

The Software Library of the Coming Belle II
Experiment and its Simulation Package

Doris Yangsoo Kim, Department of Physics, Soongsil University
On behalf of the Belle II Software Group

Abstract–The Belle II experiment at KEK, Japan, is a next
generation experiment utilizing the SuperKEKB accelerator,
which is currently being upgraded. SuperKEKB is expected to
deliver a 50 times larger data sample than its predecessor,
KEKB. In this letter, we explain the design of the Belle II
software structure in detail, with the emphasis on the simulation
package.

I. INTRODUCTION
HE heavy flavor physics is a very active field in
experimental high energy physics. The heavy particles,

especially B mesons have interesting decay modes. Their
identification is relatively easy and the decay processes give
deep-level information on the underlying physics. During the
last decade, the B factories such as BaBar and Belle produced
many excellent physics results: Discoveries of CP violation in
various B meson decay channels, unexpected new particles
such as X(3872), precision measurements of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix, etc.

Based on this success, a next generation B factory,
SuperKEKB, is being constructed in Japan [1]. There are
excellent physics opportunities with the coming B factory
data sets. The upgraded measurement of the CKM matrix
elements will push the limit of the Standard Model. There are
possibilities of observing new phenomena such as CP
violation from new physics, lepton flavor violations in tau
lepton decays, charged Higgs bosons, and new hadrons.

The luminosity of the SuperKEKB accelerator is expected
to be increased by 40 times compared to the previous
accelerator, KEKB. The event rate and the background will
be increased by a factor of at least 10. The upgraded detector,
Belle II, requires a computing system which should handle a
sample 50 times larger than the previous Belle data sample,
to be collected between 2016 and 2022 [1]. The DAQ system
should handle the data rate of 1,800 MB/sec. The Belle II
offline software system is designed to meet these challenges
[1]. In summary, it is a framework consisting of built-in

Manuscript received November 22, 2013. This work was supported in part by

Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(2013R1A1A3007772) and by the Supercomputing Center/Korea Institute of
Science and Technology Information with supercomputing resources including
technical support (KSC-2012-C1-19).

Author is with Department of Physics, Soongsil University, 369 Sangdo-ro
Dongjak-gu, Seoul, South Korea, 156-743 (telephone: + 82 2 820 0427, e-mail:
dorisykim@ssu.ac.kr).

functional objects called modules, with which various tasks
involving event generation, Monte Carlo (MC) simulation,
reconstruction of tracks, and physics analysis are processed.
In the following sections, the structure of the Belle II
framework will be explained in detail [2].

II. THE BELLE II SOFTWARE SYSTEM
The Belle II software system is called basf2, which is an

acronym of Belle AnlaysiS Framework 2. The design of the
system is based on the ideas from the previous system, BASF,
and constructed from scratch. Both the old and the new
systems are written in C++. The new system uses object
oriented software to store data while the old system used
Panther tables, Belle’s own persistency tool. In addition,
useful concepts are imported from other high energy
experiments: ILC, LHCb, CDF, and Alice. Third-party
software libraries are incorporated in the system: ROOT,
Boost, CLHEP, and many others [3]-[5]. Software developers
from all around the world are participating in developing the
framework and related libraries.

Basf2 uses dynamic module loading and has capabilities of
parallel processing. The management of job execution is done
by Python steering scripts [6]. ROOT I/O is used for data
storage and reading. Geant4 is used for the full detector
simulation [7]. The basf2 library code is written in C++, the
standard object oriented language used in high energy physics
field, with gcc 4.7 as the compilation tool. All common Linux
operating systems are supported: Scientific Linux, Fedora,
Ubuntu, etc. Formatting of the code is checked by Artistic
Style and building of the code is done by SCons with an
automatic Buildbot system [8]-[10]. Fig. 1 shows a screen
shot on the daily Buildbot result.

All the software libraries and related tools are managed by
Subversion, at a central system located at KEK [11]. To
facilitate the code management and communication, doxygen
is used to document the code and TWiki is used to further
explain the software system in details [12]-[13]. Redmine is
used to manage issues and problems and track their history
and development [14]. The system to executed basf2 jobs on
distributed computing resources is DIRAC [15]. The
installation of the software on most of the computing cites is
done via CVMFS [16]. Both grid and local resources are
utilized for MC event generation and for analysis.

