13.71 21.50 ±13.97 34.05 ±15.13 30.19 ±13.03
dϕ 28.89 ±10.12 22.30 ±10.69 25.50 ±13.29 22.71 ±10.50
dχc0

21.50 ±0.00 21.50 ±0.00 21.50 ±0.00 21.50 ±0.00
dother 30.67 ±9.04 17.20 ±9.58 21.63 ±10.71 15.49 ±10.42

−2 lnL 0 9.82 32.21 41.32

Table 27: The summary of all the solution found in this analysis, where the 1st solution
is discussed detailed in the main text.
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Fraction [%] f 0K0
S ϕK0

S fXK
0
S χc0K

0
S (K+K−)NRK

0
S (K+K0

S)NRK
− (K−K0

S)NRK
+

f 0K0
S 8.56 ±3.92 0.00 ±0.00 -0.02 ±0.07 0.15 ±0.04 -28.38 ±13.31 -6.94 ±0.76 13.43 ±3.23

ϕK0
S 14.98 ±1.40 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 -0.03 ±0.01 -0.08 ±0.01

fXK
0
S 1.42 ±0.56 0.03 ±0.01 5.10 ±0.86 -2.18 ±0.56 1.61 ±0.55

χc0K
0
S 3.29 ±0.61 -0.26 ±0.15 -1.24 ±0.18 1.29 ±0.26

(K+K−)NRK
0
S 100.83 ±19.16 -14.48 ±1.75 -35.22 ±6.07

(K+K0
S)NRK

− 32.83 ±4.64 -26.03 ±3.87
(K−K0

S)NRK
+ 31.35 ±4.49

Table 28: Values of the fit fraction FFij calculated from 2nd best CP fitting result in the
unit of %.

Fraction [%] f 0K0
S ϕK0

S fXK
0
S χc0K

0
S (K+K−)NRK

0
S (K+K0

S)NRK
− (K−K0

S)NRK
+

f 0K0
S 19.17 ±5.14 0.00 ±0.00 3.99 ±0.92 0.27 ±0.07 -22.85 ±11.03 19.24 ±4.23 -13.67 ±3.89

ϕK0
S 13.85 ±2.02 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 -0.05 ±0.01 -0.06 ±0.01

fXK
0
S 2.84 ±0.91 0.03 ±0.01 1.38 ±0.22 2.82 ±0.77 -1.61 ±0.52

χc0K
0
S 2.15 ±0.69 -0.41 ±0.19 1.03 ±0.25 -0.71 ±0.22

(K+K−)NRK
0
S 44.72 ±14.61 -21.07 ±6.00 26.14 ±7.97

(K+K0
S)NRK

− 28.61 ±6.08 -21.22 ±4.96
(K−K0

S)NRK
+ 15.39 ±4.05

Table 29: Values of the fit fraction FFij calculated from 3rd best CP fitting result in the
unit of %.

Fraction [%] f 0K0
S ϕK0

S fXK
0
S χc0K

0
S (K+K−)NRK

0
S (K+K0

S)NRK
− (K−K0

S)NRK
+

f 0K0
S 17.45 ±5.14 0.00 ±0.00 3.51 ±1.30 0.24 ±0.06 10.33 ±3.88 -13.01 ±4.30 13.53 ±4.06

ϕK0
S 14.43 ±3.11 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 -0.08 ±0.02 -0.04 ±0.01

fXK
0
S 1.29 ±0.59 0.03 ±0.01 2.04 ±0.96 -1.21 ±0.55 1.37 ±0.54

χc0K
0
S 2.93 ±0.80 -0.31 ±0.12 -1.20 ±0.32 0.66 ±0.18

(K+K−)NRK
0
S 12.83 ±6.58 12.69 ±3.64 -1.18 ±0.81

(K+K0
S)NRK

− 28.99 ±7.47 -21.64 ±5.98
(K−K0

S)NRK
+ 16.37 ±4.74

Table 30: Values of the fit fraction FFij calculated from 4th best CP fitting result in the
unit of %.
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D Model dependent constraint on the new physics

parameter

In Sec. 9.6 we discussed model-independent constraint on the new physics parameter,
but it is also possible to give a model-dependent constraint assuming certain new physics
model. One of the new physics contributing to B0 → ϕK0

S is SUSY mass insertion as
discussed in Sec. 2.4. The ratio of the SUSY amplitude against SM amplitude assuming
mḡ ≃ 500GeV is as follows [26]

ASUSY (ϕK0
S)

ASM(ϕK0
S)

= (0.14+0.02i)
(
(δdLL)23 + (δdRR)23

)
+(65+11i)

(
(δdLR)23 + (δdRL)23

)
. (127)

Here (δdAB)23 ((A,B) = (L,R)) denote mass insertion terms.
We consider SUSY models with mass insertion where one of the mass insertion term

is dominant. When we assume (δdLL)23 to be dominant, the maximum SUSY amplitude
is obtained to be |ASUSY /ASM | ≃ 0.14 [26]. Under assumption of |ASUSY /ASM | = 0.14,
then we can give a constraint on the arg(δdLL) along with δ12. The confidence regions over
(arg(δdLL), δ12) plane is shown in Fig. 78.

Figure 78: The confidence interval over (arg(δdLL), δ12) plane. The red line shows 68.27%
confidence level contour. The yellow (blue) region represents region with high (low)
confidence level.
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