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Abstract

The Weinberg angle is known precisely only at high energies around the Z0

mass. At Belle II, we have the opportunity to measure it at much lower energies
via e+e− → µ+µ− as a process. A measurement could solve the issue of the
deviation observed by the NuTeV experiment. I calculate the differential cross
section for this process at tree-level to relate the Weinberg angle to the polar
angle distribution of the muons. This calculation is used in a dedicated software
that I developed to fit the differential cross section to the polar angle distribution
and extract the Weinberg angle. I study different background sources and cri-
teria to select signal events and reject background events. By calculating muon
detection efficiencies, I study the muon identification performance of Belle II
in the process e+e− → µ+µ−γ both in recorded data and using simulation.
The ratio of the efficiencies in recorded data and simulation allows us to cor-
rect differences between recorded and simulated data and provides systematic
uncertainties related to these corrections.
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Chapter 1

Introduction

1.1 The Weinberg angle θW
The Standard Model of particle physics is in large parts based on the theory of
the electroweak unification proposed by Glashow [1], Weinberg [2] and Salam [3].
This relates the photon and the gauge bosons of the weak interaction and in-
troduces the Weinberg angle, which is of interest to us [4].
The leptons and quarks are charged under the weak isospin and the weak hyper-
charge Y . The SU(2) symmetry of the weak isospin has three massless gauge
bosons W1, W2 and W3, which couple with the coupling strength g. The U(1)Y
symmetry has a single massless gauge boson B, which couples with the coupling
strength g′.
The Higgs-mechanism [5, 6] breaks the initial symmetries and gives mass to
three linear combinations of the initial gauge bosons. W1 and W2 combine to
form the W-bosons W+ and W− with mass MW . The W3 and B mix together

to form the Z0-boson with mass MZ and the massless photon γ . This mixing
can be described as the rotation of the initial gauge bosons into the set of γ and
Z0

(
Z0

γ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W3

B

)
. (1.1)

This defines the Weinberg angle θW as the angle by which the initial states B
and W 3 are rotated to form the new basis γ and Z0. As a consequence, the
Weinberg angle also relates the coupling couplings g, g′ through

cos θW =
g√

g2 + g′2
. (1.2)

One way to measure the Weinberg angle is by measuring the ratio of the W and
Z0 masses

cos θW =
MW

MZ

. (1.3)

The value of the Weinberg angle depends on the energy scale at which it is
measured [7, 8]. Figure 1.1, taken from [9], shows this behavior for a large energy
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Figure 1.1: The running of sin2 θW as a function of the energy scale µ
in the MS renormalization scheme. Plot taken from [9], using [7, 22]. The
measurements of LHC and Tevatron have been shifted to the sides (real position
indicated by the arrows) to improve visibility.

range. It also shows different measurements, which are used to constrain the
theory curve in blue. Above 10GeV, collider experiments measure the Weinberg
angle with high precision using the angular asymmetry of lepton pairs. In
hadron colliders like Tevatron [10] and LHC [11, 12, 13], measuring the angular
asymmetry is more challenging, since the definition of the directions is not as
easy as for electron-positron colliders like LEP [14] and SLC [15].

Low energy experiments below 10GeV have a lower precision. APV [16] uses
atomic parity violation in different nuclei. SLAC-E158 [17] measures the parity
violating asymmetry in fixed target polarized Møller scattering. Qweak [18]
uses a similar setup measuring the parity violating asymmetry in polarized
electron-positron scattering. eDis [19] uses deep inelastic scattering with po-
larized electrons and deuterons to measure a left-right asymmetry. NuTeV [20]
uses a technique based on the measurement of the cross sections for neutral cur-
rent and charged current cross sections using a neutrino beam scattering on a
fixed target. The NuTeV result is displayed at roughly the average momentum
transfers used.

The NuTeV result is the only one in significant disagreement with the theory
prediction. However, A. Thomas and others [21] claim that the original anal-
ysis neglected several corrections to their result. Taking these corrections into
account would allegedly resolve the tension.

Due to the low precision of the low energy measurements, the theory predic-
tion is determined by the high-energy measurements. The value of the Wein-
berg angle at lower energies is therefore also determined by these measurements.
However, if we do not want to rely solely on the predictions of the Standard
Model, additional measurements at different energies are needed, to test if the
theory matches reality.
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Belle II and SuperKEKB operate at KEK in Tsukuba, Japan [23].
SuperKEKB is an electron-positron collider with a center-of-mass energy of
10.58GeV. This is far below the Z0 mass (about 90GeV) and in the region
of the NuTeV measurement. At Belle II, the Weinberg angle can be measured
using the angular distribution of leptons in e+e− → ℓ+ℓ− events. This requires
understanding of how well leptons are measured at Belle II. For this reason, I
helped the Charged Particle Identification group at Belle II to understand the
muon identification. Measuring the Weinberg angle with different final state
leptons allows to test for lepton universality, a key ingredient of the Standard
Model.
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Chapter 2

The Weinberg angle in

e
+
e
− → µ

+
µ
−

2.1 The differential cross section
In general, the final state of two particles is described by eight real numbers,
namely the two four-momenta of the particles. At a fixed center-of-mass energy√
s, four of these numbers are fixed by energy and momentum conservation,

so there are four degrees of freedom. We study processes with leptons in the
final state, so the four-momentum relation p2 = m2

ℓ fixes two further degrees
of freedom. There are only two degrees of freedom left. The two degrees of
freedom are chosen to be the polar angle and the azimuth of the µ−. The
cross section for e+e− → ℓ+ℓ− is independent of the azimuth and the polar
angle distribution is used to extract the Weinberg angle from it. Therefore, I
calculate the differential cross section with respect to the cosine of the polar
angle α. The polar angle is defined as the angle between the direction of the
final state lepton with respect to the same-signed beam electron in the center-
of-mass frame. In the center-of-mass frame, this definition of the polar angle
has the same value for both charges since the electrons and final state leptons
are each back-to-back.

Out of the three leptons, the electron, muon and tau, the muon is best suited
for such a measurement at Belle II. An electron final state has two important is-
sues. First, electrons lose more energy through photon radiation while traveling
through the detector. To measure the polar angle, we need to know the direc-
tion of the final state electrons, so one would need to correct for this. Second,
the final and initial state particles are identical so in addition to the s-channel
diagram depicted in fig. 2.1, also a t-channel diagram contributes [14]. For the
muon- and tau-pair production, this diagram does not exist in the Standard
Model. While technically more difficult, measuring the Weinberg angle with
an electron final state might be interesting, depending on the structure of the
t-channel contribution.

Measuring the Weinberg angle using taus has the issue that the tau decays
quickly. Therefore, only its decay products can be measured in the detector.
Lepton number conservation implies that at least one of the tau decay products
has to be a neutrino, which is not measured in the detector. Therefore, the
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Figure 2.1: Feynman diagram of e+e− → µ+µ− via γ or Z0 exchange.

direction of the tau is only approximately known, which makes the measurement
of the Weinberg angle more difficult.

The muon is stable as far as the Belle II detector is concerned. Also, com-
pared to the electron, its higher mass means that photon radiation is not as
much of an issue as for the electron. Therefore, it is the best candidate and I
focus on the process e+e− → µ+µ− as shown in fig. 2.1. This process is most
likely mediated by a photon γ , but it can also proceed through exchange of a
Z0-boson

e+e− → γ/Z0 → ℓ+ℓ−. (2.1)

Quantum mechanically, the amplitudes of photon or Z0 exchange interfere with
each other.

Therefore, the amplitude of the Z0 alters the polar angle distribution of
the lepton pair compared to it being produced only through γ exchange. If
only photon exchange is considered, the polar angle distribution is symmetric
at tree-level. However, through the inclusion of the Z0 exchange, the polar
angle distribution acquires an asymmetry. We can relate this asymmetry to the
Weinberg angle, which appears in the coupling of the Z0 to leptons.

For now, I work in the idealized scenario, where the momentum of the elec-
trons and muons is known exactly. Their direction is defined by their normalized
momentum. With this setup, I calculate the differential cross section for muon
pair production

dσ

d cosα
= ΠPS|M|2, (2.2)

with the phase-space factor ΠPS and the total squared amplitude |M|2. The
total squared amplitude can be separated into different parts

|M|2 = |Mγ +MZ |2

= |Mγ |2 + 2|Mint|2 + |MZ |2. (2.3)

The amplitude for photon exchange isMγ , the amplitude for Z0-boson exchange
is MZ and the interference amplitude between both is Mint.

A simplified way to extract the Weinberg angle from the differential cross
section is the forward-backward asymmetry AFB, which is often also reported
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for such measurements. It is defined as

AFB =

∫ 1

0
dσ

d cosα d cosα−
∫ 0

−1
dσ

d cosα d cosα∫ 1

0
dσ

d cosα d cosα+
∫ 0

−1
dσ

d cosα d cosα
. (2.4)

The phase-space factor drops out since it is independent of cos θ. Hence the
forward-backward asymmetry in terms of the total amplitude is

AFB =

∫ 1

0
|M|2 d cosα−

∫ 0

−1
|M|2 d cosα∫ 1

0
|M|2 d cosα+

∫ 0

−1
|M|2 d cosα

. (2.5)

This is equivalent to counting the number of muons in different cosα regions

AFB =
NF −NB

NF +NB

. (2.6)

NF is the number of muons with a positive value of cosα and NB the num-
ber of muons with a negative value of cosα. We could thus be content with
only classifying and counting the muons and calculating the forward-backward
asymmetry. This is then related to the Weinberg angle.

Instead, we opt for a different approach, where we calculate the squared total
amplitude and use it in a maximum likelihood fit to the polar angle distribution.
We should then be able to directly extract the Weinberg angle from the polar
angle distribution. One reason for the approach with the maximum likelihood
fit was that we initially wanted to continue this study by later including detector
effects. This work is left for future studies.

I use the momenta as defined in fig. 2.1 to calculate the total squared ampli-
tude at tree-level. The square of the center-of-mass energy is s ≡ |p− + p+|2 =

|k− + k+|2. In the center-of-mass frame, energy and momentum conservation
require the four leptons to have the same energy

√
s/2 and the lepton pairs

have to be back-to-back. The normalized momentum of the electron defines the
z-direction. The magnitude of the momentum of the leptons is then given by

|p±| = |k±| =
√
s
2 zℓ with

zℓ ≡

√
1− 4m2

ℓ

s
. (2.7)

In the limit m2
ℓ ≪ s, zℓ ≈ 1. This is a good approximation at Belle II, since at√

s = 10.58GeV, ze deviates from 1 only at the ninth digit and zµ at the fourth
digit. The product of four momenta are

p−p+ =
s

4

(
1 + z2e

)
, (2.8)

k−k+ =
s

4

(
1 + z2µ

)
, (2.9)

p−k∓ = p+k± = s
4

(
1∓ zezµ cosα

)
. (2.10)

To calculate the amplitude corresponding to fig. 2.1, I introduce the spinors ue,µ
and ūe,µ for the e− and µ− and the spinors ve,µ and v̄e,µ for the e+ and µ+.
The spinors obey the Dirac equation [4]. In the case of the electron

(/p− −me)ue = ūe(/p− −me) = 0, (2.11)

(/p+ +me)ve = v̄e(/p+ −me) = 0. (2.12)
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The muon spinors obey the same equations with the respective momentum and
mass replacements. Here the Dirac slash notation /q = γνqν is used.

The photon propagator is −igµν/(q2 + iϵ) with the square of the four mo-

mentum transfer q2 = s. The Z0 propagator is

−i
q2 −M2

Z + iMZΓZ

(gµν − qµqν

M2
Z

) (2.13)

and takes into account the mass MZ and width ΓZ of the Z0-boson [9]

MZ = (91.1876± 0.0021)GeV and ΓZ = (2.4952± 0.0023)GeV. (2.14)

The photon-lepton vertex is ieγν , with the electron charge e. Assuming lepton
flavor universality, the Z0-lepton vertex is

−ie
sin 2θW

γν(cV − cAγ
5) (2.15)

with cV = − 1
2 + 2 sin2 θW and cA = − 1

2 .
This defines the set of Feynman rules we use. The squared amplitude for

the photon exchange is then

|Mγ |2 =
e4

s2
[
v̄eγ

νue ūµγνvµ
]
·
[
v̄µγρuµ ūeγ

ρve
]
. (2.16)

At Belle II, the beams are unpolarized and the spins of the final state muons are
also not measured. Therefore, the total squared amplitude averages over the
initial state spins and sums the final state spins using the spin sums∑

ue ūe = /p− +me and
∑

ve v̄e = /p+ −me . (2.17)

The muon spin sums take the same form with the corresponding momentum and
mass replacements. Spin averaged and summed squared amplitudes are marked
with an overline. The squared amplitude for the photon exchange is then

|Mγ |2 = e
4

4s
2 Tr

[
(/p+ −me)γ

ν(/p− +me)γ
ρ
]
Tr
[
(/k− +mτ )γν(/k+ −mτ )γρ

]
.