T

III. THE BASIC STRUCTURE OF BASF2
The basic processing unit of basf2 is a module. A module

can be a simple task handler such as reading data from a file
or can be a complex system such as simulation or tracking
packages. Depending on the demands by a user, modules are
selected and plugged into a path as a linear chain, and each
event is processed following this path. All the processing
works are done in modules. When processing of an event is
finished, the output record is usually written in a file. The
common data storage, DataStore, is used to transfer data.
Multiple processing paths are allowed when processing an
event. The paths can be created and merged by conditions set
by a user. This concept is useful for skimming data.

Fig. 1. The partial screen shot of development build result by Buildbot is
shown in the figure.

Event-by-event parallel processing is incorporated as an

option into basf2 [17]. Parallelism is achieved by forking
additional Linux processes after initialization of the run.
Switching between the normal mode and the parallel
processing mode is transparent to users. Not all the processes
could be handled in the parallel processing mode. Input and
output processes on data are run in a single path. Only the
modules with parallel processing property such as MC
simulation can be run in parallel paths.

Code libraries are built separately from modules, in order
to increase reusability. Methods and algorithms are
encapsulated in libraries. So a library (i.e., algorithm) can be
utilized and shared by several dynamically loaded modules.

The following script, Fig. 2, is an example of a Python
steering file used to create a MC simulation data set. Event
generation, simulation, and reconstruction activities are
executed by the corresponding modules as shown in the script.

IV. HANDLING OF GEOMETRY
All the geometry parameter values are stored in the central

repository using the XML format. The actual geometry for the
Geant4 simulation is created from the repository parameters
based on C++ algorithms. Since the geometry parameter
values are directly available to users as an XML document, it
is easy to maintain the parameter set and quick updates are
possible. Employing the C++ algorithm increases efficiency
of the overall geometry creation for simulation and
reconstruction. It is straightforward to implement the detector
geometry for other environments, for example, the test beam
setup and BEAST II (the commissioning detector). For
reconstruction, this Geant4 geometry is converted to a ROOT
TGeo object by the VGM software [18]. For digitization, the
relevant parameters can be imported directly from the
repository.

Fig. 2. A Python script used to generate a MC data set is shown. At the

beginning of the script, functions are imported from the basf2 library. A path is
created as main. User selected modules are added into the path. After this,
processing of main is invoked.

V. SIMULATION
Simulation of Monte Carlo event samples is done in three

steps: Event generation, detector simulation, and digitization.
Fig. 3 is a sample Python script which controls the simulation
functionality of the basf2 library. This script is called by the
main script, which is represented by the
add_simulation_demo function under the # simulation
comment line shown in Fig. 2.

Fig. 3. A sample Python script which uploads modules used for simulation
activities. The modules are plugged to the path by the order shown in the
script. This simulation script is called by the main Python script shown in Fig.
2.

A. A Simulation Example: The Secondary Particles
Created by Geant4
Geant4 simulation creates a huge amount of secondary

particles during event processing. Most of these particles are
optical photons created by Cherenkov or scintillator detectors.
For example, simulation of an (4s) decay into a pair of B
and anti-B mesons creates 34,000 particles even when the
calorimeter detector and K Long-and-muon detector of Belle
II are turned off. Table 1 shows the composition of the
simulated particles according to their particle identification.
Fig. 4 shows the production vertex position of the particles.
Since we cannot write information from all these particles in
the output data file, we had to remove secondary particles
from the output to reduce the size of output data files.

First, we decided not to write the information from the
optical photons in the output file. Also the information from
the secondary particles with kinematic energy less than 1
MeV was not written. This reduced the size of the output file
tremendously.

However, when we turned on the entire Belle II detector for
simulation, we still found the size of the output file was too
large. Information from 2,000 particles per event was found
in the output file. Therefore, we decided to keep the
information from only the necessary secondary particles in
the output file. The selected ones are essentially decays-in-
flight and secondary particles leaving hits in the sensitive
detector areas. As a result, the size of the output file size was
reduced more than 90 %, which is acceptable for our resource
management.

