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Abstract

Rare and flavour-changing neutral current decays of the B meson are an important probe in the
search for physics beyond the Standard Model. There have recently been several anomalies in rare
B decays, and lepton-universality measurements, specifically involving the b — s¢T¢~ quark tran-
sition. These results tend towards a non-Standard-Model interpretation. The Belle IT experiment
is a next-generation b physics experiment located at SuperKEKB, an upgraded B factory ete™
collider, in Tsukuba, Japan. The first collisions are expected in early 2018 with full physics data
expected in 2019. This document describes prospects for several rare B decays at Belle II including
b — s{T ¢~ processes and others, such as b — (s,d)y and b — sv. Areas where the Belle II program
is complementary to that of the currently running LHCb experiment are highlighted.

1. Introduction /¢
Rare and flavour-changing neutral current

(FCNCQC) decays of the beauty quark are sen- 70 /,}/ ¢
sitive to the effects of undiscovered new parti-

cles, if they exist, that are not included in the t

Standard Model of particle physics (SM). As

FCNC are forbidden at tree-level in the SM,

these decays proceed by higher-order loop-level b \ / S
diagrams (as shown in Figure 1). However any N - _
potential new physics (NP) contribution does - w
not suffer the same restriction and can occur

at a comparable size. As these NP diagrams

contain virtual particles that can be off-mass-

shell, the mass scale in the search for NP with

these decays is typically many times larger than W =

searches involving direct production. Further- // \\

more, several recent measurements of these de-

cay processes [1-4]' are in tension with SM 0 \ / s,d
predictions, which has generated much inter- t

est [5-9]%.

Figure 1: The leading order Feynman diagrams

IThe result of Ref. [4] is also presented at this con- for the FONC'b — stl (where L rep-
ference, talk by S. Sandilya. resents e, i, T or v) and b — (s,d)y in
2The analysis of Ref. [6] is also presented at this con- the SM.
ference, talk by W. Altmannshofer.
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The Belle IT experiment [10] is a hermetic
detector currently being commissioned at the
SuperKEKB accelerator [11] at the KEK labo-
ratory in Tsukuba, Japan. The first data are
expected in early 2018, with a target dataset
of 50 ab™! of eTe™ collisions by 2025. This
dataset should contain approximately 50 x 10°
ete™ — T(4S) — BB events. Measurements
of rare and FCNC decays are an integral part
of the Belle II physics program.

2. Previous and current b physics exper-
iments

The Belle II experiment is a second-generation
B factory. The first generation of B fac-
tories were the DBelle and BaBar experi-
ments [12] at the KEKB and PEP-IIT accel-
erators at KEK and the SLAC National Ac-
celerator Laboratory, respectively. Following
the first-generation B factories, the LHCDb ex-
periment [13] at the LHC at CERN has been
taking data since 2009. The LHC produces
pp collisions at high-energy and cannot exploit
the 7(4S5) resonance, however pp — bb quark
pair-production is copious in the forward region
and LHCb utilises a single-arm forward spec-
trometer detector design [13]. These three ex-
periments have produced many noteworthy re-
sults, several examples that are not discussed
elsewhere in this document are described in
Refs [14-19].

3. The next-generation
Belle IT at SuperKEKB

experiment:

3.1. Description

The SuperKEKB accelerator complex [11] is
an upgrade of KEKB. The accelerator beams
are asymmetric in energy: 7 GeV for electrons
(defining the forward direction) and 4 GeV
for positrons. The accelerator is designed to
achieve a factor 40 increase in instantaneous lu-
minosity with respect to KEKB. This is due
to a more focused beam crossing and higher
beam current, achieved by: new superconduct-
ing magnets [20] at the interaction point, a new
positron dampening ring, and upgraded beam
optics.