(2.18)

Using the trace relations in [4], the squared photon amplitude is

|Mγ |2 = e4
[
2 + z2ez

2
µ(−1 + cos2 α) + (1− z2e )(1− z2µ)

]
. (2.19)

Similarly, the squared amplitude for Z0 exchange is

|MZ |2 = A

[
ūµγ

ωC−vµ

(
gων − qωqν

M2
Z

)
v̄eγ

νC−ue

· ūeγρC−ve

(
gρσ − qρqσ

M2
Z

)
v̄µγ

σC−uµ

]
, (2.20)
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with

A =
e4

sin4 2θW

1

(s−M2
Z)

2 +M2
ZΓ

2
Z

. (2.21)

I introduce the notation

C± ≡ cV ± cAγ
5 (2.22)

with γνC± = C∓γν . (2.23)

Using /q = /k− + /k+ = /p− + /p+ and the Dirac equation on the terms containing

/q yields

v̄e/qC
−ue = −me v̄eC

−ue +me v̄eC
+ue

= 2mecAv̄eγ
5ue (2.24)

and similarly

ūe/qC
−ve = −2mecAūeγ

5ve . (2.25)

The terms containing the muon spinors and /q are identical, replacing all refer-

ences to electrons by muons. The squared amplitude for Z0 exchange decom-
poses into four contributions

|MZ |2 = 4A

[(
uµ ūµγ

ωC−vµ v̄µγρC
−
)(
ue ūeγ

ρC−ve v̄eγωC
−
)

︸ ︷︷ ︸
W1

+ a
(
uµ ūµγ

ωC−vµ v̄µγ
5
)(
ue ūeγ

5ve v̄eγωC
−
)

︸ ︷︷ ︸
W2

+ a
(
uµ ūµγ

5vµ v̄µγρC
−
)(
ue ūeγ

ρC−ve v̄eγ
5
)

︸ ︷︷ ︸
W3

+ b
(
uµ ūµγ

5vµ v̄µγ
5
)(
ue ūeγ

5ve v̄eγ
5
)

︸ ︷︷ ︸
W4

]
. (2.26)

Again averaging over the initial state and summing over final state spins, the
different terms are

W1 =Tr
[(
/k− +mµ

)
γωC−(/k+ −mµ

)
γρC

−
]
Tr
[(
/p− +me

)
γρC−

(
/p+ −me

)
γωC

−
]
,

(2.27)

W2 =Tr
[(
/k− +mµ

)
γωC−(/k+ −mµ

)
γ5
]
Tr
[(
/p− +me

)
γ5
(
/p+ −me

)
γωC

−
]

(2.28)

=W3, (2.29)

W4 =Tr
[(
/k− +mµ

)
γ5
(
/k+ −mµ

)
γ5
]
Tr
[(
/p− +me

)
γ5
(
/p+ −me

)
γ5
]
. (2.30)
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Using the trace relations, W1 is

W1 = 4s2
[(
c2V + c2A

)2(
1 + z2ez

2
µ cos2 α

)
+
(
c4V − c4A

)(
1− z2ez

2
µ

)
+
(
c2V − c2A

)2(
1− z2e

)(
1− z2µ

)
+ 8c2Vc

2
Azezµ cosα

]
. (2.31)

W2 and W3 are −16memµc
2
As and W4 is 4s2. Putting all together, the squared

amplitude for Z0-exchange is

|MZ |2 =As2
[(
c2V + c2A

)2(
1 + z2ez

2
µ cos2 α

)
+
(
c2V − c2A

)2(
1− z2e

)(
1− z2µ

)
+
(
c4V − c4A

)(
1− z2ez

2
µ

)
− s

M2
Z

c4A

(
1− z2e

)(
1− z2µ

)(
2− s

M2
Z

)
+ 8c2Vc

2
Azezµ cosα

]
. (2.32)

The squared Z0 amplitude introduces a contribution linear in the cosine of the
polar angle, although heavily suppressed by s2/M4

Z .

The squared amplitude of the interference between the γ and Z0 mediated
interaction is

|Mint|2 =B

[
ūµγ

νvµ v̄eγνue v̄µγ
ρC−uµ ūeγρC

−ve

]
− B

M2
Z

[
ūµγ

νvµ v̄eγνue v̄µ/qC
−uµ ūe/qC

−ve

]
, (2.33)

with

B =
e4

sin2(2θW)

1

s

(s−M2
Z)

(s−M2
Z)

2 +M2
ZΓ

2
Z

. (2.34)

Averaging over the initial spins and summing over the final state spins, the
squared amplitude of the interference is

|Mint|2 =
B

4
Tr
[
(/k− +mµ)γ

ν(/k+ −mµ)γ
ρC−

]
Tr
[
(/p+me)γρC

−(/p+ −me)γν

]
=Bs2

[
c2V

(
(1 + z2ez

2
µ cos2 α) + (1− z2ez

2
µ) + (1− z2e )(1− z2µ)

)
+ 2c2Azezµ cosα

]
. (2.35)

Here I immediately dropped the second term of eq. (2.33) since it is equal to 0.
The combination of eqs. (2.19), (2.32) and (2.35) as shown in eq. (2.3) is the

final result for the total squared amplitude. The two final terms in eqs. (2.32)
and (2.35) are linear in cosα. Therefore, the polar angle distribution is slightly
asymmetric. This relates the polar angle distribution and its asymmetry to the
Weinberg angle and allows to measure it. Both terms linear in cosα are sup-
pressed since Belle II operates at energies far below the Z0 mass. Comparing
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both linear contributions, the term in eq. (2.35) is amplified compared to the
one in eq. (2.32) by (s −M2

Z)/s. Therefore, the squared amplitude eq. (2.35)
is the leading contribution to the forward-backward asymmetry and determines
the polar angle distribution. I compare my expressions to the expression for
the total tree-level matrix element in [24], by setting ze = 1. The expressions
match, confirming my results.

2.2 Weinberg angle fit
To cross check the extraction of the Weinberg angle from the polar angle distri-
bution, I use the Markov Chain Monte Carlo sampler emcee [25] to first gener-
ate different polar angle distributions and then extract sin2 θW back from them.
Emcee uses a probability density function, which is explored, by moving around
in the available phase-space. If the sampling process works, then the entries of
the chains reflect the true underlying probability density function. Each entry
in the chain corresponds to one so-called step. The probability density function
I provide is the squared total amplitude normalized to its value integrated over
the whole cosα range

P (cosα| sin2 θW) =
|M(cosα, sin2 θW)|2∫ 1

−1
|M(cosα, sin2 θW)|2 d cosα

. (2.36)

For the generation, the likelihood in eq. (2.36) takes a fixed value for sin2 θW
and cosα as a free parameter.

For the generation of the polar angle distribution, I initialize 25 chains and
discard the first 5000 steps of the sampling process as so-called burn-in steps.
This explores the available phase space and should get rid of dependencies on
the initialization. The emcee autocorrelation time of the chains, which is given
in terms of steps, is used to test if further burn-in steps are needed. This is
done by calculating the ratio of the burn-in steps to the autocorrelation time
and requiring the ratio to exceed 50. If this is not the case, the procedure
is repeated, but with an additional 5000 burn-in steps. I do this each time,
before generating polar angle distributions for the values sin2 θgenW = 0.1, 0.2

and 0.3. For the sample generation, the mass and width of the Z0 take the
values MZ = 91.1876GeV and ΓZ = 2.50GeV. The masses of the electron
me = 0.510 998 95MeV and muon mµ = 0.106GeV are also fixed, in agreement
with their Particle Data Group values [9]. The center-of-mass energy is fixed at√
s = 10.58GeV.
After the burn-in phase, the sampling process is started, until a total of

50× 106 cosα values have been generated. These are then binned into 100 uni-
form, disjoint bins covering the range −1 to 1.
Figure 2.2 shows the polar angle probability distribution P (cosα| sin2 θW) calcu-
lated from eq. (2.36) for three sin2 θgenW used. The only discernible difference be-

tween the distributions is between the distribution sampled from sin2 θgenW = 0.1

and sin2 θgenW = 0.3. For sin2 θgenW = 0.1, the distribution is consistently higher
for cosα < 0 than for the others. Similarly, when cosα > 0, the situation is
reversed. Therefore, the polar angle distribution for sin2 θgenW = 0.1 is more

asymmetric than for sin2 θgenW = 0.2 or 0.3.
Figure 2.3 shows the region cosα ∈ [−0.25, 0.25]. Here the differences are

better visible. In particular, the asymmetry decreases with increasing sin2 θgenW .
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Figure 2.2: The polar angle distribution calculated from the normalized
squared total amplitude in eq. (2.36) for three values of sin2 θgenW .

The difference between the distributions for sin2 θgenW = 0.2 and 0.3 is not as

pronounced as it is comparing them to sin2 θgenW = 0.1.

Since we expect a good efficiency and Belle II plans to record about 50 ab−1,
we opt for a binned maximum likelihood fit to extract the value of sin2 θW from
the polar angle distribution. For the binned maximum likelihood fit, I again use
emcee. Bayes’ Theorem relates the posterior distribution of the Weinberg angle
P (sin2 θW|Data) given the polar angle distribution to the posterior of the polar
angle distribution P (Data| sin2 θW)

P (sin2 θW|Data) ∝ P (Data| sin2 θW)P0(sin
2 θW), (2.37)

with P0(sin
2 θW) as a uniform prior on the sine squared of the Weinberg angle.

Since the cosα-distribution is binned into a histogram, each bin has the
likelihood
Lb(Data| sin2 θW). The total likelihood P (Data| sin2 θW) is then the product
of all the individual likelihoods. In each bin b, a Poisson distribution with an
expected rate νb determines the probability to observe nb events in that bin

P (nb|νb) =
ν
nb

b

nb!
exp−νb . (2.38)

The yield Y is the number of events that really occurred during data taking. N
is then the number of events that were observed during data taking. It can be
calculated by summing all the bin counts in the polar angle distribution.
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Figure 2.3: The polar angle distribution calculated from the normalized
squared total amplitude in eq. (2.36) for three values of sin2 θgenW in the region
[−0.25, 0.25].

The log likelihood of the observed data is then

logP (Data| sin2 θW, Y ) =
∑
b

logP (nb|νb),

=
∑
b

nb log νb − νb, (2.39)

where νb depends on the Weinberg angle and the yield. I neglect the term log nb!
since it does not depend on the Weinberg angle.

In addition, I define the normalized differential cross section

f(sin2 θW, cosα) ≡
|M(cosα, sin2 θW)|2∫ 1

−1
|M(cosα, sin2 θW)|2 d cosα

. (2.40)

The number of events nb in each bin b is given from the cosα histogram. The
rate in each bin is

νb = Y

∫
b

f(sin2 θW, cosα) d cosα , (2.41)

where the integral goes from the lower edge of the bin b to its upper edge. Using
this, eq. (2.39) is then

logP (Data| sin2 θW, Y ) =N log Y − Y

+
∑
b

nb log

∫
b

f(sin2 θW, cosα) d cosα . (2.42)

12



0.0 0.2 0.4 0.6 0.8 1.0

sin2 θsim
W

0

100000
P

(s
in

2
θ W
|D

at
a)

sin2 θgen
W = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

sin2 θsim
W

0

50000

P
(s

in
2
θ W
|D

at
a)

sin2 θgen
W = 0.2

0.0 0.2 0.4 0.6 0.8 1.0

sin2 θsim
W

0

10000

20000

P
(s

in
2
θ W
|D

at
a
)

sin2 θgen
W = 0.3

Figure 2.4: The sampled sin2 θW probability density distributions simulated
with the polar angle distributions for sin2 θgenW = 0.1 (orange), sin2 θgenW = 0.2

(cyan) and sin2 θgenW = 0.3 (black).

The binned maximum likelihood splits into two different, independent parts.
The first two terms depend on the yield but not the polar angle, while the third
term contains the integration over cosα and no yield dependence. The posterior
distribution for the yield is analytically solvable. Since N is large, the posterior
distribution of the yield is approximately a normal distribution with mean N
and standard deviation

√
N . Using a uniform prior between 0 and 1, this is

the posterior distribution P (sin2 θW|Data). The yield is required to be non-zero
and positive.

To make it a consistency check, I use the same squared total amplitude,
masses, widths and energies for toy sample generation and fitting. To sample
from the posterior distribution of sin2 θW, I again use emcee with the log likeli-
hood as described in eq. (2.42). Five chains are initialized and the first 10 000
steps are discarded as burn-in steps. The ratio of burn-in steps to the autocor-
relation time given in steps has to be above 50, otherwise adding 20 000 burn-in
steps and starting the burn-in process again. After burn-in, the sampling pro-
cess continues until a total set of 500 000 steps has been generated.

Figure 2.4 shows the sampled posterior distribution for sin2 θW for the three
values of sin2 θgenW used. The sampling process finds two values for sin2 θW, one
above and one below 0.5. This is due to the terms linear in cosα in the matrix
element being proportional to sin−2(2θW). This is ambiguous in sin2 θW. The
peaks below 0.5 are larger, meaning they have a higher probability density. The
reason for this is that the squared total amplitude also has a weak dependence
on cV. cV is unambiguous in sin2 θW. Therefore, the sampling procedure indeed
finds the true value used for generating the polar angle distribution.

Table 2.1, shows the sample mean and sample standard deviation of the
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Table 2.1: The first column shows the three values of sin2 θW used for gen-
erating the polar angle distributions. The second and third column contain the
mean and standard deviations of the posterior distributions. To calculate the
mean and standard deviation of the posterior distribution of sin2 θW only the
values below 0.5 are used.

sin2 θgenW sin2 θsimW Y

0.1 0.090± 0.001 49 999 811± 7058
0.2 0.187± 0.007 50 000 091± 7085
0.3 0.295± 0.012 50 000 015± 6999

posterior of sin2 θW, as well as for the yield. The sample mean sin2 θsimW and
sample standard deviation of sin2 θW take only the values below 0.5 into account.
A different approach is to to limit the available range for sin2 θW to below
0.5 since sin2 θW is expected to be around 0.23 [8]. Sampling the yield is not
necessary since the likelihood in eq. (2.42) is analytically solvable. However,
I used it as a cross check for the sampling process and the sampled results
agree nicely with the expectation of a Gaussian distribution with mean N and
standard deviation

√
N .

