Measurement of the CKM angle ϕ_3 using $B \rightarrow DK$ at Belle II

M. Kumar^{1*}, K. Lalwani¹, K. Trabelsi², K. Prasanth³ (On behalf of the Belle II Collaboration)

Malaviya National Institute of Technology Jaipur, INDIA¹, High Energy Accelerator Research Organization (KEK), Tsukuba, JAPAN², Tata Institute of Fundamental Research, Mumbai, INDIA³

Abstract We present the preliminary Monte Carlo (MC) study of the $B^{\pm} \to D^0(K_S^0\pi^+\pi^-)K^{\pm}$ to extract ϕ_3 at the Belle II along. We discuss here the improvement in ϕ_3 measurement one may expect at Belle II with 50 ab⁻¹. We also present preliminary reconstruction of the K_S^0 and $D^0 \to K_S^0\pi^+\pi^-$ using the Phase II data and compared with MC.

1 Introduction

The CKM angle ϕ_3 is one of the least well constrained parameters of the Unitarity Triangle [1, 2]. The precise measurement of ϕ_3 is highly desirable to scrutinise the consistency of the Standard Model and to detect presence of new physics. The measurement that currently dominates sensitivity to ϕ_3 uses $B^{\pm} \to DK^{\pm}$ decays with the neutral D mesons decaying to different final states such as KK, $K\pi$, $K_S^0\pi^+\pi^-$ etc. As the sensitivity of ϕ_3 comes from the interference of $b \to c\bar{u}s$ and $b \to u\bar{c}s$,

Fig. 1: Feynman diagram for $B^- \to D^0 K^-$ (left) and $B^- \to \overline{D}^0 K^-$ (right) [3].

therefore, measurement of ϕ_3 is performed by exploiting the difference between $K_S^0\pi^+\pi^-$ Dalitz plots for D mesons from B^+ and B^- decay. The measurement of

1

^{*} e-mail: 2016rpy9052@mnit.ac.in

2 M. Kumar et al.,

 ϕ_3 from $B^\pm \to D^0 K^\pm$ and $B^\pm \to \overline{D}^0 K^\pm$ decays is theoretically clean as they occur at the tree level (Fig. 1). Various methods [4, 5] for extracting ϕ_3 have been proposed, from which the Dalitz plot analysis method [6] is one of the novel methods to measure the ϕ_3 . There have been many efforts by BaBar, Belle and LHCb collaborations to measure this angle but due to the small data samples so far produced, ϕ_3 is poorly determined. Therefore, an independent measurement with high statis-

Sr. No.	Experiment	Measurement of ϕ_3
1	Belle	$\left(73^{+13}_{-15}\right)^{\circ}$ [7]
2	BaBar	$\left(69^{+17}_{-16}\right)^{\circ}$ [8]
3	LHCb	$\left(74^{+5.0}_{-5.8}\right)^{\circ}$ [9]

Table 1: Previous results for the measurement of ϕ_3 .

tics is required to measure ϕ_3 , as the measurement is dominated by the statistical uncertainty. In this work, we present the preliminary MC study of $B^\pm \to D^0 K^\pm$ to extract ϕ_3 using the 50 ab⁻¹ data to be accumulated by the Belle II detector. The Belle II [10] experiment at the SuperKEKB asymmetric e⁺e⁻ collider [11], will accumulate the collision data at an unprecedented instantaneous luminosity of 8 \times 10³⁵ cm⁻²s⁻¹, which is 40 times larger than preceding experiment, Belle. Fig. 2 shows how the expected uncertainty on ϕ_3 scale with luminosity based on toy Monte Carlo studies. It shows that the expected uncertainty with an integrated 50 ab⁻¹ is approximately 3°. In addition, Belle II will also have a better particle iden-

Fig. 2: The distribution shows the expected uncertanity versus luminosity on ϕ_3 [12].

tification with the Central Drift Chamber (CDC), Time of Propagation (TOP) and the Aerogel Ring Imaging Cherenkov Counter (ARICH), which is functioning in different momentum ranges [10]. Due to larger acceptance of the detector, an improved reconstruction efficiency of K_S^0 is anticipated. Recently, Belle II successfully

completed its Phase II and collected 478 pb $^{-1}$. Here, Phase II data is incorporating single ladder per layer of the vertex detector and all other subdetectors. However, when the poster was shown, available data was 250 pb $^{-1}$. Therefore, the plots here are with 250 pb $^{-1}$.

