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Abstract

At the Belle II spectrometer a Time-of-Propagation (TOP) counter is used for particle identification in the barrel region. The
Belle II TOP counter consists of sixteen 2.7 m long modules positioned in the space between the central drift chamber and the
electromagnetic calorimeter. We discuss the methods for the alignment and calibration of the TOP counter with measured data.
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1. Introduction1

The Belle II experiment [1, 2] is a successor of the Belle ex-2

periment at KEK, Tsukuba, Japan. The detector is positioned3

at the upgraded KEKB collider (SuperKEKB) which will oper-4

ate at a luminosity of 8 × 1035cm−2s−1, forty times larger than5

previously. The Belle II spectrometer is the upgraded Belle6

spectrometer, where the majority of components have been re-7

placed. In order to cope with higher event rates and higher8

backgrounds new technologies have been developed and em-9

ployed. One such new technology is the Time-Of-Propagation10

(TOP) counter, which will be used primarily to identify hadrons11

in the barrel region.12

The TOP counter is a novel type of particle identification13

device that combines time-of-flight with the Cherenkov ring14

imaging technique. A single counter module consists of a long15

quartz plate, within which Cherenkov photons are emitted along16

the charged particle trajectory and then transported to the plate17

exit window by means of total internal reflections. The two di-18

mensional information about the Cherenkov ring image is ob-19

tained by measuring the time of arrival and the impact position20

of photons at the quartz plate exit window. The time of arrival is21

measured relative to the bunch crossing time and thus includes22

the time-of-flight of the particle.23

The Belle II TOP counter has been discussed by several24

speakers at this workshop [3, 4]. It is made of sixteen mod-25

ules positioned in the barrel at a radius of 120 cm and cov-26

ering the polar angles from 320 to 1200. Each module em-27

bodies a 2.7 m long quartz optics, two rows of sixteen MCP-28

PMT’s (Hamamatsu R10754) [5] and wave-sampling electron-29

ics [6] connected to each MCP-PMT channel that can measure30

the photon arrival times to a precision of 50 ps (r.m.s).31

In this contribution we present the methods for the alignment32

and calibration of the TOP counter with measured data.33
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2. Calibration of time base of sampling electronics34

Each channel of the IRSX ASIC waveform sampling elec-35

tronics [6] consists of an analog sampling array of 128 elements36

whose delay times must be precisely calibrated. The sampling37

is synchronized with the SuperKEKB accelerator clock; the ac-38

celerator clock is divided by 24 to produce the 21.2 MHz syn-39

chronization clock (SSTin) for the sampling electronics. Sam-40

pling starts at the rising edge of SSTin and proceeds until the41

next SSTin cycle comes. The delay-locked loop (DLL) circuit42

ensures that all 128 samples are done within a single SSTin pe-43

riod. The samples are concurrently transferred 1 to the analog44

storage consisting of 512 groups of 64-sample storage units,45

that makes the last 11 µs of the sampled waveform available for46

further processing.47

The goal of the calibration is to find sample time differences48

∆ti = ti − ti−1, i = 1, 2, ...,N, where ti are sample times,49

N = 128, t0 = 0 and tN = Tsync, and Tsync is the SSTin pe-50

riod. The calibration is done by feeding double pulses of a con-51

stant time delay ∆T between the first and second pulse into the52

channel input. In order to cover all N samples the pulse gener-53

ator frequency is not synchronized with the SSTin clock. The54

uncalibrated time of each pulse is then determined using linear55

interpolation between the two samples at the rising edge where56

the 50% constant fraction transition occurs.57

From the measured uncalibrated times of the first and second58

pulse, t1 and t2, respectively, that are expressed in the number59

of samples with respect to some earlier SSTin cycle, the cor-60

responding sample numbers modulo N and their decimal parts61

are determined as62

s1 = int(t1)%N, f1 = t1 − int(t1), (1)
s2 = int(t2)%N, f2 = t2 − int(t2), (2)

where %N denotes modulo N operation. The equation for a63

1The first half of the sampling array is being transferred when the second
half is sampling and vice-versa.