The expected value of sin2 θW is around 0.23, therefore I estimate the relative
uncertainty from the fit with sin2 θgenW = 0.2. The fit result has a relative uncer-
tainty of 3.7%. Taking into account the efficiency calculated in section 3.4 and
the angular coverage of Belle II, I assume a reconstruction efficiency of about
40% and a cross section of 1.148 nb. The 50× 106 events in each data set, then
correspond to about 100 fb−1 integrated luminosity. Before its first long shut-
down in 2022, Belle II recorded 424 fb−1 of integrated luminosity [26]. Scaled to
this luminosity, the relative uncertainty would be 1.8%. This is comparable to
the NuTeV result [20], which has a relative uncertainty of 1.0%.

The sin2 θsimW values in table 2.1 are consistently below the values used for
generation. I calculate the pull using the value used for generating the polar
angle distribution sin2 θgenW , the value extracted from the sampling sin2 θsimW and

the uncertainty extracted from the sampling σsim

sin2 θsimW − sin2 θgenW

σsim
. (2.43)

Table 2.2 shows the pulls for the three values of sin2 θgenW . It confirms the

agreement between the sin2 θgenW and sin2 θsimW improves for the two higher values.
A possible explanation of this behavior is that the total squared amplitude
diverges as sin2 θW approaches 0 or 1 since it depends on sin−2(2θW). Estimating
the bias and pulls in a next step would require to produce multiple data sets
for the same value sin2 θgenW and studying them.

In conclusion, I have introduced a method to extract the Weinberg angle
from a polar angle distribution for µ+µ− events. I also compared the numerical
values of the different contributions to the total squared amplitude to code
written by F. Krinner independently. The different contributions agreed within
the numerical uncertainties.

The next step would introduce detector simulation, but we started without it
since the setup is easier and the Belle II software was not public, when I started
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Table 2.2: The first column shows the three values of sin2 θW used for generat-
ing the polar angle distributions. The second column shows the pull of sin2 θsimW

given in table 2.1 from the value sin2 θgenW used.

sin2 θgenW Pull

0.1 -12.207
0.2 -1.858
0.3 -0.389

working on the sampling procedure. The results presented retain their validity
since the sampling procedure is still necessary to extract the Weinberg angle.
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Chapter 3

Study of background
sources

To measure the Weinberg angle with muon pairs, the signal events should con-
tain only two muons. No other particles should be in the detector. However,
there are other processes, which can look similar to the signal events in the de-
tector. We call these background processes. They can be categorized as particle
identification related background processes and detection related background
processes.

The particle identification related background processes are processes, where
either electrons or hadrons are mis-identified as muons. In the process e+e− →
h+h−, both hadrons h± can be mis-identified as muons. Other possibilities
are that the hadrons decay into electrons or positrons with two corresponding
neutrinos and the electron-positron pair is mis-identified as a muon pair. The
other possibility is the process e+e− → τ+τ−, where the tau pair decays to a
pair of electrons, a pair of hadrons or an electron and a hadron. The decay
products of the tau are then mis-identified so that the total event looks like an
e+e− → µ+µ− event. The pair of neutrinos is not measured in the detector.

The detection related background processes are processes in which the de-
tector detects one muon pair, but misses at least one additional particle. The
general structure of these processes is e+e− → µ+µ−X, where X is a system of
one or more undetected particles. I treat X as a single particle, keeping in mind
that it could also be a system of multiple particles. A possible reason for not
detecting X is that it traveled outside the geometric acceptance of the detector,
for example the beam pipe. Another reason could be that the momentum p⃗X
of X is simply to low so that it does not reach the necessary detector parts
to be measured. Most of the time, the detection related background processes
are going to be e+e− → µ+µ−γ events. Depending on the photon energy, the
angular distribution of the muon pair is changed. Therefore, we want to exclude
such events above a certain threshold for the photon energy.

The particle identification at Belle II is still under development, so we focus
on separating detection related background processes from our signal processes
using kinematic variables. Therefore, differences in the distribution of kinematic
variables between signal and background processes are studied using the official
Belle II simulation software [27, 28].

16



Figure 3.1: The top view of the Belle II detector taken from [29].

3.1 SuperKEKB and the Belle II detector
The SuperKEKB accelerator accelerates electrons and positrons, which collide
with a center-of-mass energy of 10.58GeV. In the laboratory frame, the elec-
tron beam has an energy of 7GeV, while the positron beam has an energy
of 4GeV. Therefore, SuperKEKB is an asymmetric collider with most of the
particles boosted in the direction of the electron beam. This is the forward
direction at Belle II. The targeted instantaneous luminosity of SuperKEKB is
8 × 1035 cm−2s−1 [23]. This would be the world record for the instantaneous
luminosity, but has not be achieved by SuperKEKB so far.

Belle II [23] is the new detector at the interaction point of SuperKEKB and
the upgrade of the former Belle detector. The goal of Belle II is to accumulate
50 ab−1 [23] of integrated luminosity for precision studies of particle physics.
For 1 ab−1 of integrated luminosity, SuperKEKB will produce about 1.148×109

muon pairs. Even for a bad reconstruction efficiency of 0.1%, this still corre-
sponds to 1.148× 106 muon pairs per ab−1. The Belle II detector is an almost
complete 4π-detector. Here I only provide an overview of its most important
parts and their usage. A complete description is given in [23, 29, 30].

Figure 3.1 shows the schematics of the detector from the top side. The sub-
detectors are arranged in a cylindrical fashion around the interaction region at
the center of the image. From the inner to the outer layer, the detector is com-
posed of the silicon pixel detector (PXD), the silicon vertex detector (SVD), the
central drift chamber (CDC), the time-of-propagation counter (TOP), the aero-
gel ring-imaging Cherenkov detector (ARICH), the electromagnetic calorimeter
(ECL) and the K0

L-and muon detector (KLM). Part of the KLM is the iron yoke,
which together with the superconducting solenoid provides the magnetic field
of 1.5T for the Belle II detector.
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The silicon pixel detector currently consists of one layer of silicon pixels.
The silicon vertex detector consists of four layers of silicon strips. Both register
hits from charged particles, which are then used in the track reconstruction.
Since they are the closest sub-detectors to the interaction point, they provide
the most detailed information about the origin of the track.

The central drift chamber consists of a large volume of He-C2H6 gas. 56
layers of wires, grouped into 9 superlayers, pass through the volume of the
central drift chamber. Charged tracks traveling through the gas ionize it and
the ionization is then measured at the wires. This is used to reconstruct tracks of
charged particles. In addition, the curvature of the tracks provides information
about the momentum of the track. This is important for particle identification
because the particle identification often relies on relating the momentum of a
particle to other measurable quantities of the same particle. Another piece
of information relevant to charged particle identification is the specific energy
loss dE/dx of a particle in the central drift chamber. This depends on the
momentum of the track and on the particle species responsible for the track.
Measurements of the central drift chamber are particularly important for tracks
with low momentum, which might not reach the outer sub-detectors.

The time-of-propagation counter and the aerogel ring-imaging Cherenkov
detector complement each other. The time-of-propagation counter covers the
barrel region and an aerogel ring-imaging Cherenkov detector in the forward
endcap. Both use Cherenkov radiation to measure the velocity of charged par-
ticles passing through the detector material.

The electromagnetic calorimeter is made out of CsI(Tl) crystals arranged as
a barrel with a forward endcap and a backward endcap. Photons and charged
particles create clusters of energy deposition in these crystals. The clusters
provide information on the energy and location of particles. This is in particular
important for the π0 reconstruction since the π0 decays mainly to two photons.
Other tasks of the electromagnetic calorimeter include the reconstruction of
K0

L together with the K0
L and muon detector, the luminosity measurement and

providing trigger information.
The K0

L and muon detector is made out of a stack of alternating iron plates
and detector material. Similar to the electromagnetic calorimeter, it consists of
a barrel and two endcaps, one in the forward and one in the backwards region.
As the name suggests, its main purpose is to detect µ± and K0

L. These usually
travel almost undisturbed through the other detector parts but can be detected
in the K0

L and muon detector due to the iron plates. Since the µ± is a lepton,
whereas the K0

L is a hadron, they interact differently with the material of the
K0

L and muon detector. In addition, the muon is a charged particle, so it should
have a reconstructed track associated to it in the other sub-detectors. The neu-
tral K0

L does not interact with the tracking sub-detectors and should not have
an associated track. Therefore, the separation between K0

L and µ± should work
well.

3.2 Study of µ+µ−X kinematics
I focus on rejecting e+e− → µ+µ−X processes. Since there is at least one
missing particle in the system X, the µ+µ−X final state is described by three
four-momenta, so twelve degrees of freedom. Four-momentum conservation re-
moves four of them, so there are eight degrees of freedom left. Two particles are
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identified as muons, so they need to fulfill the four-momentum relation p2 = m2
µ ,

which removes two degrees of freedom. There remain six degrees of freedom.
Two of these degrees of freedom are the azimuth and the polar angle of the
µ−. Due to momentum conservation, the momenta of the µ+, µ− and X all lie
within one so-called decay plane. The orientation of the decay plane around the
µ− direction is described by the angle between the decay plane and the e−-µ−

plane. The azimuth and the orientation of the decay plane are not relevant for
measuring the Weinberg angle. The polar angle is measured and therefore is not
a suitable variable to discriminate signal from background events. Therefore,
there are three remaining degrees of freedom, that are used to differentiate the
three-body final state from the signal two-body final state.

Due to the presence of the particle X, the muon energies deviate from
√
s/2,

as they would be in the signal e+e− → µ+µ− process. I introduce the energies
E± as kinematic variables of interest. The energy measurements of the muons
should not influence each other, therefore they can be combined into the radial
energy deviation of the event

Rµµ =

√
(⟨E⟩ − E+)

2
+ (⟨E⟩ − E−)

2
. (3.1)

The value ⟨E⟩ is not fixed for a measurement on real data. One could use the
individual averaged energies of µ+ and µ− in true e+e− → µ+µ− events in both
terms under the square root in simulated or recorded events. For now, I define
⟨E⟩ as the combined average energy of µ+ and µ− in true, simulated signal
events e+e− → µ+µ−. For the signal events with perfect reconstruction and no
resolution effects Rµµ = 0GeV.

Since the muons in µ+µ−X are no longer back-to-back, I introduce the
acollinearity cos η ≡ −p̂+p̂−. It describes the deviation from the muons being
back-to-back in the center-of-mass frame and is defined using the normalized
momenta of the muons. In the center-of-mass frame, the muons in signal events
are back-to-back with cos η = 1.

Finally, I study the missing invariant mass square M2
X = p2X , where pX is

the four-momentum of the missing particle X. In the two-body final state, there
are no missing particles, therefore M2

X = 0GeV2.
As we have seen, these variables have precise values for the two-body sig-

nal final state. Therefore, they are interesting to study separating signal and
background processes. In principle, next to the energies, only one additional
variable is needed for a complete description of the µ+µ−X topology. However,
the finite resolution of the detector means that four-momentum conservation
can be broken for one kinematic variable, while it is approximately conserved
for another. Therefore, we consider all the variables, that have been introduced
so far. By assumption X is not measured in the detector, so all the quantities
related to X are expressed in terms of measured quantities. The missing mass
square is then

M2
X = s+ s′ − 2

√
s(E+ + E−), (3.2)

where s′ ≡ (p+ + p−)2 is the squared mass of the muon pair.
In a presentation in 2014 [31], T. Ferber performed an early study for a pos-

sible measurement of the Weinberg angle at Belle and Belle II. He introduced a
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different set of variables, assuming the missing particle to be a photon, including

x± ≡ 2p±pX
s

. (3.3)

I treat the three-body final state more generally by letting X be unknown and
undetected. It is therefore interesting, to further study the relation between
the different variables that have been introduced. The four-momentum of X is
replaced in the definition of x±, using pX = p+e + p−e − p+ − p−

p±pX = p±
(
p+e + p−e − p+ − p−

)
= E±

√
s−m2

µ − p+p−. (3.4)

The last two terms are replaced using

s′ ≡ (p+ + p−)2 = 2m2
µ + 2p+p−, (3.5)

and so

x± ≡ 2p±pX
s

=
2E±

√
s− s′

s
. (3.6)

Therefore, it is not necessary to study the distribution in x±. The focus is then
on studying the relations between E±, M

2
X and cos η. Using the definition of

s′, the acollinearity can be expressed in terms of the muon energies

s′ − 2m2
µ = 2p+p− = 2E+E− + 2

√
E2

+ −m2
µ

√
E2

− −m2
µ cos η. (3.7)

Therefore, the acollinearity is

cos η =
s′ − 2m2

µ − 2E+E−

2
√
E2

+ −m2
µ

√
E2

− −m2
µ

. (3.8)

The acollinearity is related to the energies of the muons and the mass of the
muon pair s′. At Belle II, the approximation mµ = 0 is a good one

cos η ≈ s′

2E+E−
− 1. (3.9)

An earlier study proposed cos η > 0.985 [31]. In terms of a general lower bound
cos η0 on the acollinearity, this means

s′

2E+E−
− 1 > cos η0. (3.10)

As a limit on the product of muon energies

E+E− <
s′

2(1 + cos η0)
. (3.11)

s′ depends on the muon energies. Using the definition of s, all terms depending
on the muon energies are grouped together

s ≡ |p+ + p− + pX |2 =
(
p+ + p−

)2
+M2

X + 2pX

(
p+ + p−

)
. (3.12)
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Figure 3.2: The selection bounds for two values of the acollinearity angle
η0 = 10◦ (orange) and η0 = 45◦ (blue) under the assumption M2

X = 0GeV.
The red dot is the point (5.29, 5.29)GeV.