The Belle IT detector [10] has been upgraded
from Belle to cope with the much higher lumi-
nosity and higher expected beam backgrounds.
Around the collision point, the silicon vertex de-
tector has one more layer than Belle, with the
addition of two inner layers of depleted field-
effect transistor pixel detectors. The vertexing
detectors are surrounded by the Belle II wire
drift chamber that is larger than in Belle. Two
new particle identification systems have been
installed utilising Cherenkov radiation: in aero-
gel blocks in the forward endcap and totally in-
ternally reflected inside quartz bars in the bar-
rel. The thallium-doped caesium iodide elec-
tromagnetic calorimeter has been reused from
Belle although the readout and electronics have
been totally replaced. The superconducting coil
magnet is reused and will provide a 1.5 T mag-
netic field for charge assignment and to measure
tracking momentum of charged particles. The
inner barrel layers and the endcap of K? and
muon detector have been replaced with plas-
tic scintillator, the outer barrel layers reuse the
original resistive plate chambers from Belle.

3.2. Status as of August 2017

The design data schedule is shown in Figure 2.
In early 2018 the accelerator is scheduled to pro-
vide ete™ collisions at reduced luminosity for
detector commissioning®. The vertexing pixel
detector and silicon vertex detector components
will not be installed for this phase. In 2019 the
full vertexing detector will be installed and the
accelerator will provide physics collisions®.

4. Theoretical framework and motivation

Figure 1 shows the leading order SM contribu-
tions to b — s processes. However, in order to
interpret results in a model-independent way,
the theory community typically works in a gen-
eral expansion of an effective Hamiltonian,

Hest X Z

i=1,..10,5, P

(C;0; + C10),

3QOperationally, and in Belle II literature, this is re-
ferred to as “Phase 2” for historic reasons.

4Referred to as “Phase 3”. Should be thought of as
physics run 1.
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Figure 2: The scheduled integrated and peak luminosities of SuperKEKB. Approzimately 10° BB pairs per
ab™' of data at the T(4S) resonance will be collected. Adapted from [21].

in terms of effective operators, Ozm, contain-
ing the non-pertubative low-energy effects and
so-called “Wilson coefficients”, C;. The primes
denote the chiral partner operator that is sup-
pressed in the SM. The Wilson coefficients may

be expressed as:
C;y =M+ O},

the sum of the SM (calculable with pertubative
techniques) and NP (to be determined) contri-
butions.

There are 24 operators and coefficients in the
full expansion®. However, there are three which
are most relevant for b — s:

Og o< (57, PLb) ((7"0);

O10 < (87, PrLb) ((y¥750);
O7 o< my(50,,, Prb)F".

These are the vector, axial vector, and ra-
diative photon operators respectively, and are
shown schematically in Figure 3. This theoret-
ical procedure is appealing as it allows model-
independent global fits to the CNF | searching
for generic NP based on the form of the inter-
action with SM fermions.

5More detail is available in many references, for ex-
ample Ref. [22].

14
14
b N\ s
gl
b o/ s

Figure 3: A diagrammatic representation of the
effective (azial) wvector operators Og
(O10) and radiative photon operator Oz
(upper and lower respectively).
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Furthermore, many observables are then con-
structed in such a way as to divide out or oth-
erwise remove the hadronic uncertainties. Such
observables are called “theoretically clean” or
“form-factor independent”. Finally, it is also
possible to separate this whole framework by
lepton flavour such that

C; — C! and Cf

allowing for a lepton-flavour-dependent deter-
mination of any NP. This final step is relevant
given recent results [1,2, 4], analyses may be
found in Refs [6-8].

5. Inclusive measurements and full event
interpretation

Inclusive decays, where the hadronic part
of the decay is not specified, are denoted
B — X (v,4¢) with X representing all hadrons.
Their measurements should be contrasted with
measurements of exclusive decays to a specific
hadronic final state (such as B — K*~, for ex-
ample).

In terms of theory, SM predictions of inclu-
sive decays are complementary to exclusive as
they typically suffer less, or orthogonal, uncer-
tainty due to hadronic form-factors. Predic-
tions for the branching fractions of B — X7
and B — X, ¢*/¢~ in the SM are calculated to a
precision of around 7% [23-25] which should be
compared to the SM prediction for the branch-
ing fractions of B —+ K*yand B — K*u ™ at
20 — 23% [25,26].

