

The software library of the Belle II experiment

DorisYangsoo Kim*
On behalf of the Belle II Software Group

Department of Physics, Soongsil University, 369 Sangdo-ro Dongjak-gu, Seoul 156-743, South Korea

Abstract

A next generation B factory and the detector counterpart, SuperKEKB and Belle II, are being built in Japan, as the
upgrades of KEKB and Belle, respectively. The new collider will start its commissioning in 2015. This is an
ambitious project. The luminosity of the e+ e– collider will be upgraded by a factor of 40, which will create a 50
times larger data set compared to the Belle sample. Both the background and the triggered event rates will be
increased by a factor of at least 10. The Belle II software system is designed to accommodate these challenges and
to run on grid, cloud, and local resources around the world. Various external software packages are employed to
enhance the user interface. The software system, basf2, is structured as a framework built with dynamic module
loading and the ability of parallel processing. The system is written in C++ with Python steering scripts,
compatible with common Linux operating systems. A full detector simulation library is created based on Geant4.
In this paper, we will explain the design of the Belle II software structure and the current status of the software
development.

Keywords: SuperKEKB; Belle II; software; simulation; framework

———
* Corresponding author. Tel: +82-2-820-0427; fax: +82-2-824-4383; e-mail: dorisykim@ssu.ac.kr.

1. The super B factory project

The rich physics of heavy quark decays provides
creative and precise ways to look into nature.
Experimentally, B factories have been producing quite
prominent discoveries and new insights: The CP
violation in B meson decays, the correctness of the CK
picture, charm neutral meson oscillations, discovery of
new particles such as X(3872) and DsJ(2370), and
various other significant physics results.
SuperKEKB/Belle II is an upgrade of KEKB/Belle,
and an ideal environment to further exploit abundant
physics topics in the field with more precision [1]. In a
nutshell, the project can be summarized as follows:
The luminosity of the e+ e– collider will be increased
from 2.1 × 1034 cm−2s−1 to 8 × 1035 cm−2s−1, by a factor

of 40. The size of the new data set will be 50 ab−1, 50
times larger than the previous data set of 1 ab−1. The
detector is being upgraded to accommodate the
challenges accompanying this ambitious plan.

2. The Belle II software system

basf2, the Belle II software system, is a framework
system with dynamic module loading. The name is an
acronym of Belle AnalysiS Framework 2 [2]. The
system is capable of parallel processing via the fork()
system call by processsing different events at the same
time [3]. The distribution of the software library to the
worldwide collaborating GRID sites is done by
CernVM-FS. The execution of jobs over the GRID

system is done by utilizing the DIRAC INTERWARE
[4-6].

The body of the software libraries is written in C++,
the standard software language of high energy physics.
The steering of the executable is done utilizing Python
scripts [7]. The Python language can be also used to
handle data sets. ROOT is used to handle input/output
of the system [8].

Dedicated studies are being undertaken to find the
suitable database and interface solutions. Various ideas
on tracking, alignment, particle identification, and
physics analysis tools have been actively pursued and
tested to exploit the upgraded detector and optimize
user experience.

2.1. The upgrade strategy

The basic ideas on basf2 are the same as the
previous Belle software system. However, the basf2
code is constructed from scratch. Both systems are
written in C++. The data storage format for basf2 is
ROOT I/O while that of the old one was a custom one.
In addition, useful concepts are imported from the
other experiments: ILC, LHCb, CDF, H1, and Alice,
to incorporate modern technologies into the new
library system. In addition to the external libraries
already mentioned, other useful 3rd party software
libraries are utilized: EvtGen, Geant4, Boost, CLHEP,
etc. [9-14].

2.2. The user interface

The subversion software is employed as the
revision control system [15]. The central repository of
basf2 is located at KEK. All common Linux operating
systems are supported by Belle II. The main body of
the code is written in C++ 11 and compiled by gcc 4.7.
Clang and Intel gcc are also supported and used for
cross validation.

External software packages are employed to
support development of packages in a more effective
way. Software developers are from all around the
world. It is important to have a stable and friendly user
interface. “Artistic Style” is used to format and check
the style of the code [16]. Compilation and linking of
basf2 are done by SCons [17], and an automatic
Buildbot system is employed to build and test the
library on a daily basis during the night [18]. Fig. 1
shows the screen shots of the daily build results as an
example. Documentation of basf2 is handled by
Doxygen and TWiki [19-20]. Redmine is used to track
important issues and problems by software handlers
[21].