Solving this for s′ yields

s′ = 2
√
s(E+ + E−) +M2

X − s. (3.13)

Therefore, the bound on the acollinearity can be written in terms of the muon
energies and the square of the missing mass. The signal e+e− → µ+µ− events
have no missing mass. Therefore, I approximate M2

X = 0

s′ = 2
√
s(E+ + E−)− s. (3.14)

Using this, the acollinearity selection bound is

E± >
1
2s−

√
sE∓√

s− (1 + cos η0)E∓
. (3.15)

Figure 3.2 shows two acollinearity selection bounds, where the areas below
the curve are excluded. The red point at (5.29, 5.29)GeV marks the location of
signal muon events, if the energies of the muons are perfectly reconstructed. The
reconstructed signal events are distributed around this point due to imprecisions
of the detector.

The selection of the signal events is optimized to achieve the greatest sta-
tistical precision on the Weinberg angle. It might be the case that some of the
selection criteria I studied here introduce systematic uncertainties. They are
usually only studied much later in the development of a study so it is left for
future work. Should it turn out that some of the selection criteria I studied here
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introduce large systematic uncertainties, it will be necessary to study which
selection criteria are best used.

To obtain the highest precision on the Weinberg angle measurement, the
distributions for the different variables introduced are studied for signal reten-
tion and background rejection. The reconstruction of the events uses some
pre-selection criteria, which are aimed at reducing the total output of the sim-
ulation, but not distorting the signal distribution. There should be exactly two
tracks in each event. These tracks should come from the interaction region since
the muons from e+e− → µ+µ− events originate at the interaction point of the
beams. This means the distances of closest approach of the two tracks to the
interaction point have to be less than 2 cm in the radial direction and less than
5 cm in the direction of the electron beam. If these criteria are not met, then
the tracks are most likely not a result of the process of interest to us, but could
be coming from cosmic rays or beam background. Since the final state particles
are muons, the candidates should have a muon likelihood above 0.1. As the
particle identification at Belle II is still being worked on, we are not looking to
optimize the selection on the muon identification yet.

An earlier study [31] proposed a timing requirement for the tracks in the
time-of-propagation counter. This is aimed at reducing the background from
cosmic ray muons. A cosmic muon produces both tracks by traveling through
the detector, instead of the two tracks originating at the interaction region. I
drop this requirement for now since it is not relevant for this study.

To define the signal events, I use Monte Carlo truth matching. Using gener-
ator level information, the reconstructed muons have to be from e+e− → µ+µ−

events. A large expected background contribution are from µ+µ−γ events, since
the cross section for the radiation of a photon from one of the beam electrons
or one of the muons in the final state diverges as the photon energy approaches
0. Therefore, there are no events having only a muon pair in the final state
and no photons. Theoretical corrections to the squared amplitude calculated in
section 2.1 depend on a cutoff on the photon energy and will have to take into
account the ability of the Belle II detector to measure photons. As the energy
of the photon increases, the angular distribution of the muon pair is changed.
Events with a high-energy photon are therefore background events, while the
situation is more nuanced for low energy photons. For a future Weinberg angle
measurement, the cutoff on the photon energy has to be discussed again taking
into account the detector performance to measure photons and the theoretical
model used to fit the polar angle distribution. For now, generator informa-
tion is used to define signal events as events where the Monte Carlo generator
KKCC [32] produced no photon coming from the beam electrons (initial state
radiation) or the muon pair (final state radiation). This means that the KKCC
internal cutoff on the photon energy is used. This is the energy at which KKCC
deems it necessary to simulate a photon that can interact with the detector.
µ+µ−nγ events with at least one photon are considered a background process.

Figure 3.3 shows the peak region of the reconstructed energies of the signal
muons in the center-of-mass frame using a sample of 6 039 150 events. This
shows approximately a one standard deviation window around the nominal en-
ergy of 5.29GeV. The peak is tightly focused around the nominal energy.

The sample mean and standard deviation for the energies are (5.292 ±
0.105)GeV for the µ+ and (5.293± 0.109)GeV for the µ−. The sample means
agree well with each other and with the expectation of 5.29GeV. I use the
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Figure 3.3: The energies of correctly reconstructed µ+ and µ− in e+e− →
µ+µ− events.

sample standard deviation as an approximation to the resolution of the energy
measurement. Therefore, I expect the selection criterion on the individual en-
ergies should to be of the order of 100MeV. The correlation coefficient between
the muon energies is 6 × 10−4, so there is no correlation between both energy
measurements. This is consistent with expectation, since the muons of most
muon pairs should be in different detector regions. Therefore, their momentum
and energy measurements are independent of each other. In fact, the study of
µ+µ−γ events I perform in section 4.4 finds that 99.87% of µ+ are isolated in
recorded events. The photon in that study needed to have a high-energy and
the isolation requirement takes into account additional tracks. Since the signal
events do not have any high-energetic photons, this percentage should be even
higher. Therefore, the radial energy deviation seems like a good selection cri-
terion to be optimized. The sample mean ⟨E⟩ of the energies of both muons
is 5.292GeV and its sample standard deviation σ⟨E⟩ = 0.107GeV. The sample
mean fixes the origin of the circle. The radius of this region of interest is then
optimized in a fit to retain signal events and reject background events. From the
standard deviations, I expect that the selection criterion on the radial energy
deviation will also be around 100MeV.

For signal events, the two dimensional population distributions of the radial
energy deviation and the muon likelihood, and the radial energy deviation and
the acollinearity do not show any meaningful correlations. Figure 3.4 shows
the two dimensional population distributions of the radial energy deviation Rµµ

with the missing mass squared M2
X for signal events. The density distribution

peaks at M2
X = 0GeV2 and Rµµ close to 0GeV. The Rµµ peak is slightly

shifted from 0GeV since the radial energy deviation is the square root of the
deviation from the mean. This does not take the sign of the deviation into
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Figure 3.4: The 2D density distribution of the missing invariant mass squared
M2

X against the radial energy deviation Rµµ in µ+µ− events. It uses a logarithic
coloraxis.

account. A selection on the radial energy deviation selects the events with a
vanishing missing mass squared very well, so that no further cut on the missing
mass squared should be necessary.

Figures 3.5 to 3.8 show the normalized distributions for the signal process
µ+µ− (black), as well as the distributions of the µ+µ−γ (blue) and other back-
ground processes (orange). The histograms of both categories of background
processes are stacked above each other and normalized together. The contribu-
tion of non µ+µ−γ background processes is very small since the pre-selection
criteria already eliminate the majority of such events.

Figure 3.5 shows the minimum of both muon likelihoods P (µ) of the two
muon candidates. It cannot differentiate between µ+µ− and µ+µ−γ , however
setting a higher cutoff would get rid of most of the other background events.
In most of these additional events, the reconstruction algorithm confuses an
electron or a pion for a muon.

Figures 3.6a and 3.6b show the radial energy deviation distribution for a
lager range zoomed-in on the signal peak region respectively. Figure 3.6a shows
that the distributions for µ+µ− and µ+µ−γ are very similar at large deviations,
however below approximately 3GeV, the µ+µ−γ distribution forms a plateau,
which is not present in the µ+µ− distribution. This is an avenue to reject
µ+µ−γ events.

Figure 3.6b shows the region around the signal peak. While th signal and
µ+µ−γ distributions peak at the same value, the signal distribution drops
quicker. The red line in fig. 3.6b marks the optimal value for a selection bound
on the radial energy deviation to separate signal from background events as
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Figure 3.5: The minimal muon likelihood minP (µ) in background and signal
(black line) events.

calculated in eq. (3.33) in section 3.4. The second axis on top of the histogram
shows the radial energy deviation in units of the sample standard deviation of
the energies of both muons.

Figures 3.7a and 3.7b show the acollinearity distribution over the full range
and zoomed-in on the signal peak respectively. The difference between µ+µ−

and µ+µ−γ is even more pronounced, with the µ+µ− distribution forming a
very narrow peak at 1, while the background processes basically cover the entire
available range.

Finally, fig. 3.8 shows the missing invariant mass squared M2
X . The signal

and background distributions peak at 0GeV2. However, the distribution of the
combined backgrounds (including µ+µ−γ) is broader than the signal distribu-
tion. The events away from the peak contain most likely by events with at
least one missing final-state particle. Examples for this can be four lepton final
states, where two leptons were not seen in the detector or τ decays involving at
least one neutrino.

Equation (3.15) relates the acollinearity to the muon energies and fig. 3.4
shows a clear dependence of the missing invariant mass square on the radial en-
ergy deviation. Therefore, the radial energy deviation is the only selection, that
is optimized to reduce the statistical uncertainty and investigate its influence
on signal retention and background rejection.

3.3 Calculating the selection efficiency
To optimize the radial energy deviation, we have to define the selection effi-
ciency. The selection efficiency ϵ is the probability to measure an individual
event. As a statistical process for N events, we want to determine how many
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events are measured. The probability to measure k events out of N is described
by the binomial distribution given ϵ

P (k|N, ϵ) =
(
N

k

)
ϵk(1− ϵ)N−k. (3.16)

Bayes’ Theorem then relates the probability P (k|ϵ,N) to the probability of the
efficiency

P (ϵ|k,N) ∝ P (k|N, ϵ)P0(ϵ), (3.17)

where P0(ϵ) is the prior knowledge of ϵ. P0(ϵ) can be chosen freely on its support
[0, 1]. As priors I consider a flat prior

P0(ϵ) = 1 (3.18)

and a double inverse prior

P0(ϵ) =
1

ϵ

1

1− ϵ
. (3.19)

The advantage of the double inverse prior is that we do not provide it any
information on the scale of the efficiency. The flat prior implicitly assumes the
efficiency is of the order 0.1 or larger. The drawback of the double inverse
prior is that it is improper, meaning the integral over its support [0, 1] does not
converge. This drawback is not an issue, as long as the posterior is properly
normalized. The priors are combined into the more general form

P0(ϵ) = ϵδ−1(1− ϵ)δ−1, (3.20)

where δ = 0 corresponds to the double inverse prior, while δ = 1 corresponds to
the flat prior. Using the general prior, the posterior distribution of the efficiency
is

P (ϵ|k,N) ∝
(
N

k

)
ϵk+δ−1(1− ϵ)N−k+δ−1. (3.21)

This has the form of the beta distribution [33, 34] with support [0, 1]

P (ϵ|k,N) = Beta(ϵ|k + δ,N − k + δ). (3.22)

The expectation value of the efficiency is

E[ϵ] =

∫ 1

0

ϵBeta(ϵ|k + δ,N − k + δ) dϵ

=
k + δ

N + 2δ
. (3.23)

Similarly, the variance of the efficiency is

Var[ϵ] = E[ϵ]
2 N − k + δ

(k + δ)(N + 2δ + 1)
. (3.24)
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Table 3.1: Comparison of the expectation value and standard deviation
(separated from expectation value by a semi-colon) of the efficiency for the
two different choices of priors (flat and double inverse).

choice of prior k = 0 k = N precision

flat (δ = 1, N ≫ 1)
(

1
N

)
;
(

1
N

) (
1− 1

N

)
;
(

1
N

)
(approximated)

double inverse (δ = 0) (0); (0) (1); (0) (exact)

For the flat prior (δ = 1), expectation value and variance are

E[ϵ] =
k + 1

N + 2
and Var[ϵ] = E[ϵ]

2 N − k + 1

(k + 1)(N + 3)
. (3.25)

For the double inverse prior (δ = 0) they are

E[ϵ] =
k

N
and Var[ϵ] = E[ϵ]

2 N − k

k(N + 1)
. (3.26)

Table 3.1 compares both choices of prior, when k = 0 or k = N , where the
efficiency approaches 0 or 1. The results for the flat prior are approximated for
large N . The results for the double inverse prior are exact. In particular the
variance of the double inverse prior is exactly zero independent of N . This does
not seem like a suitable definition for the efficiency. If we want to determine
the selection efficiency of a simulated process, no events passing would mean
the selection efficiency is known to be exactly 0, independent of the number
of simulated events. The issue of the efficiency at k = 0 and k = N is that
the parameters of the beta distribution are no longer on their support. The
efficiency with a flat prior asymptotically approaches 0 or 1 (if k = 0 or N)
and always has a finite variance, as we would expect.For this reason, I use the
results for the efficiency using the flat prior in eq. (3.25).

Information about the distribution of the efficiency is given by the expecta-
tion value and variance of the efficiency. This is often interpreted as a Gaussian
distribution. However, this interpretation is only valid, if the efficiency is suffi-
ciently far away from the boundaries of its support.

Figure 3.9 shows the probability density functions for N = 100 and three
different values of k. The probability densities with k = 0 or k = 100 are asym-
metric and cannot be described by a normal distribution. For k = 50 however,
the probability density function is well described by a Gaussian distribution.

3.4 Optimizing the radial energy deviation se-
lection

I use the official Belle II Monte Carlo campaign MC14ri a and MCri d, where
”ri” stands for run-independent. Run-independent Monte Carlo does not take
into account small differences, which occur during different runs of measure-
ments. As an example, the beam energies are fixed to the same value for each
event. I include all the processes, which are generically generated at Belle II
and list them in table 3.2. The names are determined by the first set of parti-
cles generated by the Monte Carlo generators after the virtual particle created
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in the electron-positron collision. Depending on which particles are generated,
they are then further decayed into different final state particles.

For the reconstruction and detector simulation, the release release-06-00-03
of the basf2 software [27, 28] is used. The same set of pre-selection criteria
and the same signal definition as in section 3.2 are applied. This means, the
muons are truth-matched and generator-level information is used to assure that
no photons from the beam electrons or muons have been generated by KKMC.