Experimentally, there are two approaches for
inclusive analyses: fully inclusive and the so-
called “sum-of-exclusive” methods. These are
described in the following subsections.

In addition, decays with neutrinos in the final
state are often reconstructed in the B factories
as part of the full ete™ — 7(4S5) — BB event
such that the missing energy is precisely known.

5.1. Sum-of-exclusive approach

The sum-of-exclusive reconstruction method is
where the X is specifically reconstructed to sev-
eral final states. This method is the only way
to specify the transition as b — s (or b — d)
since X (Xg4) can be specified by the presence

Figure 4: A schematic of a hadronically tagged
decay where full event reconstruction is
possible. In this example the tag decay
is B — D°(— Kn)m, however several
decay chains with high branching frac-
tions or efficiencies are included [27].
The signal is able to be constructed from
missing energy (i.e. neutrinos) or as an
inclusive decay if only a photon or (pair
of ) leptons are reconstructed.

(absence) of a kaon in the final state. For ex-
ample, X can be reconstructed as Knm and
3Kmm where n > 1 and m > 0. Furthermore,
the flavour and momentum of the parent B is
known without the need to perform full event
interpretation (discussed in the following sec-
tion). The sum-of-exclusive analyses therefore
have relatively high efficiency to select signal
events.

5.2. Full event interpretation

Fully inclusive measurements, and processes
with neutrinos or other missing energy often
rely on “tagging” the other B decay (the Biag)
from the 7(4S). This is shown schematically
in Figure 4. Such analyses are challenging for
LHCb due to the detector geometry and the
production mechanism pp — bb. Hermetic de-
tectors, such as BaBar, Belle, and Belle II are
able to precisely reconstruct 7(4S) — BB de-
cays and therefore better suited to performing
such measurements. This is illustrated qualita-
tively in Figure 5.

There are two further approaches to recon-
struct the full event, dependent on the final
state of the By, decay. The By,, decay may
be reconstructed in a fully hadronic final state,
in which case the momentum of the signal B is
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Figure 5: Ezamples of event displays from Belle II simulation (left) and LHCb data (right). Belle II is
hermetic and can exploit the clean e¥e™ — 1(4S) — BB production. LHCb does not have full
coverage and the production mechanism pTp~ — bb is less well known. Belle II is therefore
better suited to perform fully inclusive measurements and measure processes with neutrinos in

the final state. Right-hand figure from [28].

known precisely, independent of the signal de-
cay. However, fully reconstructed hadronic de-
cays suffer from low branching fractions with
respect to semi-leptonic decays. Thus semi-
leptonic tagging has a somewhat higher effi-
ciency at the expense of losing the full mo-
mentum (and parent charge) information in
most signal decays. Newer full event interpreta-
tion (FEI) algorithms have been developed for
Belle IT [27] which include several final states
and utilise advances in machine learning. The
efficiencies of FEI are shown in Table 1.

6. Prospects at Belle I1

6.1. Inclusive b — (s,d)y

The inclusive radiative penguin measurements
provide important constraints on many pos-
sible NP scenarios such as models with ex-
tended Higgs sectors and supersymmetry [25,
30]. Measurements of the branching fraction of
B — Xy (B — Xg47) from the first generation
of B factories have been combined [31] to give
a precision of about 4% (30%). These averages
are in very good agreement with the SM predic-
tions which are calculated to around 7% preci-
sion [24]. With Belle II, the single experiment
precision for B — X,y measured with a semi-
leptonic tag is expected to quickly overtake the
the combination, and should be known to less

than 3% uncertainty. The full precision is ex-
pected to reach percent-level. For B — Xy,
the precision will be improved to around 15%
with 50 ab~!. In the case of Xy this improve-
ment is due both to a larger data sample, and
to the upgraded particle identification system
which will aid discrimination against the large
background from B — X, processes (namely
where a kaon track is misidentified as a pion).

