
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 203.253.6.26

This content was downloaded on 09/03/2017 at 11:26

Please note that terms and conditions apply.

Directory search performance optimization of AMGA for the Belle II experiment

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 042030

(http://iopscience.iop.org/1742-6596/664/4/042030)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Improvement of AMGA Python Client Library for Belle II Experiment

Jae-Hyuck Kwak, Geunchul Park, Taesang Huh et al.

Belle II distributing computing

P Krokovny

Computing at the Belle II experiment

Takanori HARA and Belle II computing group

Utilizing clouds for Belle II

R.J. Sobie

Belle II production system

Hideki Miyake, Rafal Grzymkowski, Radek Ludacka et al.

Software Development at Belle II

Thomas Kuhr and Thomas Hauth

Monitoring system for the Belle II distributed computing

Kiyoshi Hayasaka

Belle II public and private cloud management in VMDIRAC system.

Rafa Grzymkowski, Takanori Hara and Belle II computing group

Job monitoring on DIRAC for Belle II distributed computing

Yuji Kato, Kiyoshi Hayasaka, Takanori Hara et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/4
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1742-6596/664/4/042041
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012026
http://iopscience.iop.org/article/10.1088/1742-6596/664/1/012002
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022037
http://iopscience.iop.org/article/10.1088/1742-6596/664/5/052028
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062024
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062020
http://iopscience.iop.org/article/10.1088/1742-6596/664/2/022021
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062023

Directory search performance optimization of AMGA for the

Belle II experiment

Geunchul Park, Jae-Hyuck Kwak1, Taesang Huh and Soonwook Hwang

on behalf of the Belle II Computing Group2

Korea Institute of Science and Technology Information (KISTI),

245 Daehak-ro, Yuseong-gu, Daejeon, KOREA
2https://belle2.cc.kek.jp/~twiki/pub/Public/ComputingPublic/AuthorList4Belle2Comp

uting.tex

E-mail: gcpark@kisti.re.kr

Abstract. AMGA (ARDA Metadata Grid Application) is a grid metadata catalogue system that

has been developed as a component of the EU FP7 EMI consortium based on the requirements

of the HEP (High-Energy Physics) and the biomedical user communities. Currently, AMGA is

exploited to manage the metadata in the gBasf2 framework at the Belle II experiment, one of

the largest particle physics experiments in the world. In this paper, we present our efforts to

optimize the metadata query performance of AMGA to better support the massive MC

Campaign of the Belle II experiment. Although AMGA exhibits very outstanding performance

for a relatively small amount of data, as the number of directories and the metadata size

increase (e.g. hundreds of thousands of directories) during the MC Campaign, AMGA suffers

from severe query processing performance degradation. To address this problem, we modified

the query search mechanism and the database scheme of AMGA to provide dramatic

improvements of metadata search performance and query response time. Throughout our

comparative performance analysis of metadata search operations, we show that AMGA can be

an optimal solution for a metadata catalogue in a large-scale scientific experimental framework

1. Introduction

AMGA is a grid metadata catalogue service that was developed through the EGEE project and reflects

the requirements of two major communities: the High-Energy Physics community and biomedical

research community. Subsequently, AMGA’s function was further developed through participation in

the EMI (European Middleware Initiative) and EGI (European Grid Infrastructure). Currently it is

being utilized at various sites as well as by the Belle II experiment [1].

One of the largest experiments in the world, Belle II utilizes AMGA [2] to process a large amount

of metadata. Data generated from the Belle II experiment is processed through the gBasf2 framework

[3] using a distributed computing framework called DIRAC (Distributed Infrastructure with Remote

Agent Control) and processed files containing the results are stored by distributing them to data

centers all over the world. The metadata for the results is stored and managed in AMGA so that

researchers can use it to search for desired data files and apply the results to their own research

[4][5][6].

1 Corresponding author.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042030 doi:10.1088/1742-6596/664/4/042030

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

Figure 1. gBasf2 framework and AMGA

2. Belle II MC Production campaign and AMGA Issue

In high-energy physics experiments that process a large amount of data, an MC (Monte-Carlo)

production campaign is implemented to check the computing model and distributed computing

environment [5][6][7]. The Belle II experiment performed an MC production campaign four times

starting from February 2013 to date. Our MC production campaign increased the throughput for each

cycle, as shown in Fig 2. However, during the third cycle we encountered slow response times from

AMGA and an overload of the AMGA server (Fig 3) [8].