With this setup, the radial energy deviation selection is optimized. The goal
of the optimization process is to achieve the smallest statistical uncertainty on
the measurement of the Weinberg angle. The statistical uncertainty is propor-
tional to the relative statistical variance, which is approximated by the estimated
relative statistical variance Φ. The estimated relative statistical variance is the
inverse square of the so-called figure of merit

Φ =
S +B

S2 . (3.27)

S is the number of signal events and B the number of background events.
The expectation value of the estimated relative statistical variance is then

minimized given certain efficiencies of the selection criterion on the different
processes

E[Φ] = E

[
S +B

S2

]
= E

[
1

S

]
+ E

[
B

S2

]
. (3.28)

For a certain process i, the expected number of events is

E[Ni] = E[Lσiϵi], (3.29)

using its cross section σi and efficiency ϵi and a given luminosity L. I assume
these to be independent distributions. Therefore, the expectation value is the
product of the individual expectation values

E[Ni] = E[L]E[σi]E[ϵi]. (3.30)

The estimated relative statistical variance is

E[Φ] = E

[
1

L

]
E

[
1

σs

]
E

[
1

ϵs

]
+
∑
b

E

[
1

L

]
E

[
σb

σ2
s

]
E

[
ϵb

ϵ2s

]
. (3.31)

The subscript s indicates values for the signal process and the sum over b takes
into account all the background processes. The cross sections and efficiencies for
the background processes are independent of those of the signal process. Using
the algebra of random variables, the expectation value of a ratio factorizes into
a product of expectation values. Since the expectation value of the luminosity
can be pulled out of the sum on the right, it is sufficient to minimize

E[ΦL] = E

[
1

ϵs

]
E

[
1

σs

]
+
∑
b

E[ϵb]E

[
1

ϵ2s

]
E[σb]E

[
1

σ2
s

]
. (3.32)

In principle, the cross sections are distributed according to Gaussian distri-
butions with a certain mean and standard deviation. However, for the cross
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Table 3.2: Comparison of the signal and background processes and how well
they pass the selection criteria. The last column gives the efficiencies on the
Rµµ selection.

process events generated events passing ϵ [%]

µ+µ− 7 651 236 5 793 621 75.72± 0.02

µ+µ− + nγ 31 548 764 10 746 740 34.06± 0.01

e+e−µ+µ− 570 625 835 38 887 (6.81± 0.03)× 10−3

e+e− 740 699 373 3209 (4.33± 0.08)× 10−4

µ+µ−µ+µ− 519 833 58 (1.13± 0.15)× 10−2

uu 158 626 781 5 <1.45× 10−6

τ+τ− 91 900 000 1 <2.51× 10−6

dd 48 237 077 0 <4.77× 10−6

ss 50 492 936 0 <4.56× 10−6

cc 129 999 202 0 <1.77× 10−6

B0B0 51 000 000 0 <4.51× 10−6

B+B− 54 000 000 0 <4.26× 10−6

γγ 354 845 927 0 <6.49× 10−7

e+e−e+e− 582 792 993 0 <3.95× 10−7

e+e−τ+τ− 18 103 215 0 <1.27× 10−5

µ+µ−τ+τ− 287 270 0 <8.02× 10−4

τ+τ−τ+τ− 2114 0 <0.11

e+e−π+π− 189 500 000 0 <1.22× 10−6

e+e−K+K− 79 800 000 0 <2.89× 10−6

e+e−pp 11 700 000 0 <1.97× 10−5

π+π−ISR 166 700 000 0 <1.38× 10−6

π+π−π0ISR 23 780 000 0 <9.68× 10−6

K+K−ISR 16 300 000 0 <1.41× 10−5

K0K0ISR 8 864 000 0 <2.60× 10−5

sections, I was unable to find values with uncertainties at the Belle II center-
of-mass energy. Therefore, I take them as fixed values from the official Monte
Carlo 14 campaign [35].

I minimize the expectation value of ΦL using the Powell solver from scipy [36].
Figure 3.10 shows the region around the minimum. While the region between
0.22 and 0.23 flattens, it is a minimum of the fit function. The optimal value
for the radial energy deviation selection is found for

Rµµ < 229MeV. (3.33)

Table 3.2 lists the number of simulated events N , the number of events k
passing the Rµµ selection and the expectation value and standard deviation of
the efficiency.

For highly suppressed processes, where the efficiency is close to zero, I calcu-
late the 90% interval which covers the smallest range from the boundary using
the cumulative distribution and thus define the upper and lower limits. The
cumulative distribution of Beta(ϵ|k+1, N −k+1) is the regularized incomplete
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beta function Iϵ(k + 1, N − k + 1) [34]. It has the special properties

Iϵ(1, N + 1) = 1− (1− ϵ)N+1, (3.34)

Iϵ(N + 1, 1) = ϵN+1. (3.35)

Equation (3.34) corresponds to the case where k = 0, while eq. (3.35) corre-
sponds to the case k = N . To calculate the limits on the efficiency, one must
solve the equality Iϵ(1, k + 1) = 0.9. I also use eq. (3.34) as an approximation,
if almost no events pass the selection.

3.5 Data composition
The τ+τ−τ+τ− and µ+µ−τ+τ− processes have high upper limits due to the low
amount of simulated events that had been produced during the Monte Carlo
campaigns. To get a better understanding of the efficiencies, more events would
need to be simulated. To estimate, if these processes contribute with the ef-
ficiencies calculated from the available data, we need to calculate the number
of events at a given luminosity according to eq. (3.30). In order to be inde-
pendent of the luminosity, I calculate the ratio R of expected events after the
Rµµ selection for each background process compared to the signal process using
eq. (3.30)

E[R] = E

[
Nb

Ns

]
= E

[
Lσbϵb
Lσsϵs

]
= E

[
σb
σs

]
E

[
ϵb
ϵs

]
. (3.36)

I do not do this for the µ+µ− + nγ process since there the distinction between
background and signal events is not obvious. I also calculate the variance to
estimate the uncertainty. Since the cross sections are fixed values, I need to
calculate the expectation value and variance of the ratio of efficiencies.

3.5.1 Ratio of two efficiencies

I define the ratio ρ of two efficiencies ϵi and ϵj as

ρ ≡ ϵi
ϵj
. (3.37)

The probability distribution of each efficiency is

P (ϵ) = Beta(ϵ|k + δ,N − k + δ), (3.38)

where I used the general prior from eq. (3.20). Using the ratio distribution of
two random variables, the probability distribution of ρ is

P (ρ) =

∫ 1

0

ϵjBeta(ρϵj|ki + δ,Ni − ki + δ)Beta(ϵj|kj + δ,Nj − kj + δ) dϵj

= B−1(ki + δ,Ni − ki + δ)B−1(kj + δ,Nj − kj + δ)ρki+δ−1

×
∫ 1

0

ϵki+kj+2δ−1(1− ρϵj)
Ni−ki+δ−1(1− ϵj)

Nj−kj+δ−1 dϵj . (3.39)
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This has the form of the hypergeometric function 2F1 [37, Eq. 15.6.1]

2F1(a, b; c; z) = B−1(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a dt , (3.40)

with parameters:

a = ki −Ni + 1− δ, (3.41)

b = ki + kj + 2δ, (3.42)

c = Nj + ki + 3δ, (3.43)

z = ρ. (3.44)

Therefore

P (ρ) =B−1(ki + δ,Ni − ki + δ)B−1(kj + δ,Nj − kj + δ)ρki+δ−1

× B(ki + kj + 2δ,Nj − kj + δ)

× 2F1(ki −Ni − 1 + δ, ki + kj + 2δ;Nj + ki + 3δ, ρ). (3.45)

The expectation value and variance involve integrating eq. (3.45). The results
of these integrals are not intuitively helpful. It is therefore better to calculate
the expectation value and variance directly from the ratio of beta distributions
using the algebra of random variables. Since the efficiencies are independent,
the expectation value of the ratio is

E[ρ] = E[ϵi]E
[
1/ϵj

]
(3.46)

and the variance of the ratio is

Var[ρ] = Var[ϵi]Var
[
1/ϵj

]
+ (E[ϵi])

2Var
[
1/ϵj

]
+Var[ϵi] (E

[
1/ϵj

]
)
2
. (3.47)

The expectation value E[ϵi] and its variance Var[ϵi] are given in eqs. (3.23)
and (3.24). The expectation value of 1/ϵj is

E
[
1/ϵj

]
=

Γ(Nj + 2δ)

Γ(kj + δ)Γ(Nj − kj + δ)

∫ 1

0

ϵkj+δ−2(1− ϵ)Nj−kj+δ)−1dϵ

=
Nj + 2δ − 1

kj + δ − 1
. (3.48)

For the variance of 1/ϵj, I also need

E
[
1/ϵ2j

]
=

Γ(Nj + 2δ)

Γ(kj + δ)Γ(Nj − kj + δ)

∫ 1

0

ϵkj+δ−3(1− ϵ)Nj−kj+δ−1dϵ

=
(Nj + 2δ − 1)(Nj + 2δ − 2)

(kj + δ − 1)(kj + δ − 2)
. (3.49)

The variance of 1/ϵj is then

Var
[
1/ϵj

]
= E

[
1/ϵ2j

]
−
(
E
[
1/ϵj

])2
=
(
E
[
1/ϵj

])2 Nj − kj + δ

(Nj + 2δ − 1)(kj + δ − 2)
. (3.50)
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For the flat prior (δ = 1), the expectation value and variance of 1/ϵj are

E
[
1/ϵj

]
=
Nj + 1

kj
(3.51)

and Var
[
1/ϵj

]
=
(
E
[
1/ϵj

])2 Nj − kj + 1

(kj − 1)(Nj + 1)
. (3.52)

Together with eq. (3.25), the expectation value of the ratio of two efficiencies is

E[ρ] =
ki + 1

Ni + 2

Nj + 1

kj
. (3.53)

The variance of the ratio of two efficiencies is

Var[ρ] = (E[ρ])
2[
λiλj + λi + λj

]
, (3.54)

where λi and λj are the relative variances

λi =
Ni − ki + 1

(ki + 1)(Ni + 3)
(3.55)

and λj =
Nj − kj + 1(

kj − 1
)(
Nj + 1

) . (3.56)

For ki, kj, Ni and Nj all much larger than one and neglecting λiλj since it is
small, the relative variance of the ratio is approximately

Var[ρ]

(E[ρ])
2 ≈ 1

ki
− 1

Ni

+
1

kj
− 1

Nj

. (3.57)

I compare this to a simplified estimation of the relative variance assuming ki,
kj, Ni and Nj to be independent of each other and each one following a Poisson
distribution. With the same assumptions of ki, kj, Ni and Nj much larger than
one and doing Gaussian error propagation, the relative variance is approximately

Var[ρ]

(E[ρ])
2 ≈ 1

ki
+

1

Ni

+
1

kj
+

1

Nj

. (3.58)

Comparing eq. (3.57) and eq. (3.58), the signs of two terms flipped. Therefore,
the simplified approach used for eq. (3.58) overestimates the uncertainties. From
the start this simplified approach had the issue that it assumes the number of
the events passing the selection criterion to be independent of the number of
total events. One should therefore be careful, when assuming distributions to
be approximately Gaussian or doing Gaussian error propagation.

3.5.2 Expected purity with Rµµ selection

I calculate the ratio of expected background to signal events using eqs. (3.53)
and (3.54). If the efficiency is only given as an upper limit, the value of the upper
limit is used as calculated in eq. (3.34). Table 3.3 shows the cross sections used
in the Belle II MC14 campaign [35] for the different processes in the second
column. The efficiencies ϵ are given in the third column and the expected ratio
of background to signal (µ+µ−) events in the fourth.
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Table 3.3: The cross sections [35], selection efficiencies and ratio R of expected
number of events for background processes. < indicates that the 90% upper limit
on the efficiency was calculated.

process cross section [nb] ϵ [%] R

µ+µ− 1.148 75.72± 0.02 1.00

e+e−µ+µ− 18.83 (6.81± 0.03)× 10−3 (1.5± 0.1)× 10−3

e+e− 295.8 (4.33± 0.08)× 10−4 (1.47± 0.03)× 10−3

µ+µ−µ+µ− 0.3512× 10−3 (1.13± 0.15)× 10−2 (4.59± 0.60)× 10−8

uu 1.605 <1.45× 10−6 <2.68× 10−8

τ+τ− 0.919 <2.51× 10−6 <2.65× 10−8

dd 0.401 <4.77× 10−6 <2.20× 10−8

ss 0.383 <4.56× 10−6 <2.01× 10−8

cc 1.329 <1.77× 10−6 <2.71× 10−8

B0B0 0.510 <4.51× 10−6 <2.65× 10−8

B+B− 0.540 <4.26× 10−6 <2.65× 10−8

γγ 5.10 <6.49× 10−7 <3.81× 10−8

e+e−e+e− 39.55 <3.95× 10−7 <1.80× 10−7

e+e−τ+τ− 0.018 36 <1.27× 10−5 <2.69× 10−9

µ+µ−τ+τ− 0.1441× 10−3 <8.02× 10−4 <1.33× 10−9

τ+τ−τ+τ− 0.2114× 10−6 <0.11 <2.65× 10−10

e+e−π+π− 1.895 <1.22× 10−6 <2.65× 10−8

e+e−K+K− 0.0798 <2.89× 10−6 <2.65× 10−9

e+e−pp 0.0117 <1.97× 10−5 <2.65× 10−9

π+π−ISR 0.1667 <1.38× 10−6 <2.65× 10−9

π+π−π0ISR 0.023 78 <9.68× 10−6 <2.65× 10−9

K+K−ISR 16.30× 10−3 <1.41× 10−5 <2.65× 10−9

K0K0ISR 8.864× 10−3 <2.60× 10−5 <2.65× 10−9

At the beginning of this section, the contribution of the τ+τ−τ+τ− and
µ+µ−µ+µ− processes to the total data composition was to be studied. Their
relative contributions to the total number of events are small even with a high
upper limit on the efficiencies since their cross sections are small. Overall, the
ratio of expected events is of the order 1× 10−8 or smaller. Notable exceptions
are the e+e− → e+e− and e+e− → e+e−µ+µ− processes.