Preprint submitted to Nuclear Instruments and Methods A April 12, 2017



single measurement with precision σt can be written as64

N∑
k=1

mk∆tk = ∆T ± σt, (3)

where65

mk =


1 − f1 k = s1
1 k = (s1 + 1, ... , s2 − 1)%N
f2 k = s2
0 elsewhere.

(4)

χ2 can be defined as66

χ2 =
∑

i

(
∑N

k=1 m(i)
k ∆tk − ∆T )2

σ2
t,i

, (5)

where i counts the measured double pulses. By introducing67

dimensionless variables xk ≡ ∆tk/∆T and σi ≡ σt,i/∆T we68

obtain69

χ2 =
∑

i

(
∑N

k=1 m(i)
k xk − 1)2

σ2
i

. (6)

The minimization of Eq. 6 gives a linear system of N equations70

of the form Ax = b with symmetric matrix A71

Ak j = A jk =
∑

i

m(i)
k m(i)

j

σ2
i

, (7)

that can be inverted numerically, and72

bk =
∑

i

m(i)
k

σ2
i

. (8)

Therefore x = A−1b. The unknown ∆T is then determined73

from
∑N

k=1 xk∆T = Tsync and the unknown sample times are74

finally calculated with the procedure: t0 = 0, tk = tk−1 +75

xk∆T, k = 1, 2, ...,N.76

The calibration method was tested with the calibration77

double-pulse data taken from one of the modules. The results78

for one of the channels are shown in Fig. 1; the top plot shows79

the time difference of the two calibration pulses as a function80

of sample number when using uncalibrated (equidistant) time81

base, the plot in the middle shows the time difference when us-82

ing the calibrated time base, and the plot on the bottom shows83

the calibration curve. The width of the distribution from the84

middle plot when projected onto the vertical axis is found to be85

42 ps (r.m.s).86

We also estimated the number of double pulses needed to ob-87

tain a calibration precision that would have a negligible impact88

on the photon time resolution. We divided the measured sample89

of double pulses into ten sub-samples and then run the calibra-90

tion procedure on each of them. The width of residuals of the91

calibration curves with respect to the full sample is found to be92

65 ps (r.m.s.) for 4700 double pulses per channel on average.93

To obtain a three-times better precision that would contribute94

marginally to the photon time resolution, an order of magni-95

tude more double pulses (e.g. 50 thousands) per channel would96

be therefore required.97
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Figure 1: Calibration results for one of the channels. On top: time difference of
the two calibration pulses as a function of the sample number, obtained with an
equidistant time base. Middle: time difference, when using the calibrated time
base. Bottom: calibration curve resulting from time base calibration.

3. Calibration of channel time offsets98

The time alignment of channels is done with a laser calibra-99

tion system [7] incorporated into each module. It consists of a100

pico-second pulsed laser source coupled to a light distribution101

system that distributes light to individual modules. The laser102

output is first split into sixteen single mode optical fibers of103

equal length that lead the light to the modules. At each module104

the light is split again into nine, equal length multi-mode op-105

tical fibers equipped at output with graded index micro lenses106

that illuminate the MCP-PMT’s from nine positions beneath the107

slanted prism surface in order to achieve as much as possible a108

uniform pixel illumination.109

The time jitter of the laser pulses is less than 50 ps. How-110

ever, due to reflections at prism surfaces, a particular MCP-111

PMT pixel can receive light directly or being reflected once or112

twice at the prism surface. In addition, some pixels are illumi-113

nated with two optical fibers. All these effects result in several114

different photon arrival times that have to be taken into account.115

A simple and robust method can be used for coarse align-116

ment. It relies on aligning the average of measured time distri-117

2
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Figure 2: Coarse time alignment of channels using distribution averages; before
(top) and after time alignment (bottom). Long tail in time is a nature of TTS.

