
p [GeV/c]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
uo

n
ef

fic
ie

nc
y

&
pi

on
 fa

ke
 ra

te
 x

 1
0

0

0.2

0.4

0.6

0.8

1

plab (GeV/c)

M
uo

n
id

en
tifi

ca
tio

n
ef

fic
ie

nc
y

(s
ol

id
 c

ur
ve

s)

Pi
on

 fa
ke

 ra
te

 x
 1

0
(d

as
he

d
cu

rv
es

)

ln(Lµ/Lπ) > 0
ln(Lµ/Lπ) > 10
ln(Lµ/Lπ) > 20

Muon identification and hadron mis-ID:

Track–cluster matching in the calorimeter:

extra
polated tra

ck

from e+e– interaction point (IP)

ECLCluster’s sphere
(centred on IP)

ECLDL

ECLNEAR
ECLCROSS

ECLCluster

Calorimeter (ECL)

 2 2

7.4 m

Particle
Identification

µ and KL Counter

5.0 m

Calorimeter

Vertex Detector

Tracking Chamber

Track Extrapolation and Muon Identification
with GEANT4e in Belle II Event Reconstruction
Leo Piilonen, Virginia Tech (for the Belle II Collaboration’s Software Group)

The Belle II experiment at the SuperKEKB colliding-beam
e+ e– accelerator in Tsukuba, Japan, studies the behaviour and
symmetry properties of heavy quarks and leptons.

Two basf2 event-reconstruction modules for particle ID using GEANT4E
 • ext
 – extrapolates each reconstructed charged track outward
 – assumes 6 particle-type hypotheses (e, µ, π, K, p, d) per track
 – records crossings at each GEANT4 sensitive-volume boundary
 – records time, position, momentum, phase-space covariance matrix

User-defined module chain

Module
#1

Module
#2

Module
#3

Module
#N

. . .

ROOT-based data store

basf2 path

The Belle II analysis software framework basf2
has a modular design with Python steering of on-demand dynamically-
loaded C++ modules and event-based parallel-processing capability.

• muid
– extrapolates each track through the KL–muon detector (KLM)
– assumes only the muon hypothesis
– applies a Kalman filter at each layer crossing; adjusts the
 extrapolated-track properties based on matching-hit location
– assigns particle-identification likelihood based on KLM’s
 measured-vs-extrapolated range + transverse scattering

GEANT4 and GEANT4E coexistence in basf2

During GEANT4 simulation, G4SteppingManager calls
user code to process steps through “sensitive”
detector volumes and record the hits therein.
During GEANT4E extrapolation, our custom version of
StepLengthLimitProcess() disables this behaviour:

G4ParticleChange aParticleChange;

G4VParticleChange*
 ExtStepLengthLimitProcess::PostStepDoIt(const G4Track& track,
 const G4Step&)
{
 aParticleChange.Initialize(track);
 aParticleChange.ProposeSteppingControl(AvoidHitInvocation);
 return &aParticleChange;
}

Avoid the special G4ErrorPropagationNavigator in GEANT4E.
Instead, use the standard G4Navigator defined in GEANT4.

GEANT4E requires a target surface (G4ErrorCylSurfaceTarget
is an infinite-length cylinder). After each GEANT4E step,
G4ErrorPropagationNavigator would have checked if track
crossed this surface. Our steering code does this check.
Our custom version of G4ErrorCylSurfaceTarget is a closed
finite-length cylinder that includes the endcap surfaces.

The distributed MagFieldLimitProcess in GEANT4E
assumes that the magnetic field is along the z axis. Our
custom MagFieldLimitProcess removes this assumption.

The distributed G4EnergyLossForExtrapolator defines
energy-loss processes for electrons and positrons only.
Our custom G4EnergyLossForExtrapolator extends these
processes to , , K, p and d (and their anti-particles).

Track 2
Data Analysis –
Algorithms & Tools

GEANT4E, as distributed, cannot be used with GEANT4:
incompatible particle lists
incompatible physics processes
conflicting usage of sensitive-detector geometry
distinct states when calling RunManager
distinct step-by-step Navigators
incompatible user actions (SteppingAction etc)

We have resolved these issues and limitations. All of our
modifications are done outside the geant4(e) code base.

GEANT4E, as distributed, is limited:
propagates only electrons, positrons and photons

The standard GEANT4E PhysicsList defines only three
particles (gamma e+ e–) … and these are not
compatible with geant4 usage during simulation
Our modified ConstructParticle() defines the geant4
standard particles:
 gamma e+ e– mu+ mu– pi+ pi– pi0 kaon+
 kaon– kaon0 kaon0L kaon0S proton anti_proton
 neutron anti_neutron geantino chargedgeantino
 opticalphoton etc
plus geant4e–specific particles (all with PIDcode = 0)

 g4e_gamma g4e_e+ g4e_e– g4e_mu+ g4e_mu–
 g4e_pi+ g4e_pi– g4e_kaon+ g4e_kaon– g4e_proton
 g4e_antiproton g4e_deuteron g4e_antideuteron