Figure 3.11 shows the minimal muon likelihood P (µ) of both muons, after
applying the Rµµ < 0.229GeV selection for signal (black) and e+e− events

(orange). The e+e− events peak at 0.1 due to the pre-selection criterion, whereas
the signal events peak at 1. The e+e− events are therefore easily removed
by setting a tighter selection on the muon likelihood of both candidates. At
Belle II, studies involving muons at Belle II often require at least one of the
muon candidates to have a muon likelihood above 0.9. Figure 3.11 shows that
such a selection would eliminate all the remaining e+e− events.

The e+e−µ+µ− events are more difficult and it is most likely not possible
to eliminate these events completely. For a very low energetic electron-positron
pair, these events are almost indistinguishable from µ+µ− events. In this case,
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E± ≈ 5.29GeV, cos η ≈ 1 and M2
X ≈ 0GeV2, which matches the expectation

for the signal events. The muon likelihood also does not reject these events
because the two reconstructed particles are actually muons.

Figure 3.12 show the radial energy deviation for µ+µ− (black) and e+e−µ+µ−

(orange) events. Similarly, figs. 3.13 and 3.14 show the acollinearity and the
missing mass squared respectively.

While overall the distributions of e+e−µ+µ− events are very similarly to
the µ+µ− distributions, the peaks are a bit broader. Therefore, tighter cuts
on the aforementioned variables (Rµµ, η and M2

X) still show some room for
improvement.

The next steps to measure the Weinberg angle are to refine the selection on
the radial energy deviation, the acollinearity and the muon identification, once
it is finalized at Belle II. Also the systematic uncertainties have to be studied.
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(b) The radial energy deviation in the region around the signal peak. The
horizontal axis on top of the histogram shows the radial energy deviation in
terms of the sample standard deviation of the energies of both muons. The
red line marks the optimal selection bound as found in the fit in section 3.4.

Figure 3.6: The radial energy deviation of background and signal (black line)
events.
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(b) The acollinearity in the region around the signal peak.

Figure 3.7: The acollinearity of the muon candidates of background and
signal (black line) events.
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Figure 3.8: The missing invariant mass squared of background and signal
(black line) events.
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Figure 3.9: The posterior probability density function of the efficiency ϵ with
a flat prior for k = 0, 50, 100 and N = 100.
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Figure 3.10: The expected relative statistical variance in the region around
the minimum of the radial energy deviation fit at 0.229GeV.
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Figure 3.11: The minimal muon likelihood minP (µ) for e+e− (orange) and
µ+µ− (black line) events after applying Rµµ < 0.229GeV.
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Figure 3.12: The radial energy deviation for e+e−µ+µ− (orange) and µ+µ−

(black line) events after applying Rµµ < 0.229GeV.
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Figure 3.13: The acollinearity for e+e−µ+µ− (orange) and µ+µ− (black line)
events after applying Rµµ < 0.229GeV.
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Figure 3.14: The missing invariant mass squaredM2
X for e+e−µ+µ− (orange)

and µ+µ− (black line) events after applying Rµµ < 0.229GeV.
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Chapter 4

Study of the muon
identification performance

After the optimization of the event selection, we obtain a data set of polar angles
to extract the Weinberg angle. However, the measured angular distribution is
not the true underlying distribution. It is distorted by detection efficiencies and
resolution effects. The efficiency is calculated from simulated events. Since the
final analysis is done on recorded data, it is necessary to understand how the
efficiency needs to be scaled from simulated to recorded events. I do this for
the muon identification efficiencies, which I study in the independent channel
µ+µ−γ , where the photon has an energy of at least 1GeV.

Previous studies [30] have shown that the particle identification performance
depends on the momentum and polar angle of the track of interest in the lab-
oratory frame. A study by P. Feichtinger in the e+e− → τ±(1P )τ∓(3P ) chan-
nel [38], where one tau decays to one charged particle and the other to three,
showed that the performance also depends on the activity around the track.
This means that the performance changes, if there is a lot of activity (other
tracks) in the detector around the track of interest. We call tracks with almost
no other tracks around them isolated and consecutively will talk about the track
isolation, instead of the activity around a track.

To study if this dependence is also present in other channels, I perform a
similar study in the e+e− → µ+µ−γ channel, where most tracks should be well
isolated. If a similar dependence as in the e+e− → τ±(1P )τ∓(3P ) channel is
seen, this would be a strong motivation to investigate the influence of the track
isolation in other channels with a higher number of charged final state particles.
In addition, we then calculate corrections to the simulation of muons at Belle II
based on the ratio of the muon identification efficiencies in recorded and simu-
lated events.

4.1 The Belle II charged particle identification
The Belle II-framework currently has two methods to determine the particle
species of a given candidate, namely the global particle identification and the
binary particle identification. These define the probability that a candidate be-
longs to the particle species i. The final state species considered at Belle II are
electrons e, muons µ, pions π , kaons K, protons p and deuterons d. The detec-
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tors providing information for the particle identification have been described in
section 3.1. For muons, the K0

L and muon detector is of particular importance.
For each final state species i, we use the set of information x from the sub-

detector d to calculate the likelihood Ld(x|i) for that detector. Using Bayes’
Theorem, the probability P (i|x) for the candidate to belong to a certain particle
species is

P (i|x) =
∏

d Ld(x|i)∑
j

∏
d Ld(x|j)

=
Li∑
j Lj

. (4.1)

The sum in the denominator takes into account all the different final state
particle species. Equation (4.1) defines the global likelihood ratio at Belle II.
This assumes the measurements of the sub-detectors to be independent.

If the goal is only to differentiate between two separate particle hypothesis
i and j, often the so-called binary likelihood does a better job

P (i/j|x) = Li

Li + Lj

. (4.2)

There are also currently other approaches in development, where the detector
likelihoods are reweighted. These weights are either implemented based on
studies or using neural networks [39].

Regardless of which method will be the finalized version of the particle identi-
fication at Belle II, the agreement between recorded and simulated events needs
to be studied. In the following, I study the agreement using the global muon
likelihood.

4.2 The track isolation
At Belle II, track finding for charged particles takes into account detector hits
at the different sub-detectors and interpolates them into a helix, due to the
magnetic field. This helix is only an approximation of the real trajectory since
the charged particles interact with the detector material and the magnetic field
is not homogeneous. The helix is then extrapolated throughout the detector.
For more information see the Belle II physics book [29].

The initial definition of the track isolation variable looked at the entry sur-
faces of the different sub-detectors except for the silicon pixel detector and the
silicon vertex detector. It then calculated the distance of other surrounding
tracks at one surface to the track of interest. We advocated to change the def-
inition of the track isolation variable since the initial definition would consider
two tracks as non-isolated, if they simply crossed at one detector surface and
then diverged again. They are therefore only locally non-isolated, while they are
well isolated throughout most of the detector. This old definition was therefore
abandoned in favor of an isolation score presented by M. Milesi in an internal
presentation [40].

The track isolation score defines an isolated track by taking into account
information from the central drift chamber, the aerogel ring-imaging Cherenkov
detector, the time-of-propagation counter, the electromagnetic calorimeter and
the K0

L and muon detector. For the central drift chamber, it defines nine layers,
which correspond to the nine superlayers of the central drift chamber. For the
aerogel ring-imaging Cherenkov detector and the time-of-propagation counter,

42



the only layer is the inner surface of the sub-detectors. For the electromagnetic
calorimeter, the two layers are the inner surface and one about 15 cm further out.
Finally, for the K0

L and muon detector, the single layer is again the entry surface.
Since the K0

L and muon detector extends in the radial direction, it would make
sense to define further layers. However, the magnetic field configuration does
not allow for that in the current simulation. For each sub-detector, the different
layers are approximated as cylinders with the dimensions approximating reality.

At each sub-detector different thresholds are defined based on the granularity
of the sub-detectors. The thresholds are: 5 cm for the central drift chamber,
22 cm for the time-of-propagation counter, 10 cm for the aerogel ring-imaging
Cherenkov detector, 36 cm for the electromagnetic calorimeter and 20 cm for
the K0

L and muon detector. Using this, the number of layers nd is counted, at
which at least one extrapolated track is closer to the track of interest than the
respective threshold value at that layer. For the central drift chamber and the
time-of-propagation counter, a 2D distance in the azimuth and radial plane is
calculated at each layer since they are only segmented in the radial and azimuth
plane. For the other sub-detectors, a 3D distance connecting the crossing points
of all the tracks to the track of interest is calculated at each layer.

This currently does not take into account activity from neutral particles or
detector hits, which could not be reconstructed into a track, for example photon
clusters in the electromagnetic calorimeter. However, there are considerations
in the Lepton ID group at Belle II to change this in an updated version of the
isolation score.

The ablation metric ∆s/d = s/d−s [30] uses the separation metric s, which dif-
ferentiates between muons and pions based on their likelihoods. The separation
metric is bounded between −1 and 1 and s/d is the same separation metric, but
excluding the sub-detector d. A positive ablation metric means the information
from this sub-detector worsens the overall particle identification performance,
while a negative ablation metric means that this sub-detector improves the over-
all particle identification performance. For sub-detectors, that worsen the muon
particle identification performance, the ablation metric is set to 0. Therefore,
the track isolation score weighs the detector input to the track isolation based
on the importance of the detector for the identification of the particle species
of interest. This effectively excludes them from the track isolation calculation.
Using the ablation metric, the semi-continuous isolation score I is

I = 1−
[∑

d

−∆s/d

(
nd
Nd

)]
, (4.3)

where the sum takes all the discussed sub-detectors into account. Nd is the total
number of layers of the sub-detector d. The isolation score is then normalized
to be in the range [0, 1], where an isolation score of 1 signifies that the track is
completely isolated.

4.3 Selection criteria
I perform the track isolation study with the available data set of Belle II with
an integrated luminosity of (189.88 ± 0.01) fb−1. The uncertainty is statistical
only. This data set covers proc 12 chunks 1 and 2, as well as buckets 16 to 25.
The processing of the recorded and simulated data was done by A. Narimani
and the simulated data (MC) contains 1.148× 109 µ+µ−γ events.
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Events need to fulfill the high level trigger requirements of the hlt radmumu
skim [30]. These require at most three track candidates per event with a minimal
transverse momentum of 0.2GeV. In addition, the point of closest approach to
the interaction point of each track candidate has to be closer than 2 cm in the
radial direction and closer than 4 cm in the z-direction. The tracks need to
have at least one hit in the CDC or the KLM and a cluster with an energy
of less than 0.4GeV associated with them. The events are required to have a
recoil momentum of at least 0.1GeV, which is consistent with the emission of
a single photon. In these events, there needs to be one pair of tracks, which
have a cluster energy in the ECL of at most 0.25GeV for both tracks and for
which the norm of the azimuth between the two clusters has to be above π/2.
Finally, the momentum of the higher momentum track has to be above 1GeV
and the momentum of the lower momentum track has to be below 3GeV. Since
these requirements are imposed on all events, to good approximation, high-
level trigger effects should cancel out when calculating efficiencies and ratios of
efficiencies. Therefore, the influence of the high-level trigger on this study was
not investigated.

For the reconstruction, only events with exactly two tracks with a point of
closest approach to the interaction point closer than 2 cm in the radial direction
and 5 cm in the z-direction are allowed. The event also needs to have at least one
photon with an energy of at least 1GeV. In addition, the polar angle θγ of the
photon has to be between −0.8660 and 0.9563. This is the angular acceptance
of the ECL. Finally, the weighted sum of the ECL crystals of the photon cluster
has to be above 1.5.

In addition, I require the mass of the µ+µ−γ system to be between 10.2GeV
and 10.8GeV and the mass of the muon pair Mµµ to be below 3.0964GeV or
above 3.0974GeV. This excludes the region of around five times the width of
the J/ψ(1S)-resonance around its peak position. Figure 4.1 shows the mass
of the muon pair in recorded (data, black points) and simulated events(mc,
blue histogram). The outlier at 3GeV only shows up in the recorded events
and matches well with the expectation for the J/ψ(1S), which has a mass of
(3096.900± 0.006)MeV and a width of only (92.6± 1.7) keV. The exclusion of
this region therefore guarantees a more consistent comparison between recorded
and simulated data. The J/ψ(1S) is the only visible resonance in the mass
spectra of the µ+µ− and µ+µ−γ systems.

Finally, I use a tag-and-probe method, meaning I study the efficiencies for
the µ+ (probe-muon), by tagging the events with the requirement that the global
muon likelihood of the µ− has to be larger than 0.9 and vice-versa.

Overall these selection criteria produce a very clean sample [30], so we are
certain that only µ+µ−γ events are selected.

4.4 The muon identification performance
The muon likelihood efficiencies are calculated in bins of the laboratory frame
momentum p and the laboratory frame polar angle θ using eq. (3.25) and the
global muon likelihood. For each bin, N in the denominator of the efficiency is
given by the number of events in the bin and k is the number of events, where
the probe-muon has a muon likelihood above 0.9. As the probe-muon I choose
the µ+. Since the distributions for the µ+ and the µ− are very similar, I only
show those of the µ+. The momentum bins are six disjoint contiguous intervals
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Figure 4.1: The density histograms of the µ+µ− invariant mass in generated
events (blue histogram) and recorded events (black points).

[0.2, 0.7, 1.0, 2.0, 3.0, 5.0, 7.0]GeV. They are a combination of the official bins
from the Lepton identification Group (LID) [30].

The angular binning consists of 10 disjoint contiguous intervals [0.22, 0.40,
0.64, 0.82, 1.16, 1.46, 1.78, 2.13, 2.22, 2.60, 2.71] rad. It reflects the official LID
binning [30] and is shown in fig. 4.2 in red. In addition, I extend the angular
binning at the edges down to 0.22 rad and up to 2.71 rad. The angle of 0.22 rad
marks the end of the ECL forward endcap, while 2.71 rad marks the end of the
ECL backward endcap. I define the region of 0.64 rad to 2.22 rad as the KLM
barrel region.