It is also possible to construct the CP-
asymmetry, defined in general as:

I'[B— f]-T[B— f]
L[B— f]|+T[B—f]

Acp =

where I' is the partial width for any decay of a
B meson to a final state f, as well as the isospin
asymmetry, defined as:

I [BY — f°] =T [B* — f*]
I'[BY — fO]+T'[B* — f*]°

A0+ =

Another related observable is the difference of
CP-violation between the charged and neutral
B meson decays:

AAcp = Acp [B* — f*] — Acp [B® — f°].

These observables can be defined for an in-



S. Cunliffe - Prospects for rare B decays at Belle II

Parent Tagging Belle IT FEI  Belle MC Belle IT FEI ~ Belle

Bt Hadronic 0.61% 0.49% 0.28%
Semi-leptonic  1.45% 1.42% 0.67%

5O Hadronic 0.34% 0.33% 0.18%
Semi-leptonic  1.25% 1.33% 0.63%

Table 1: Tagging efficiencies for Belle II FEI algorithms determined with simulation of the Belle II and
Belle detectors and the original Belle efficiency evaluated on data. Taken from [27,29].

clusive decay, such as B — X7 as,

r [B — XS’)/] —T'[B — X&)
I'[B— Xy +T[B— X
I'[B° = X] —T[B* = X,1]
['[BY —» XA] + ' [B¥ - X,4]"

Acp =

A0+ =

AACP = Acp [Bi — X;t’}/] — Acp [BO — Xg")/] .

In all cases, the flavour and CP state of the
parent B is determined from the tag.

Such observables have reduced experimental
systematic effects, as well as reduced theoretical
uncertainty from hadronic form-factors. Exper-
imental measurements are therefore more pre-
cise than the branching fractions, for example
Acp and Agy for B — X,y are both around
2% [32,33], for B — X4 they are around 30%.
With 50 ab—! at Belle II, measurements are ex-
pected to reach sub-percent-level precision for
Acp and Agy in B — X7y, and around percent
level precision for B — Xgy. Figure 6 shows
the precision on Acp and AAcp as a function
of integrated luminosity collected at the 7°(45)
resonance.

6.2. Lepton (non) universality and inclu-
sive b — s(ete™, pTu™)

Recent experimental tests of lepton universality
in b — s¢*¢~ decays have shown deviation from
the SM predictions [1,2]. Deviations are not too
far from statistical significance and are there-
fore the source of much discussion within the
community [5-8]. In addition to these measure-
ments a somewhat longstanding discrepancy
in the angular analysis of B® — K*0u*tpu= [3]
has been explored for both B — K*ete™ and
B — K*utu~ by Belle [4].

In global fits to the Wilson coefficients [6-8],
these discrepancies prefer a non-zero CYF. In
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Figure 6: Sensitivity to Acp and AAcp in
B — X, ayy decays. To appear in [29].

terms of NP interpretations, models with an ex-
tended electroweak sector, such as a new vector
boson Z’, have been suggested. There has been
some debate in the theory community about
possible non-NP explanations for these devia-
tions, such as underestimated hadronic uncer-
tainty, or an underestimated contribution from
high-order diagrams involving charm quarks in
the b — sp™pu~ transition [34].

References [1, 2] present the measurement
of lepton universality ratios conventionally de-
fined,

B [B — KMy ;f]
B[B— K®ete]’

RK(*) =

where B is the branching fraction. In
the SM these ratios are predicted to be
very close to unity within the region of the
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squared invariant mass of the lepton pair,
1 < ¢* <6 GeV?/c* [35]. Belle IT will not over-
take the precision of these measurements but
will perform an independent verification. With
approximately 10 ab~! (3 ab~!) Belle II will
reach the current precision of Rg (Rg+). How-
ever an analogous definition in terms of the in-
clusive decays,

_ B[B — XutpT]

Rx. =3 [B— X,ete ]’ (1)

can be made. Such an observable would be chal-
lenging for LHCb, but could be measured with
percent-level precision at Belle IT as shown in
Figure 7.