bution in a pixel with the average of simulated arrival times for118

that pixel. An example of a coarse alignment with this method119

is shown in Fig. 2. The drawbacks of this method are hard-to-120

control systematic biases arising from the differences of simu-121

lated and true fiber light emittance.122

A refined and more precise method must therefore rely on123

fitting. The parameterization of the measured distribution in a124

pixel can be written as125

f (t) =
∑

k

akP(t − tprop
k − t0), (9)

where k counts the different propagation times, ak are the in-126

tensities varying freely in the fit, tprop
k are the propagation times127

taken from Monte Carlo (MC) simulation and t0 is the offset128

to be determined. The distribution P(t) is the time transition129

spread (TTS) convoluted with the electronic resolution. The130

TTS was measured with high precision for each channel of ev-131

ery MCP-PMT prior to installation; these data can be used in132

the fit to reduce the number of free parameters describing P(t).133

The method is still under development.134

4. Alignment of modules135

The goal of module alignment is to find small displacements136

from their nominal position. These displacements can be de-137

fined as translations in coordinates x, y and z, ∆~r = (∆x,∆y,∆z),138

and rotations around x, y and z axis by angles α, β and γ, re-139

spectively. The transformation of a point at position ~r from the140

module local frame to the Belle II frame is done in two steps.141

First we transform the position from local to nominal frame142

(e.g. displace the module)143

~r ′ = Rz(γ)Ry(β)Rx(α)~r + ∆~r, (10)

where Rx, Ry and Rz denote the rotations around x, y and z axis,144

respectively, and then transform it to the Belle II frame (e.g.145

position the displaced module to its place in the barrel)146

~r ′′ = Rz(φ)(~r ′ + ~d), ~d = (0,R, z0), (11)

where R and φ are the barrel radius and azimuthal angle, re-147

spectively, at which the module is positioned within the Belle II148

spectrometer, and z0 measures the displacement in z of the local149

frame origin with respect to the Belle II origin.150

The most suitable data for alignment are di-muon events151

e+e− → µ+µ− since they are clean low multiplicity events con-152

sisting of two high-momentum particles (p > 3 GeV/c) with153

known particle identity (muons), and whose event rates are154

comparable to the rates of producing BB pairs when running155

at the energy of Υ(4S ).156

The alignment parameters can be determined by minimizing157

the sum of negative log likelihoods over many muons158

χ2( p̂) = −2
n∑

i=1

logL(i)
µ ( p̂), (12)

where logLµ( p̂) is calculated with the extended likelihood159

method using analytic PDF that was discussed at the previous160

RICH workshops [8, 9], and p̂ denotes the vector of alignment161

parameters p̂ ≡ (∆x,∆y,∆z, α, β, γ, t0) that must also include162

the start time offset t0, since it is correlated with the others.163

Minimization of Eq. 12 can be performed with an iterative164

procedure similar to the Kalman filter. The procedure can be165

derived in the following way: Suppose we have already min-166

imized Eq. 12 using i muons; we denote the current vector of167

parameters and the corresponding error matrix as p̂(i) and V (i),168

respectively. Then, taking the next muon we can write169

χ2(p̂) = −2 logL(i+1)
µ ( p̂) + ∆ p̂T V−1

(i) ∆p̂, (13)

where p̂ = p̂(i) + ∆p̂. The first term in Eq. 13 can be expanded170

around p̂(i) into a Taylor series up to the second order; then the171

minimization problem can be solved analytically, resulting in172

the following iterative procedure:173

U(i+1) = U(i) − D(i), (14)
V (i+1) = [U(i+1)]−1, (15)

∆p̂ = V (i+1) ŝ(i), (16)
p̂(i+1) = p̂(i) + ∆ p̂, (17)

where U = V−1, U(0) = 0, D is a matrix of second derivatives174

with elements175

D jk = Dk j =
∂2 logLµ
∂p̂ j∂p̂k

(18)

and ŝ is a vector of first derivatives with elements176

ŝ j =
∂ logLµ
∂p̂ j

. (19)