2 Preliminary results from Phase II data

The analysis begins with the reconstruction of K_S^0 from the two charged tracks of π^+ and π^- . The invariant mass of K_S^0 is shown in Fig. 3 (left) with MC samples

Fig. 3: Invariant mass of K_S^0 with MC (left) and data (right).

collected at integrated luminosity 1 ${\rm fb^{-1}}$ and with Phase II data shown in Fig. 3 (right). Here, black points are data and red line is fitting. As can be seen from the

Fig. 4: Invariant mass (left) and ΔM (right) for D^* tagged mode $D^0 \to K_S^0 \pi^+ \pi^-$ shown with Phase II data.

figure, the invariant mass resolution shows the good aggreement between data and

M. Kumar *et al.*,

MC. Further, the D^0 is reconstructed from one K^0_S and two charged tracks of π^+ and π^- followed by the inclusive decay of $D^{*\pm} \to D^0(K^0_S\pi^+\pi^-)\pi^\pm$. Invariant mass of D^0 is shown in Fig. 4 (left) and ΔM is shown in Fig. 4 (right). Here, ΔM is the mass difference between the $D^{*\pm}$ and D candidates. The reconstruction of B meson is in progress by using the two important variables, energy difference, $\Delta E = \sum E_i - E_{beam}$ and the beam constrained mass, $M_{bc} = \sqrt{(E_{beam})^2 - \sum (\overrightarrow{p_i})^2}$, where E_{beam} is the center-of-mass (CM) beam energy, E_i and p_i are the CM energies and momenta of B candidates decay product.

3 Summary

4

The large statistics with Belle II at SuperKEKB will provide a substantial improvement in the precision of ϕ_3 with the full 50 ab⁻¹ data sample. Extrapolated results are expected to provide a more precise measurement of the CKM angle ϕ_3 at integrated luminosity 50 ab⁻¹. Invariant masses of K_S^0 and D^0 are reconstructed and compared with MC and Phase II data. The reconstruction of B meson is in progress.

References

- 1. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- 2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- 3. J. Brodzicka et al., Physics achievements from the Belle experiment, PTEP 2012, 04D001.
- 4. Gronau, M., London, D., How to determine all the angles of the unitarity triangle from $B_d^0 \to DK_S$ and $B_s^0 \to D\phi$. Phys. Lett. B**253**, 483(1991); Gronau, M., Wyler, D., On determining a weak phase from charged *B* decay asymmetries. Phys. Lett. B**265**, 172(1991).
- 5. Atwood, D., Dunietz, I., and Soni, A., Enhanced CP Violation with $B \to KD^0(\overline{D}^0$ Modes and Extraction of the Cabibbo-Kobayashi-Maskawa Angle γ . Phys. Rev. Lett. **78**, 3257(1997).
- 6. H. Aihara, K. Arinstein *et al.*, First Measurement of ϕ_3 with a Model- independent Dalitz Plot Analysis of $B^\pm \to DK^\pm$, $D \to K_S^0 \pi^+ \pi^-$ Decay, Phys. Rev. D **85**, 112014 (20 12).
- 7. Karim Trabelsi, World average and experimental overview of ϕ_3 , CKM CONF 2014.
- 8. J. P. Lees et al., (The BaBar Collaboration), Phys. Rev. D 87 052015 (2013).
- 9. The LHCb Collaboration, CERN-LHCb-CONF-2018-002.
- 10. T. Abe et al., Belle II Technical Design Report (2010), [arXiv:1011.0352].
- Golob B, (The Belle II Collaboration), Super KEKB / Belle II Project, Nuovo Cim. C33 319-326 (2010).
- 12. Emi Kou et al., (The Belle II Collaboration), The Belle II Physics Book, PTEP 2018.