2.3. The basic structure of basf2

The basic processing unit of basf2 is a module. Its
role could be a simple one such as reading data from a
file or complex ones such as simulation or tracking.
All work is done in modules, which are usually written
in C++. A user can decide what kind of modules
would be executed and in what order that should be
done [2].

Usually, processing of an event is represented by a
linear chain of modules on a path. The creation of the
path, loading of modules, and executing of the path are
defined as commands in a Python script.

Depending on the return code of a module,
execution of an event continues in one or the other
path. This strategy would be useful for creating
skimmed data sets.

During the processing of the event, the data sets
needed by basf2 are stored in “DataStore”, a common
storage area for data. All data exchanges between
modules are executed through the Datastore [2].

3. Detector geometry

The geometry parameter values describing the
Belle II detector are stored in a central repository in
the XML format. For simulation, the actual geometry
is created by C++ algorithms based on the repository
parameters. For reconstruction, the geometry is
converted to the ROOT TGeo format using the VGM
library [22]. The parameters needed for digitization are
imported directly from the XML repository [1].

Since the XML format is a markup language, the
parameter values are directly available to users.

Fig. 1. The screen shots of daily build results. The color scheme of
the interface is slightly changed from the original images for better
print quality.

Modification, maintenance, and updates of the values
are easy and can be done quickly.

4. An example Python script

In basf2, the full cycle of an event is defined as a
chain of modules representing event generation,
geometry creation, simulation, reconstruction, and user
analysis. In future, when real data is generated from
beam collisions at SuperKEKB, the simulation part
would be replaced by modules handling raw data. The
following paragraph is an example python script
needed to run a full cycle basf2 job:

--- A basf2 steering script ---
from basf2 import *
from simulation import add_simulation
from reconstruction import add_reconstruction
main = create_path()

meta information (100 events in Run 1)
event_info = register_module (‘EventInfoSetter’)
event_info.param(‘evtNum’, [100])
event_info.param(‘run’, [1])
main.add_module(event_info)

event generation
generator = register_module(‘EvtGen’)
main.add_module(generator)

simulation
add_simulation(main)

reconstruction
add_reconstruction(main)

user analysis
…

process(main)

--- End of the job ---

5. Simulation

External generator libraries are employed to
provide production and decay of particles created by e+
e− collisions and background processes. For example,
EvtGen is used to create B pair events. Geant4 is used
to undertake full detector simulation. Digitization of
hits created in the sensitive detector area is a separate

package written by the corresponding sub-detector
group [1].

Due to high luminosity of SuperKEKB beams,
more than one physics interaction can happen in one
event. One interaction would be the desired physics
process while the others would be background events.
Special care has been taken to mimic this phenomenon
in the basf2 simulation. First, background events are
simulated using Geant4. Several background
generators are used including Touschek and Bhabha
processes. The detector hits created in this process are
stored as a separate data set. Next, physics events are
simulated and hits are created in the sensitive detector
area. Then the hits from two contributions are merged
and sent to the digitization step together. This
procedure is similar to what happens in reality [1].

6. Tools in development

To provide reliable methods and to reduce costly
resources needed for complicated physics analysis,
various software tools are being developed in parallel
as a part of basf2. Users can utilize these tools by
loading the corresponding modules in their basf2
scripts.

6.1. Tracking and alignment tools

Reconstruction of charged tracks proceeds
separately in the central drift chamber and in the
vertex detector. For the drift chamber, two algorithms
are used: A global track finder based on Legendre
transformations, and a local finder based on cellular
automata. In addition, an old finder algorithm used in
the previous Belle central drift chamber has been
ported as a reference. In the vertex detector, the finder
is a combination of two ideas: A cellular automaton
for identifying track candidates and a Hopfield
network to resolve overlapping sets of candidates [23].
Tracks crossing both detectors are combined using
geometrical matching. For track fitting, a detector
independent library is employed [24], which is a
rewrite of GENFIT [25]. Another aim of this rewrite
was to provide support for alignment and calibration.
The default algorithm used in fitting is the
“deterministic annealing filter” [26], which handles
wrongly assigned (background) hits gracefully.