The total set of events is divided into two parts based on the track isolation
score of the probe-muon. If the track isolation score is below 0.999, the track
is called non-isolated. If the track isolation score is above 0.999, is is called an
isolated track. The value 0.999 is based on a study by M. Milesi in J/ψ → µ+µ−

events [40]. Using this value, 99.87% of µ+ in recorded events are isolated. In
simulated events the percentage of isolated µ+ is even a bit higher at 99.90%.

Figure 4.3 shows the muon likelihood efficiency in bins of laboratory frame
momentum of the µ+. The upper plot shows the muon likelihood efficiencies
in recorded events, while the bottom plot shows the efficiencies in simulated
events.The combination of non-isolated and isolated tracks is plotted in gray.
The horizontal bars mark the extend of the bin and should not be confused
with error bars. Similarly, the points marked with an ”x” are calculated for
the whole bin, but displaced a bit to the right from the bin center for better
visibility. Uncertainties on the efficiency are also plotted. However, for the
isolated tracks they are too small to be visible. Overall, the distributions behave
similarly between simulated and recorded events. The muon likelihood efficiency
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Figure 4.2: A view from the side of the Belle II detector taken from [38]. The
angles determining the binning in [30] are shown in red. I extend the binning
to the outermost blue lines.

is consistently lower for non-isolated tracks, than for isolated tracks. In most
bins, the efficiency of the combined set is almost identical with the efficiency
of the isolated data set. This is expected since almost all the tracks are well
isolated. Using a higher value does not increase the amount of non-isolated
tracks significantly. The uncertainties in the non-isolated bins are still under
control, so that we can make statements about the behavior of the distributions.

We expect the muon likelihood efficiency to rise from very low momenta,
since low momentum tracks might not reach all detector parts, in particular the
KLM, which is very important for the muon identification. At larger momenta,
it should then plateau.

As expected, the muon likelihood efficiency in fig. 4.3 increases with increas-
ing momentum until it reaches a plateau at about 2GeV. The plateau drops in
the highest momentum bin. This drop had been seen previously by the Lepton
ID group, but was not studied. For the tracks in the angular acceptance of
the KLM (from 0.4 rad to 2.60 rad), the drop disappears. We conclude that the
drop is due to tracks, which do not reach the KLM. Furthermore, the efficiencies
of tracks in the KLM are almost identical for isolated and non-isolated tracks,
once the tracks have a momentum of more than 1GeV. For low momenta, the
influence of the KLM is not as visible since a minimum momentum is needed
for a particle to reach the KLM. As the KLM is the outermost detector, low
momentum tracks will not reach it. This shows clearly that the KLM is the
most important detector for the muon identification, as expected.

Figure 4.4 shows the muon likelihood efficiency as a function of the labo-
ratory frame polar angle of the µ+ in recorded (top) and simulated (bottom)
events. The difference in the efficiencies of isolated and non-isolated tracks is
even more striking. For the isolated tracks, the efficiency is relatively constant
over a large angular region, only showing significant drops towards the end of
the endcaps (lowest and largest angles) and at the transition from endcaps to
barrel at around 0.6 rad and 2.2 rad. For the non-isolated tracks, this behavior
is mirrored and amplified. The efficiency is even lower, where it drops for the
isolated tracks. In particular, the plateau in the barrel region (0.64 rad – 2.2 rad)
is less stable and does not cover the same range. Instead, the muon likelihood
efficiency is best in the region 1.2 rad – 1.8 rad. The forward endcap (< 0.8 rad)
performs better than the backward endcap (> 2.2 rad). This matches the expec-
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tation from the asymmetric setup at SuperKEKB. Since the electron beam has
a higher energy than the positron beam, the tracks are boosted in the forward
direction. The Belle II detector was constructed with this in mind, so more
focus was put into optimizing the forward region of the detector, instead of the
backward region. Therefore, the dedicated particle identification detectors, the
time-of-flight counter and the aerogel ring-imaging Cherenkov detector, do not
have a backward endcap and the performance is worse in that region.

To better compare the agreement between the distributions in recorded and
simulated events, I calculate the ratio of muon likelihood efficiencies according to
eqs. (3.53) and (3.54) with the efficiency in recorded events ϵd in the numerator
and the efficiency in simulated events ϵmc in the denominator. A ratio very close
to 1 means almost perfect agreement between the efficiency in recorded and in
simulated events. A higher or lower ratio means that the performance of the
Belle II detector is different in simulated events and in recorded events.

Figure 4.5 shows the ratio of efficiencies in recorded over simulated events in
bins of laboratory frame momentum of the µ+. The subplot underneath shows
the relative statistical uncertainty for isolated (red) and non-isolated (blue)
tracks. The ratio of efficiencies for the isolated tracks dips at around 0.6GeV,
before it increases, approaching 1. Over the complete momentum range, it indi-
cates good, but not perfect agreement between simulated and recorded events.
The relative uncertainties are on the percent-level or smaller.

For non-isolated tracks, there is no obvious trend. The ratio is consistently
small at lower momenta, with exception of the very first bin. At higher mo-
menta, the ratio increases and sometimes even overshoots 1.

While a quantitative analysis is difficult, the relative uncertainties can be as
large as a few 10%, the ratio of efficiencies behaves very different for isolated
and non-isolated tracks. This is good news, as it strengthens the claim of the
previous analysis [38] that the muon identification performance depends on the
track isolation.

Figure 4.6 shows the ratio of efficiencies in recorded over simulated events
in bins of the laboratory frame polar angle of the µ+. Again the subplot below
shows the relative statistical uncertainties for the two isolation bins. For the
isolated tracks, the ratio of efficiencies is overall in very good agreement with 1.
It drops slightly in the backward endcaps of the KLM and ECL. The statistical
uncertainties are again well under control, as the relative uncertainties are below
1%.

There is no discernible trend for the non-isolated tracks and the statistical
uncertainties can be large. The ratio of efficiencies fluctuate between the dif-
ferent bins. The largest deviation from a ratio of 1 is the bin from 0.64 rad to
0.82 rad. There the ratio of efficiencies is significantly above 1. This is the last
bin of the KLM barrel before the gap to its forward endcap, which is a possible
explanation.

Although the amount of data is limited for the non-isolated tracks, there
is no clear indication of different behavior between isolated and non-isolated
tracks as a function of the polar angle.

Figure 4.7 shows the ratio of efficiencies for isolated µ+ tracks. The upper
plot shows the ratio itself, while the lower plot shows the relative statistical
uncertainty σ̂ calculated from eqs. (3.53) and (3.54) on the ratio. The solid
red lines mark the beginning and end of the angular coverage of the KLM. If
a bin is empty, then it did not contain enough events to calculate the ratio of

47



efficiencies.
Overall the ratio of efficiencies is relatively uniform for tracks above 1GeV

in the barrel region. It drops a bit in the backward endcap of the KLM. In the
forward ECL endcap the ratio is lower than in the KLM barrel. In the backwards
ECL endcap, there are even fewer tracks due to the asymmetry of SuperKEKB.
Independent of the angle, the efficiency ratio for low momentum tracks is lower,
as we expect it from the one dimensional distribution in fig. 4.5. The transition
from endcaps to barrel (0.64 rad – 0.82 rad and 2.13 rad – 2.22 rad) shows a
slightly worse agreement between simulation and recorded events so there could
be a mis-modeling of the detector. Overall the relative statistical uncertainties
are well under control as fig. 4.7b shows.

Figure 4.8 shows the same momentum-polar angle distribution for the non-
isolated µ+ tracks. The backwards endcap of the ECL (to the right of the
red line at 2.6 rad) is not populated at all. For the highest momentum bin, the
backward region of the KLM (part of the barrel and the backward endcap) is also
not populated. Therefore, the forward region contributes more, in particular the
first polar angle bin, which is outside the KLM acceptance. This explains the
drop of the efficiency in the last momentum bin of fig. 4.3. There are missing
entries in the region 2.13 rad – 2.22 rad, where the ECL and KLM transition from
their barrel to the backward endcap. The missing entries are due to low amount
of non-isolated tracks. This makes it difficult to evaluate if the efficiency ratio
in the transition from barrel to endcaps shows the same behavior as in fig. 4.7a.
In the barrel region, figs. 4.7a and 4.8a show the same trend, with the ratio
being closer to 1 for momenta larger than 1GeV. However, for the non-isolated
tracks in fig. 4.7a, the efficiency ratio is worse and is affected by larger statistical
uncertainties.

Figures 4.7 and 4.8 are the most important plots of this study since they are
the visualization of the correction tables used to scale the simulated efficiencies
to the ones in recorded data. I give the correction tables for the µ+ in tables 4.1
and 4.2. The relative statistical uncertainty σ̂ indicates the size of the systematic
uncertainty that an analysis picks up, when correcting its efficiencies. Tables 4.3
and 4.4 are the same correction tables for the µ−.

Finally, I want to stress the importance of the conclusion of fig. 4.3. Muon
tracks with low momentum or that are outside the angular acceptance of the
KLM suffer a drastic drop in the efficiency, in particular the non-isolated tracks.
Studies that depend on these tracks are therefore challenging and affected by
large systematic uncertainties.
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Figure 4.3: The subfigures show the muon identification efficiency as a func-
tion of the momentum for the µ+. Grey are all the candidates. Blue are all
candidates with an isolation score below 0.999. Red are all the candidates with
an isolation score above 0.999. The bins marked with ”x” are required to be
within the angular acceptance of the KLM.
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Figure 4.4: The subfigures show the muon identification efficiency as a func-
tion of the polar angle for the µ+. Grey are all the candidates. Blue are all
candidates with an isolation score below 0.999. Red are all the candidates with
an isolation score above 0.999.
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Figure 4.5: The subfigures show the ratio of efficiencies (top) and its uncer-
tainty (bottom) as a function of their momentum for the µ+. Grey are all the
candidates. Blue are all candidates with an isolation score below 0.999. Red
are all the candidates with an isolation score above 0.999. The smaller subplot
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Figure 4.6: The subfigures show the ratio of efficiencies (top) and its uncer-
tainty (bottom) as functions of their polar angle for the µ+. Grey are all the
candidates. Blue are all candidates with an isolation score below 0.999. Red
are all the candidates with an isolation score above 0.999.
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Figure 4.7: The ratio of efficiencies (top) and its relative statistical uncer-
tainty (bottom) for the µ+ in bins of the polar angle and momentum for isolated
tracks (isolation score above 0.999). The solid red lines mark the beginning and
end of the KLM.
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Figure 4.8: The ratio of efficiencies (top) and its relative statistical un-
certainty (bottom) for the µ+ in bins of the polar angle and momentum for
non-isolated tracks (isolation score below 0.999). The red lines mark the begin-
ning and end of the KLM.
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Table 4.1: The efficiency ratio for isolated µ+ in bins of momentum and polar
angle.

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

0.2–0.7 0.22–0.40 0.901 3.02
0.40–0.64 1.028 0.88
0.64–0.82 0.946 1.88
0.82–1.16 0.855 1.24
1.16–1.46 0.859 0.99
1.46–1.78 0.881 0.84
1.78–2.13 0.854 1.23
2.13–2.22 0.340 29.64
2.22–2.60 0.642 4.73
2.60–2.71 - -

0.7–1.0 0.22–0.40 0.895 2.18
0.40–0.64 0.947 0.80
0.64–0.82 0.775 1.31
0.82–1.16 0.907 0.63
1.16–1.46 0.923 0.52
1.46–1.78 0.940 0.44
1.78–2.13 0.936 0.62
2.13–2.22 0.831 3.01
2.22–2.60 0.764 1.86
2.60–2.71 - -

1.0–2.0 0.22–0.40 0.957 2.05
0.40–0.64 0.936 0.30
0.64–0.82 0.931 0.26
0.82–1.16 0.951 0.14
1.16–1.46 0.964 0.14
1.46–1.78 0.967 0.13
1.78–2.13 0.958 0.19
2.13–2.22 0.898 0.61
2.22–2.60 0.900 0.40
2.60–2.71 0.576 11.69

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

2.0–3.0 0.22–0.40 0.919 0.99
0.40–0.64 0.976 0.16
0.64–0.82 0.952 0.18
0.82–1.16 0.968 0.10
1.16–1.46 0.976 0.09
1.46–1.78 0.976 0.09
1.78–2.13 0.969 0.13
2.13–2.22 0.890 0.42
2.22–2.60 0.953 0.19
2.60–2.71 0.877 2.23

3.0–5.0 0.22–0.40 0.916 1.72
0.40–0.64 0.985 0.33
0.64–0.82 0.958 0.38
0.82–1.16 0.974 0.16
1.16–1.46 0.981 0.10
1.46–1.78 0.981 0.07
1.78–2.13 0.978 0.10
2.13–2.22 0.888 0.34
2.22–2.60 0.954 0.15
2.60–2.71 0.957 1.56

5.0–7.0 0.22–0.40 1.000 0.43
0.40–0.64 0.987 0.09
0.64–0.82 0.980 0.13
0.82–1.16 0.987 0.07
1.16–1.46 0.985 0.08
1.46–1.78 0.987 0.13
1.78–2.13 0.957 4.36
2.13–2.22 - -
2.22–2.60 0.875 60.94
2.60–2.71 - -
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Table 4.2: The efficiency ratio for non-isolated µ+ in bins of momentum and
polar angle.