Figure 2. Belle II MC production campaigns Figure 3. Overload of AMGA server

during MC3.0

2.1. Analysis of issue

When the 3rd MC production campaign was performed, the response time of the ‘ls [directory]’

command took 0.01 seconds at the initial installation, but this slowed the performance down to

approximately 1 second. The ‘ls [directory]’ command is one of the most often used commands, as it

contains all entries in the target directory. Due to this issue, a large number of AMGA and

PostgreSQL sub-processors were kept running continuously. This resulted in a high system load, and

in fact, the memory usage reached its limit. The cause, analyzed with the cooperation of the Belle II

framework building team, was found to be the slowness of the AMGA directory search speed.

As the number of directories created in AMGA increased — at that time, more than 300,000

directories were created in the server used in the Belle II experiment — the speed decreased

proportionally. The slowdown of response was almost independent of the number of entries; indeed,

the analysis results showed that the number of directories governed the response time.

2.2. Bottleneck

If the client runs a command by accessing AMGA, a series of processes is performed, as shown in

Figure 4. During those processes, various tests were performed to find the bottleneck point of the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042030 doi:10.1088/1742-6596/664/4/042030

2

response. As a result, it was found that it took a long time for AMGA to request the query to the

database and to retrieve the result set in the postgres sub-processor.

Figure 4. Bottleneck in search workflow

3. Enhancement of directory search performance

This section describes the data storage, search structure and method in AMGA, and presents our

modification plan to improve performance.

3.1. Storing and searching directory information in the AMGA

AMGA uses two types of tables to manage directories and entries. There is one masterindex table that

stores basic information for all directories, and there are directory tables to store entries belonging to

each directory. Whenever a new directory is created in AMGA, it creates a single associated directory

table for the new directory and inserts information for this new directory in the masterindex table.

Then, entries added to this directory are stored in the previously created directory table.

Figure 5. Structure of directory and entry information of AMGA

When reading the content of a directory using the ‘ls [directory]’ command, AMGA provides the

entry and sub-directory information that belong to the given target directory. Entry information is

retrieved from the corresponding directory table and sub-directory information is retrieved from the

masterindex table, respectively. The bottleneck is not caused by the entry information retrieving part,

but rather by the sub-directory information retrieving part. The entry information retrieving part is fast

enough despite the huge number of entries, but the sub-directory information retrieving part is slowed

down as the number of directories increases.

3.2. Optimization of scheme and directory search query
The reason for the slowdown was the use of an expensive POSIX-style pattern matching expression

to retrieve the sub-directory information from the masterindex table instead of a low-cost exact-

matching expression. The observed performance issues occurred with this POSIX-style expression

because this method is a high-cost operation that compares strings. For string comparison

operations, using a

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042030 doi:10.1088/1742-6596/664/4/042030

3

database indexing technique does not improve performance, and so when there are increasing numbers

of comparable targets, its performance is seriously degraded.

To solve this problem, we added a parent column, which stored the information of the parent

directory to the masterindex table and changed the directory information search method from pattern

search to exact-match search. As a result, the search performance was improved significantly.

 AMGA Command

Query> ls /belle2/user/gcpark

 Old database search query : version 2.4.0

SELECT “directory", "table_name", "flags", "owner_name", "permissions", "acls”

FROM public.masterindex

WHERE "directory" ~ '^/belle/user/gcpark/[^/]+$';

 New database search query : version 2.5.0

SELECT "directory", "table_name", "flags", "owner_name", "permissions", "acls"

FROM public.masterindex

WHERE "parent" = '/belle/user/gcpark/';

4. Test results

As discussed in this section, tests were conducted to determine the extent to which the search

performance was improved before and after applying the changes. Additionally, the response time was

tested for a large amount of data in a high-end server.