Alignment and calibration of tracking detectors are
being developed using the Millepede II package [27],
which is interfaced through the track fitting library and
in particular, via its implementation of the “general
broken lines” fitting method [28]. For the verification

of the implementation procedure, the test beam data
sets are used [29].

6.2. Particle identification tools

Particle identification (PID) tools are being created
in two groups: The neutral particles and the charged
particles. The particles handled in the neutral group are
π0, photon, KL and KS. In the charged group, the
selection tools for e, µ, π±, K±, protons are included.
Feasibility for deuteron reconstruction is also being
studied in this group. For each track candidate, particle
identification information is stored in an object called
“PidLikelihood”. The log likelihoods from all the sub-
detectors are saved in the object and an interface is
created for various identification hypotheses. For
example, the identification information collected from
the time of propagation and the ring imaging
Cherenkov detectors and the dE/dx information
obtained from tracking detectors is merged together to
create a likelihood hypothesis function, which can be
used to separate π± and K±. Another example is the µ
identification, which is done by extrapolating a
charged track with the muon detector hits via the
Kalman filter.

6.3. Physics analysis tools

Common analysis tools are being developed to
speed up the analysis process and enhance quality
control. One of the first analysis tools developed is
“Particle’’ class, which is a common representation of
all particle types: Final state particles, pre-
reconstructed ones such as KS and Lambda, and those
ones reconstructed from their decays. Then the
modular analysis tools are applied to the candidates
stored in the “ParticleList”.

Basic analysis tools are dealing with particle
reconstruction and Monte Carlo truth matching. More
advanced tools are in development to reconstruct B
decay particles with excellent efficiency and low
background rate, based on the updated detector
performance: A tool to suppress continuum
background events, a vertex reconstruction tool to tag
B particles, flavour tagging tools, etc. In addition,
methods needed to reconstruct the full event topology
as well as many other ideas are being tested to provide
an excellent analysis environment [30]. Fig. 2 shows
an example of the dependencies between decay
channels/particles for full reconstruction of the
D*+→D0 π+ event.

7. Utility packages

Since the Belle II software system is in the
development stage, basf2 is evolving constantly with
improvements and new components. To check the
accuracy of modifications and stability of the library, a
utility package for validation is created, which displays
basic histograms generated by basf2. Several data sets
are overlayed in each histogram. The data sets consist
of reference samples and most recent library versions.
Parallel execution of validation job scripts is available,
which speeds up the process. The histograms are
updated every day and shown in the Belle II website,
so software shifters can catch any problems stemming
from changes in the library. Fig. 3 shows a screen shot
of the validation histogram display. In addition, we
employ the frameworks for unit tests based on
Google Test and for run tests [31].

Fig. 2. An example of dependencies between decay
channels/particles for full reconstruction of the D*+ →D0 π+
event.

Another useful tool is the event display package,
which is invoked by basf2 with support from ROOT
and OpenGL [32].

8. Summary

The Belle II experiment is a collaboration of over
600 scientists from 96 institutions in 26 countries. The
collaboration is actively engaging in development of a
software system suitable for the next generation B
factory. Various ideas have been tested and successful
ones are incorporated as library packages. A full cycle
of basf2 run from event generation to user analysis has
been successfully conducted. Large scale Monte Carlo
campaigns are undertaken regularly, testing the
software system and creating the challenge data sets.

The amount of C++ code included in the current

version of basf2 is about 280k lines, excluding
comments and white space. The library is developing
at a steady pace and is expected to be ready when
SuperKEKB starts physics runs in 2017.

Acknowledgments

This work was supported in part by Basic Science
Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning
(2013R1A1A3007772) and by the Supercomputing
Center/Korea Institute of Science and Technology

Information with supercomputing resources including
technical support (KSC-2012-C1-19).

References

[1] Edited by Z. Dolezal and S. Uno, "Belle II technical design
report," KEK Report 2010-1; arXiv:1011.0352, Oct., 2010.

[2] A. Moll, Proc. International Conference on Computing in High
Energy and Nuclear Physics 2010 (CHEP2010), Academia
Sinica, Taipei, Taiwan, 18-22 Oct., 2010; J. Phys.: Conf. Ser.,
331 (2011) 032024.

[3] R. Itoh et al., Proc. International Conference on Computing in
High Energy and Nuclear Physics 2012 (CHEP2012), New
York, USA, 21-25 May, 2012; J. Phys.: Conf. Ser., 396 (2012)
022026.