TABLE I. IDENTIFICATION OF SIMULATED PARTICLES BY GEANT4

 Percent Identification of Particles
82 % Optical photons from Cherenkov or

scintillator detectors
18 % Electrons or positrons
0.32 % Photons
0.20 % Others including primary particles

B. Digitization
The simulation hits created by Geant4 are converted into

measured detector signals via a digitization process. The
output result of the digitization process corresponds to the
real raw data. To simulate the process, detailed knowledge
and information on the detector material and electronics
should be exploited. Experts for each detector component
handled the digitization libraries in C++. Since different
versions of digitization libraries could be utilized as an option,
the codes for the process were written as separate modules
from Geant4, avoiding complete integration into Geant4.

Fig. 4. Location of production vertex positions of secondary particles for 100
simulated events of (4s) decays into a pair of B and anti-B mesons in the xy
projection. The information from optical photons and secondary particles with
kinematic energy less than 1 MeV is not included in this figure, since they are
too numerous. The shape of the Belle II detector is nicely reproduced by the
vertex positions.

C. Background Overlay
The background rate is increased by 10 times for the Belle

II detector with respect to the old Belle detector. A special
treatment of the background simulation is devised for basf2 to
handle the situation. A class of background hits is simulated
separately by Geant4, than added as SimHits (Geant4 steps) to
the already existing SimHits from the physics signal events.
Beam interactions (Touscheck events) could be this kind of
background. Then both the signal and background
contributions are digitized at the same time by basf2. This
overlay strategy is similar to what happens inside the Belle II
detector during actual accelerator runs. One disadvantage is
that the method does not work for measured background data.

VI. OTHER TASKS
In addition to the tasks explained in the previous sections,

various tasks are handled by basf2. The task list includes
event reconstruction, track finding and fitting, alignment,
vertexing, event display, and many others.

VII. SUMMARY
More than 500 scientists are actively involved in the Belle

II project. The Belle II software system is developing
successfully. A recent MC simulation campaign could
simulate and reconstruct more than half a billion events
without a single crash of the basf2 system. Innovative ideas
are being incorporated in the system, which should handle an
order of magnitude more complex run environments than the
previous B factories. We are eagerly expecting the start of the
physics run in 2016.

ACKNOWLEDGMENT
Author thanks the Belle II software group for the ideas and

suggestions for this presentation.

REFERENCES
[1] Edited by Z. Dolezal and S. Uno, "Belle II technical design report," KEK

Report 2010-1, arXiv:1011.0352, Oct. 2010.
[2] A. Moll, "The software framework of the Belle II experiment,"

International Conference on Computing in High Energy and Nuclear
Physics 2011 (CHEP2011), Journal of Physics: Conference Series, vol.
331, 032024, 2011.

[3] ROOT, http://root.cern.ch.
[4] Boost, http:/www.boost.org.
[5] CHLEP, http://proj-clhep.web.cern.ch.
[6] Python, http://www.python.org.
[7] S. Agostinelli et al., "Geant4 - a simulation toolkit," Nuclear Instruments

and Methods in Physics Research Section A, vol. 506, pp. 250-303,
2003; J. Allison et al., "Geant4 developments and applications," IEEE
Transactions on Nuclear Science, vol, 53, no. 1, pp. 270-278, 2006.

[8] Artistic Style, http://astyle.sourceforge.net.
[9] SCons, http://www.scons.org.
[10] Buildbot, http://www.buildbot.net
[11] Apache Subversion, http://subversion.apache.org.
[12] Doxygen, http://www.doxygen.org.
[13] TWiki, http://twiki.org.
[14] Redmine, http://www.redmine.org.
[15] DIRAC INTERWARE, http://diracgrid.org.
[16] J. Blomer, P. Buncic, I. Charalampidis, A. Harutyunyan, D. Larsen, and R.

Meusel, "Status and future perspectives of CERNVM-FS," Journal of
Physics: Conference Series, vol. 396, 052013, 2012.

[17] R. Itoh et al., "Implementation of parallel processing in the basf2
framework for Belle II," International Conference on Computing in High
Energy and Nuclear Physics 2012 (CHEP2012), Journal of Physics:
Conference Series, vol. 396, 022026, 2012.

[18] Virtual Geometry Model, http://ivana.home.cern.ch/ivana/GVM.html.