4.1. Test methods

The test program is written in Python, and uses AMGA Python APIs that are included in the Belle II

framework. The response time is measured according to the interval between the sending of the 'ls

[directory]' command to the AMGA server and the receiving of all the entries’ information. The

response time includes the time used to read all of the entries stored in the target directory. This means

that the response time can be changed based on the number of entries stored in the target directory. As

explained in the following section 4.2, because we used a virtual machine with a small storage space,

all of the directories had 100 entries. Subsequently, as noted in section 4.3 and 4.4, all of the

directories had 1,000 entries to make the test environment as similar as possible to the real Belle II

framework. In all of the tests, the target directory was selected randomly using the ‘ls [directory]’

command.

4.2. Comparison test 2.4.0 VS 2.5.0

To compare the two programs, AMGA versions 2.4.0 and 2.5.0, we ran both of them on identical

virtual machines configured with 2 CPUs and 16 GB RAM on an Intel-based PC running Scientific

Linux 5 x86 and PostgreSQL 8.1.23. We applied the same schema used in the Belle II experiment for

AMGA testing. The tests were carried out by creating 100 entries for each directory and then

increasing the number of directories.

The test for measuring the response time was conducted by reading all of the entries stored in the

randomly selected directory using the ‘ls [directory]’ command. In this case, each of the directories

had 100 entries. Each test was performed 10,000 times, and then the average was calculated, randomly

selecting the directory from which to read data.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042030 doi:10.1088/1742-6596/664/4/042030

4

Table 1. Comparison of response times (seconds) of V2.4.0 and V2.5.0

Directories 1 50 100 500 1K 5K 10K 50K 100K

Entries 100 5K 10K 50K 100K 500K 1M 5M 10M

Response

Time(s)

V2.4.0 0.0017 0.0032 0.0038 0.0089 0.0139 0.0556 0.1081 0.5222 1.0268

V2.5.0 0.0017 0.0017 0.0017 0.0018 0.0018 0.0018 0.0018 0.002 0.0026

Figure 6. Graph of AMGA directory search response time

The test results confirmed that in the 2.4.0 version with no enhanced search method, as the number

of directories increased, the response time slowed considerably at high directory numbers. In contrast,

with the new 2.5.0 version, the response time was increased logarithmically as the number of

directories increases.

4.3. Mass-data test on high-spec server

To evaluate AMGA performance in an actual environment, we carried out a test using a large amount

of data in a high-end server. The specifications of the server used in this test are shown in Table 2.

Table 2. Specifications of server for test

 Specification

CPU 2 x Intel® Xeon® Processor , 3.0GHz 10Core, 25M Cache

RAM 128GB DDR3 ECC RAM 1600MHZ /(24 DIMM slots)

SSD 2 x 120GB SSD

HDD 3TB 7.2K RPM near Line SAS 3.5 * 12EA(RAID 0)

OS Scientific Linux 5 x86

DB PostgreSQL 8.1.23

The test was conducted using AMGA 2.5.0 with enhanced performance and Belle II experiment

schema. In this test, the same test command ‘ls [directory]’ was used; however, in contrast to the

previous tests, the number of entries read by AMGA for each directory was 1,000, 10 times more than

in the previous tests. Once again, the target directory was randomly selected.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042030 doi:10.1088/1742-6596/664/4/042030

5

Table 3. Disk I/O measurements of SSDs and HDDs

Buffered disk read

(hdparm –t)

Cached disk read

(hdparm –T)

Write speed

(dd)

Speed

(MB/s)

SSDs 1,030 12,842 487

HDDs 1,617 12,463 486

For the purpose of this test, we examined the AMGA performance when using either the SSD or

HDD for storage. Table 3 shows the disk I/O measurements. The ‘hdparm’ and ‘dd’ commands were

used for the measurement. The measurements ran to each SSD and HDD, repeated 30 times. Since the

12EA HDDs are configured as the RAID 0, they are faster than the SSDs in the ‘Buffered disk read’

column. The SSD test was limited to a maximum of 150M entries in 150K directories due to the

limited capacity of the SSD; the HDD was tested with up to 1G entries in 1M directories.