[4] T. Kuhr, Proc. 20th International Conference on Computing in
High Energy and Nuclear Physics 2013 (CHEP2013),
Ambsterdam, The Netherlands, 14-18 Oct., 2013; J. Phys.:
Conf. Ser., 513 (2014) 032050.

[5] P. Buncic et al., Proc. 12th International Workshop on
Advanced Computing and Analysis Techniques in Physics
Resaerch (ACAT08), Erice, Italy, 3-7 Nov., 2008 (ACAT08);
Proc. Sci. (ACAT08) 012.

[6] DIRAC INTERWARE, http://diracgrid.org.
[7] Python, http://www.python.org.
[8] ROOT, http://root.cern.ch.
[9] EvtGen, http://evtgen.warwick.ac.uk.
[10] A. Ryd and D. Lange, “The EvtGen event generator package”,

Proc. International Conference on Computing in High Energy
Physics and Nuclear Physics 1998, Chicago, IL. USA, Aug. 31
– Sep. 4, 1998.

[11] S. Agostinelli et al., Nucl. Instr. Meth. Phys. Res. A 506 (2003)
250

[12] J. Allison et al., IEEE T. Nucl. Sci. 53, no. 1, (2006) 270.
[13] Boost, http://www.boost.org.
[14] CLHEP, http://proj-clhep.web.cern.ch.
[15] Apache Subversion, http://subversion.apache.org.
[16] Artistic Style, http://astyle.sourceforge.net.
[17] SCons, http://www.scons.org.
[18] Buildbot, http://www.buildbot.net.
[19] Doxygen, http://www.doxygen.org.
[20] TWiki, http://twiki.org.
[21] Redmine, http://www.redmine.org.
[22] I. Hřivnáčová, Proc. 14th International Conference on

Computing in High Energy and Nuclear Physics 2004 (CHEP
2004), Interlaken, Switzerland, 27 Sep.-1 Oct., 2004; CERN-
2005-002 (2005) 345.

[23] J. Lettenbichler et al., Proc. International Conference on
Computing in High Energy and Nuclear Physics 2012
(CHEP2012), New York, USA, 21-25 May, 2012; J. Phys.:
Conf. Ser., 396 (2012) 022030.

[24] J. Rauch and T. Schlüter, "GENFIT – a generic track fitting
toolkit", submitted for publication, Proc. 16th International
Workshop on Advanced Computing and Analysis Techniques
in Physics Research (ACAT2014), Prague, Czech Republic, 1-5
Sep., 2014; To appear in IOP Conference Series;
arXiv:1410.3608, Oct., 2014.

[25] C. Höppner et al., Nucl. Instr. Meth. Phys. Res. A 620 (2010)
518.

[26] R. Frühwirth and A. Strandlie, Nucl. Instr. Meth. Phys. Res. A
559 (2006) 162.

[27] V. Blobel, Nucl. Instr. Meth. Phys. Res. A 566 (2006) 5.
[28] C. Kleinwort, Nucl. Instr. Meth. Phys. Res. A 673 (2012) 107.
[29] T. Bilka, G. Casarosa, R. Frühwirth, C. Kleinwort, P. Kodys et

al., "Demonstrator of the Belle II online tracking and pixel data

Fig. 3. A screenshot of the histograms created by the validation
package. The left column shows display options and command
buttons: The samples used for histogram overlays, the available
packages and tools, filters, buttons to export the results to a PDF file
and report a new Redmine issue.

reduction on the high level trigger system", submitted to Trans.
Nucl. Sci.; Proc. 19th Real Time Conference (RT2014), Nara,
Japan, 26-30 May, 2014; arXiv:1406.4955, Jun., 2014.

[30] C. Pulvermacher, T. Ceck, M. Feindt, M. Heck, and T. Kuhr,
"An automated framework for hierarchical reconstruction of B
mesons at the Belle II experiment", submitted for publication,

Proc. 16th International Workshop on Advanced Computing
and Analysis Techniques in Physics Research (ACAT2014),
Prague, Czech Republic, 1-5 Sep., 2014; To appear in IOP
Conference Series; arXiv:1410.3259, Oct., 2014.

[31] Google Test, http://code.google.com/p/googletest.
[32] OpenGL, https://www.opengl.org.