The first and second derivatives are calculated numerically at177

each iteration step.178

The alignment method was tested with MC simulation. We179

generated eight different module displacements and run the180
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Figure 3: Convergence test of the alignment method with MC simulation. The
plots show residuals with respect to the module displacements as a function
of the number of muons (iterations). Each curve is for a particular module
displacement.

alignment procedure on each of the data sets. In all cases the181

iterative procedure converges, as shown in Fig. 3. Small biases182

in y and z that can be noticed in Fig. 3 are under investigation.183

As expected, the precision scales as σ =
σ0√

n , where n is the184

number of muons (iterations). The parameter σ0 is found to be185

14 mm for x, 22 mm for y, 12 mm for z, 10 mrad for α, β and γ,186

and 75 ps for t0. With a sample of 10000 muons we can align a187

single module to spatial and angular precisions of 0.2 mm and188

0.1 mrad, respectively. These are well below the uncertainties189

of the tracks extrapolated to the TOP counter.190

5. Calibration of the start time offset191

As discussed in the introduction, the photon arrival times are192

measured relative to the bunch crossing time that is given by the193

accelerator RF clock with some arbitrary offset T0. This offset194

has to be determined from data. According to experience from195

the Belle experiment, slow drifts with time and sudden jumps196

can be expected, so the offset must be constantly monitored and197

accounted for.198

The method again relies on di-muon events and uses ex-199

tended log likelihoods calculated with analytic PDF [8, 9]. In200

this case we search for the minimum of201

χ2(T0) = −2
N∑

i=1

[logL(i)
µ+ (T0) + logL(i)

µ− (T0)], (20)

where we sum over N di-muon events.202

The minimum of Eq. 20 is searched by scanning a selected203

region of T0, because local minima are sometimes present. Usu-204

ally, the scan is done in the region of ±1 ns around the expected205
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Figure 4: Monte Carlo proof of the principle of T0 offset monitoring in real
time. The solid curve represents the generated offsets slowly drifting with time
and with a sudden jump at event number 2500. The points represent the recon-
structed offsets. We used 100 di-muon events per point.

minimum using 200 equidistant steps. The precise position of206

the minimum is finally obtained by fitting a parabola to the three207

lowest points.208

The precision for N = 1 is found to be about 50 ps; therefore209

about 100 di-muon events are sufficient to reach the precision210

of ∼5 ps. The procedure is fast enough to monitor offset T0211

continuously, in time stamps of seconds to minutes. A Monte212

Carlo proof of the principle is shown in Fig. 4.213

6. Conclusions214

We discussed the methods for alignment and time calibra-215

tion of the Belle II TOP counter. The alignment and calibration216

of the counter need to be performed in the order as presented217

in this contribution. As the first step the time base of sam-218

pling electronics is calibrated using double pulses. Then the219

time alignment of channels is performed using a laser calibra-220

tion system. Since a good time resolution is crucial for this221

kind of detector, these two steps are planned to be repeated222

on a daily basis. The alignment of the detector with di-muon223

data is planned after each longer shut-down of the experiment224

or stronger earth quake that could move the detector structure.225

Finally, the start time offset calibration can be performed con-226

tinuously, either during data taking or immediately after it.227

References228

[1] http://belle2.kek.jp/229

[2] T. Abe et.al., KEK Report 2010-1 (2010).230

[3] J. Fast, these proceedings.231

[4] K. Suzuki, these proceedings.232

[5] K. Matsuoka, these proceedings.233

[6] G. Varner, M. Andrew, L. Macchiarulo, K. Nishimura, L. Wood, The234

IRSX ASIC for the Belle II Imaging Time of Propagation Detector, IEEE235

NSS conference 2015, San Diego, CA236

[7] U. Tamponi, these proceedings.237
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