Table 4. Average response time of high-spec server

Directories 10K 50K 100K 150K 200K 500K 700K 1M

Entries 10M 50M 100M 150M 200M 500M 700M 1G

Response

Time(s)

SSD 0.0149 0.0148 0.0148 0.0148 N/A N/A N/A N/A

HDD 0.0146 0.0146 0.0143 0.0146 0.0147 0.0146 0.0156 0.0156

In spite of the large number of entries in both the SSD and HDD, the results showed that a rapid

response time was maintained. We plan to perform tests of more directories and entries in the future.

4.4. Database shared buffer

Table 5 below shows the test results in detail. The test was performed with data from 30K directories

or 150K directories on the SSD and 500K directories on the HDD. The ‘ls [directory]’ command was

run for 1,000 cycles in the randomly selected directory, repeated 30 times. Table 4 shows the test

results for the 1st to 7th runs along with the average results for the 8th to 30th runs.

Table 5. Detailed test results for high-spec server

Times 1st 2nd 3rd 4th 5th 6th 7th
Avg.

(8th~30th)

Response

Time(s)

30K 0.01649 0.01549 0.01509 0.01493 0.01485 0.01483 0.01477 0.01470

150K 0.01646 0.01542 0.01506 0.01486 0.01484 0.01479 0.01478 0.01477

500K 0.03363 0.01974 0.01666 0.01459 0.01381 0.01387 0.01395 0.01361

It should be noted that as the number of repetitions increased, the response time was faster, but that

after the 7th run, a steady speed was maintained. This result can be attributed to the shared buffer zone

in the database. The database has a certain space for the shared buffer in which the result set is stored

for later reuse. During the 1st to 6th runs, the result set was stored in the shared buffer, and after the

7th run, the stored result set was transmitted to another shared buffer, so it was possible to have a

faster response time. However, since the response time difference between the result set stored in the

shared buffer and the one not stored in the shared buffer was not significant, a short basic response

time was guaranteed.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042030 doi:10.1088/1742-6596/664/4/042030

6

5. Conclusions and future work

We analyzed the directory search performance of AMGA, which is used as a metadata catalogue

solution in the Belle II experiment. We examined the AMGA process, investigated the cause of an

observed performance problem and then developed and applied a performance improvement method

and tested the performance of both the original and enhanced AMGA.

In the future, it will be necessary to test with more directories and entries in preparation for the

actual Belle II experiment. Additional testing under load generated by a large number of clients is

required as well as optimization of the AMGA parameter settings and database for enhanced

performance.

6. Acknowledgements

We are grateful for the support and the provision of computing resources by CoEPP in Australia,

HEPHY in Austria, McGill HPC in Canada, CESNET in the Czech Republic, DESY, GridKa,

LRZ/RZG in Germany, INFN-CNAF, INFN-LFN, INFN-LNL, INFN Pisa, INFN Torino, ReCaS

(Univ. & INFN) Napoli in Italy, KEK-CRC, KMI in Japan, KISTI GSDC in Korea, Cyfronet, CC1 in

Poland, NUSC, SSCC in Russia, SiGNET in Slovenia, ULAKBIM in Turkey, UA-ISMA in Ukraine,

and OSG, PNNL in USA. We acknowledge the service provided by CANARIE, Dante, ESnet, GARR,

GEANT, and NII. We thank the DIRAC and AMGA teams for their assistance and CERN for the

operation of a CVMFS server for Belle II.

References

[1] Koblitz B, Santos N, and Pose V 2008 Journal of Grid Computing 6 61–76

[2] Ahn S et. al. 2010 Journal of the Korean Physical Society 57 issue 4 715

[3] Hara T 2014 Proceedings of Asia-Pacific Advanced Network 38 115-122

[4] Hara T 2014 Computing for Belle-2 (Tsukuba University, Japan, 3-8 March)

[5] Hara T “Computing at the Belle-II experiment” CHEP2015 proceedings

[6] Miyake H “Belle II production system” CHEP2015 proceedings

[7] Kuhr T 2014 J. Phys. Conf. Ser. 513 032050

[8] Miyake H 2014 Belle II distributed computing with DIRAC (CERN, Zurich, 26-28 May)

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042030 doi:10.1088/1742-6596/664/4/042030

7