It is also possible to measure the differen-
tial branching fraction (dB/dq¢?), Acp, and per-
form an angular analysis for these inclusive
B — Xete™ and B — XpuTu~ decays. In con-
trast to the angular analysis of the exclusive
B — K*utpu~ decay with many observables, in
an inclusive angular analysis it is only possible
to measure the forward-backward asymmetry of
the leptons (App). Current precision [36-38] is
around 30% for dB/dq?, and 20% for Arpp and
Acp. Belle IT will reach a precision of around
7% for dB/dg? and 2 — 3% for App and Acp.
Figures 8 and 9 show the sensitivity for the for-
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Figure 8: Sensitivity to the differential branching
fraction (dB/dq?) in B — X0~ de-
cays, for three regions of squared invari-
ant mass of the lepton (€ = e, p) pair.
To appear in [29].

mer two of these observables.

6.3. b — svv

Assuming that the B — K*vv decay occurs at
the rates predicted by the SM [39, 40],

B[BT — Ktvi| = (4.7+0.6) x 10°%
B[B® — K*vp| = (9.5 £1.1) x 10°,

Belle IT will observe the process and measure
the branching fraction with 10 — 11% uncer-
tainty in 50 ab~!. This decay mode is of similar
interest to B® — K*%u* ™~ in terms of sensi-
tivity to Cé\ffo, however probing B — K*vv de-
cays also provides orthogonal information. For
B — K*v, the factorisation of hadronic effects
is exact (since neutrinos are electrically neutral)
and could be used to extract B — K hadronic
form-factors to high accuracy [29]. It is also
possible that B — K*vv can provide model-
dependent information to disentangle possible
NP effects behind the current anomalies [39].
Experimentally, it is possible to use full event
reconstruction and construct the sum of the
missing energy and missing momentum in the
ete™ centre-of-momentum frame. The distri-
bution of this variable is shown in Figure 10.
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Such a variable is promising for separating sig-
nal from background, either for a counting anal-
ysis or as the independent variable in a maxi-
mum likelihood fit. Assuming observation at
Belle II, it should also be possible to measure
fraction of longitudinal polarisation of the K*
in B — K*vv to around 20% precision.

6.4. b — (s,d)tt7~

Decays with the b — (s,d)77 7~ transition are
thus-far unobserved. Current experimental lim-
its [41,42] are of the order of 1073 which is
rather far from the SM predictions [43,44] of,

B[B] = 7Fr7] = (7.73+£0.49) x 107";
B[B® — rT77] = (2.22£0.19) x 1075
B[BT — Ktrtr7] = (1.22+0.10) x 107 ".

Assuming these SM branching fractions,
Belle II will be able to set limits of around 106
and 107° for B® — 7t7~ and Bt — Ktrt7~
respectively. The sensitivity to B; — 777~ de-
cays is highly dependent on SuperKEKB run-
ning at the 7°(5S5) resonance, which has not yet
been finalised.

Belle Il
simulation

1 signal

Events (arbitrary scale)

1 2 3 4 5 6
Emiss+cpmiss [GeV]

Figure 10: The distribution of the missing energy
and missing momentum in the centre-
of-momentum frame for B — K*vu
signal decays (red) and various back-
ground categories (solid colour stack
by cross-section). To appear in [29].

7. Conclusions

The Belle II experiment at SuperKEKB will
collect first collisions commissioning data in
2018. Full-detector physics data are expected
in 2019. At time of writing, the Belle IT detec-
tor has been rolled into the collision point at
SuperKEKB and is taking cosmic ray commis-
sioning data.

Rare radiative and electroweak penguin pro-
cesses have recently shown deviations from SM
predictions, and form an integral part of the
Belle IT physics program. Belle IT will have ac-
cess to several decay modes that are challenging
at the LHCb experiment, such as B — K*vv
and inclusive decays. Belle II will provide
independent verification of the deviations ob-
served by LHCb, such as lepton universality in
B — K*(eTe™, uTu~) decays.
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