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

0.2–0.7 0.22–0.40 0.926 42.88
0.40–0.64 1.619 26.18
0.64–0.82 2.189 17.79
0.82–1.16 0.990 15.55
1.16–1.46 0.616 17.16
1.46–1.78 0.702 14.34
1.78–2.13 0.618 25.12
2.13–2.22 - -
2.22–2.60 0.744 47.01
2.60–2.71 - -

0.7–1.0 0.22–0.40 0.443 53.79
0.40–0.64 0.444 67.63
0.64–0.82 1.000 65.47
0.82–1.16 0.550 54.65
1.16–1.46 1.019 22.79
1.46–1.78 1.000 26.73
1.78–2.13 1.200 40.82
2.13–2.22 - -
2.22–2.60 0.333 64.62
2.60–2.71 - -

1.0–2.0 0.22–0.40 0.635 35.16
0.40–0.64 0.612 14.94
0.64–0.82 0.879 11.33
0.82–1.16 0.661 22.17
1.16–1.46 0.826 19.27
1.46–1.78 0.762 15.57
1.78–2.13 0.996 11.28
2.13–2.22 - -
2.22–2.60 0.939 12.45
2.60–2.71 - -

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

2.0–3.0 0.22–0.40 1.041 10.81
0.40–0.64 1.004 5.15
0.64–0.82 1.029 15.94
0.82–1.16 0.868 12.75
1.16–1.46 0.880 9.12
1.46–1.78 0.905 7.93
1.78–2.13 1.084 9.55
2.13–2.22 - -
2.22–2.60 0.894 9.22
2.60–2.71 - -

3.0–5.0 0.22–0.40 0.919 17.02
0.40–0.64 0.994 7.56
0.64–0.82 0.857 21.68
0.82–1.16 0.844 27.31
1.16–1.46 0.873 21.40
1.46–1.78 0.927 8.08
1.78–2.13 0.918 12.13
2.13–2.22 0.444 82.92
2.22–2.60 1.005 4.80
2.60–2.71 - -

5.0–7.0 0.22–0.40 1.110 5.58
0.40–0.64 0.987 3.36
0.64–0.82 1.005 10.42
0.82–1.16 0.975 4.29
1.16–1.46 0.800 14.82
1.46–1.78 0.944 12.83
1.78–2.13 - -
2.13–2.22 - -
2.22–2.60 - -
2.60–2.71 - -

55



Table 4.3: The efficiency ratio for isolated µ− in bins of momentum and polar
angle.

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

0.2–0.7 0.22–0.40 0.783 5.64
0.40–0.64 0.999 1.29
0.64–0.82 0.884 2.33
0.82–1.16 0.829 1.40
1.16–1.46 0.859 0.97
1.46–1.78 0.871 0.75
1.78–2.13 0.837 1.03
2.13–2.22 0.341 19.40
2.22–2.60 0.655 3.09
2.60–2.71 - -

0.7–1.0 0.22–0.40 0.849 3.67
0.40–0.64 0.922 1.14
0.64–0.82 0.767 1.68
0.82–1.16 0.900 0.70
1.16–1.46 0.917 0.52
1.46–1.78 0.945 0.38
1.78–2.13 0.924 0.51
2.13–2.22 0.854 2.18
2.22–2.60 0.805 1.21
2.60–2.71 - -

1.0–2.0 0.22–0.40 0.868 3.63
0.40–0.64 0.940 0.41
0.64–0.82 0.933 0.32
0.82–1.16 0.951 0.16
1.16–1.46 0.960 0.14
1.46–1.78 0.970 0.11
1.78–2.13 0.958 0.15
2.13–2.22 0.911 0.41
2.22–2.60 0.911 0.25
2.60–2.71 0.650 5.55

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

2.0–3.0 0.22–0.40 0.900 1.71
0.40–0.64 0.980 0.23
0.64–0.82 0.954 0.21
0.82–1.16 0.969 0.11
1.16–1.46 0.977 0.09
1.46–1.78 0.977 0.08
1.78–2.13 0.972 0.10
2.13–2.22 0.907 0.26
2.22–2.60 0.960 0.11
2.60–2.71 0.913 1.00

3.0–5.0 0.22–0.40 0.909 2.14
0.40–0.64 0.988 0.38
0.64–0.82 0.963 0.38
0.82–1.16 0.973 0.20
1.16–1.46 0.981 0.13
1.46–1.78 0.981 0.08
1.78–2.13 0.980 0.11
2.13–2.22 0.916 0.32
2.22–2.60 0.968 0.14
2.60–2.71 0.953 1.26

5.0–7.0 0.22–0.40 0.990 0.49
0.40–0.64 0.987 0.09
0.64–0.82 0.974 0.12
0.82–1.16 0.979 0.08
1.16–1.46 0.984 0.08
1.46–1.78 0.984 0.14
1.78–2.13 0.936 4.27
2.13–2.22 - -
2.22–2.60 0.643 54.43
2.60–2.71 - -
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Table 4.4: The efficiency ratio for non-isolated µ− in bins of momentum and
polar angle.

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

0.2–0.7 0.22–0.40 0.500 85.63
0.40–0.64 1.786 32.03
0.64–0.82 1.870 18.35
0.82–1.16 0.662 19.92
1.16–1.46 0.770 14.33
1.46–1.78 0.860 11.35
1.78–2.13 0.836 16.44
2.13–2.22 1.083 126.11
2.22–2.60 0.693 32.43
2.60–2.71 - -

0.7–1.0 0.22–0.40 0.343 100.26
0.40–0.64 0.655 54.65
0.64–0.82 0.600 81.65
0.82–1.16 0.444 47.67
1.16–1.46 0.771 39.02
1.46–1.78 1.146 18.91
1.78–2.13 - -
2.13–2.22 - -
2.22–2.60 0.969 24.73
2.60–2.71 - -

1.0–2.0 0.22–0.40 0.545 61.81
0.40–0.64 0.827 16.09
0.64–0.82 0.772 20.10
0.82–1.16 0.697 35.68
1.16–1.46 0.984 12.70
1.46–1.78 0.832 11.91
1.78–2.13 0.732 20.28
2.13–2.22 1.125 43.03
2.22–2.60 0.957 9.08
2.60–2.71 - -

p [GeV] θ [rad] ϵd/ϵmc σ̂ [%]

2.0–3.0 0.22–0.40 1.094 17.96
0.40–0.64 0.823 16.93
0.64–0.82 0.877 17.73
0.82–1.16 0.882 11.64
1.16–1.46 0.988 5.45
1.46–1.78 1.003 4.58
1.78–2.13 0.970 5.42
2.13–2.22 1.120 34.07
2.22–2.60 0.923 4.57
2.60–2.71 - -

3.0–5.0 0.22–0.40 0.764 31.41
0.40–0.64 0.942 9.81
0.64–0.82 0.865 28.02
0.82–1.16 - -
1.16–1.46 0.850 21.39
1.46–1.78 0.970 6.63
1.78–2.13 0.869 14.07
2.13–2.22 0.844 28.91
2.22–2.60 1.115 4.09
2.60–2.71 0.889 51.54

5.0–7.0 0.22–0.40 1.144 6.39
0.40–0.64 0.980 4.72
0.64–0.82 0.889 17.45
0.82–1.16 0.930 7.79
1.16–1.46 0.987 5.71
1.46–1.78 0.829 20.74
1.78–2.13 - -
2.13–2.22 - -
2.22–2.60 - -
2.60–2.71 - -
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Chapter 5

Conclusion

I investigated our ability to measure the Weinberg angle in e+e− → µ+µ− events
at Belle II. The tree-level squared amplitude, calculated for e+e− → µ+µ−, as
a function of the scattering angle is used in a model to generate data. Fitting
the model to the generated data allows us to extract the Weinberg angle and
cross-check the fitting procedure. A systematic study of any biases needs to be
carried out, once a higher order model has been developed.

By examining different sources of background processes and selection cri-
teria, I obtained a clean signal sample using the official Belle II Monte Carlo
and reconstruction software. I identified the energies of the muons to be the
most important variables to differentiate between signal and background events.
While most background processes are well rejected, the model and selection cri-
teria need to be studied further to determine to what degree e+e− → µ+µ−γ
events need to be rejected and to what degree they need to be accounted for by
a higher order model.

The efficiency as a function of the polar angle is necessary for fitting the
Weinberg angle to recorded data. I used simulated and recorded e+e− → µ+µ−γ
events, where the photon has an energy above 1GeV, to study the muon identi-
fication efficiency as functions of the polar angle, the momentum and the track
isolation. From this, the ratio of efficiencies in recorded to simulated events is
calculated, which allows the correction of the simulated efficiency. The relative
uncertainty on the efficiency ratio will be used by the Belle II collaboration to
estimate systematic uncertainties.

58



Bibliography

[1] S. L. Glashow. “The renormalizability of vector meson interactions”. In:
Nuclear Physics 10 (1959), pp. 107–117.

[2] S. Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (21 Nov.
1967), pp. 1264–1266. doi: 10.1103/PhysRevLett.19.1264.

[3] A. Salam and J.C. Ward. “Electromagnetic and weak interactions”. In:
Physics Letters 13.2 (1964), pp. 168–171. issn: 0031-9163. doi: https:
//doi.org/10.1016/0031-9163(64)90711-5.

[4] M. E. Peskin, D. V. Schroeder, and N. Balakrishnan. Introduction to
Quantum Field Theory. 1995.

[5] P. W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”.
In: Phys. Rev. Lett. 13 (16 Oct. 1964), pp. 508–509. doi: 10 . 1103 /

PhysRevLett.13.508.

[6] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge
Vector Mesons”. In: Phys. Rev. Lett. 13 (9 Aug. 1964), pp. 321–323. doi:
10.1103/PhysRevLett.13.321.

[7] J. Erler and R. Ferro-Hernández. “Weak mixing angle in the Thomson
limit”. In: Journal of High Energy Physics 2018.3 (Mar. 2018). doi: 10.
1007/jhep03(2018)196.

[8] J. Erler and M. Schott. “Electroweak precision tests of the Standard Model
after the discovery of the Higgs boson”. In: Progress in Particle and Nu-
clear Physics 106 (May 2019), pp. 68–119. doi: 10.1016/j.ppnp.2019.
02.007.

[9] R. L. Workman et al. “Review of Particle Physics”. In: PTEP 2022 (2022),
p. 083C01. doi: 10.1093/ptep/ptac097.

[10] T. Aaltonen et al. “Tevatron Run II combination of the effective leptonic
electroweak mixing angle”. In: Physical Review D 97.11 (June 2018). doi:
10.1103/physrevd.97.112007.

[11] R. Aaij et al. “Measurement of the forward-backward asymmetry in Z/γ →
µ+µ− - decays and determination of the effective weak mixing angle”. In:
Journal of High Energy Physics 2015.11 (Nov. 2015). doi: 10 . 1007 /
jhep11(2015)190.

[12] G. Aad et al. “Measurement of the forward-backward asymmetry of elec-
tron and muon pair-production in pp collisions at

√
s = 7TeV with the

ATLAS detector”. In: Journal of High Energy Physics 2015.9 (Sept. 2015).
doi: 10.1007/jhep09(2015)049.

59

https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1007/jhep03(2018)196
https://doi.org/10.1007/jhep03(2018)196
https://doi.org/10.1016/j.ppnp.2019.02.007
https://doi.org/10.1016/j.ppnp.2019.02.007
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/physrevd.97.112007
https://doi.org/10.1007/jhep11(2015)190
https://doi.org/10.1007/jhep11(2015)190
https://doi.org/10.1007/jhep09(2015)049


[13] S. Chatrchyan et al. “Measurement of the weak mixing angle with the
Drell-Yan process in proton-proton collisions at the LHC”. In: Physical
Review D 84.11 (Dec. 2011). doi: 10.1103/physrevd.84.112002.

[14] “Precision electroweak measurements on the Z resonance”. In: Physics
Reports 427.5 (2006), pp. 257–454. issn: 0370-1573. doi: https://doi.
org/10.1016/j.physrep.2005.12.006.

[15] K. Abe et al. “Improved Direct Measurement of Leptonic Coupling Asym-
metries with Polarized Z Bosons”. In: Physical Review Letters 86.7 (Feb.
2001), pp. 1162–1166. doi: 10.1103/physrevlett.86.1162.

[16] C. S. Wood et al. “Measurement of Parity Nonconservation and an Anapole
Moment in Cesium”. In: Science 275.5307 (1997), pp. 1759–1763. doi:
10.1126/science.275.5307.1759.

[17] P. L. Anthony et al. “Precision Measurement of the Weak Mixing Angle
in Møller Scattering”. In: Phys. Rev. Lett. 95 (8 Aug. 2005), p. 081601.
doi: 10.1103/PhysRevLett.95.081601.

[18] D. Androic et al. “First Determination of the Weak Charge of the Pro-
ton”. In: Physical Review Letters 111.14 (Oct. 2013). doi: 10 . 1103 /

physrevlett.111.141803.

[19] C.Y. Prescott et al. “Further measurements of parity non-conservation in
inelastic electron scattering”. In: Physics Letters B 84.4 (1979), pp. 524–
528. issn: 0370-2693. doi: https://doi.org/10.1016/0370-2693(79)
91253-X.

[20] G. P. Zeller et al. “Precise Determination of Electroweak Parameters
in Neutrino-Nucleon Scattering”. In: Phys. Rev. Lett. 88 (9 Feb. 2002),
p. 091802. doi: 10.1103/PhysRevLett.88.091802.

[21] A. W. Thomas. “The Determination of sin2 θW in Neutrino Scattering:
no more anomaly”. In: AIP Conference Proceedings. American Institute
of Physics, 2011. doi: 10.1063/1.3667317.

[22] J. Erler and M. J. Ramsey-Musolf. “Weak mixing angle at low energies”.
In: Phys. Rev. D 72 (7 Oct. 2005), p. 073003. doi: 10.1103/PhysRevD.
72.073003.

[23] T. Abe et al. Belle II Technical Design Report. 2010. doi: 10.48550/
ARXIV.1011.0352.
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