

Track Extrapolation and Muon Identification with GEANT4e in Belle II Event Reconstruction

Leo Piilonen, Virginia Tech (for the Belle II Collaboration's Software Group)

Track 2 Data Analysis – Algorithms & Tools

The Belle II experiment at the SuperKEKB colliding-beam e⁺ e⁻ accelerator in Tsukuba, Japan, studies the behaviour and symmetry properties of heavy quarks and leptons.

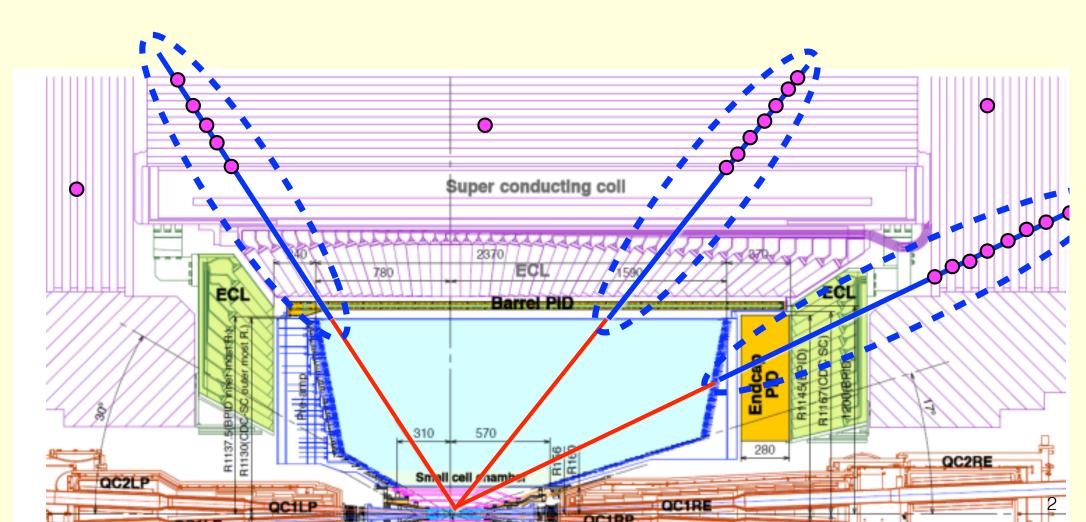
The Belle II analysis software framework basf2

has a modular design with Python steering of on-demand dynamicallyloaded C++ modules and event-based parallel-processing capability.

User-defined module chain basf2 path Module Module Module Module **ROOT-based data store**

 μ and K, Counter Calorimeter' 5.0 m **Vertex Detector** Particle Identification Tracking Chamber **GEANT4E:** Error propagation for track reconstruction inside the GEANT4 framework Pedro Arce (CIEMAT)

7.4 m


Two basf2 event-reconstruction modules for particle ID using GEANT4E

- ext
- extrapolates each reconstructed charged track outward
- assumes 6 particle-type hypotheses (e, μ , π , K, p, d) per track
- records crossings at each GEANT4 sensitive-volume boundary
- records time, position, momentum, phase-space covariance matrix

Super conducting coll

muid

- extrapolates each track through the K_L –muon detector (KLM)
- assumes only the muon hypothesis
- applies a Kalman filter at each layer crossing; adjusts the extrapolated-track properties based on matching-hit location
- assigns particle-identification likelihood based on KLM's measured-vs-extrapolated range + transverse scattering

GEANT4 and **GEANT4E** coexistence in basf2

GEANT4E, as distributed, cannot be used with GEANT4:

- ☑ incompatible particle lists
- ☑ incompatible physics processes
- ☑ conflicting usage of sensitive-detector geometry
- ☑ distinct states when calling RunManager
- ☑ distinct step-by-step Navigators
- ☑ incompatible user actions (SteppingAction etc)

GEANT4E, as distributed, is limited:

☑ propagates only electrons, positrons and photons

We have resolved these issues and limitations. All of our modifications are done <u>outside</u> the **geant4(e)** code base.

☑ The standard GEANT4E PhysicsList defines only three particles (gamma e+ e-) ... and these are not compatible with geant4 usage during simulation

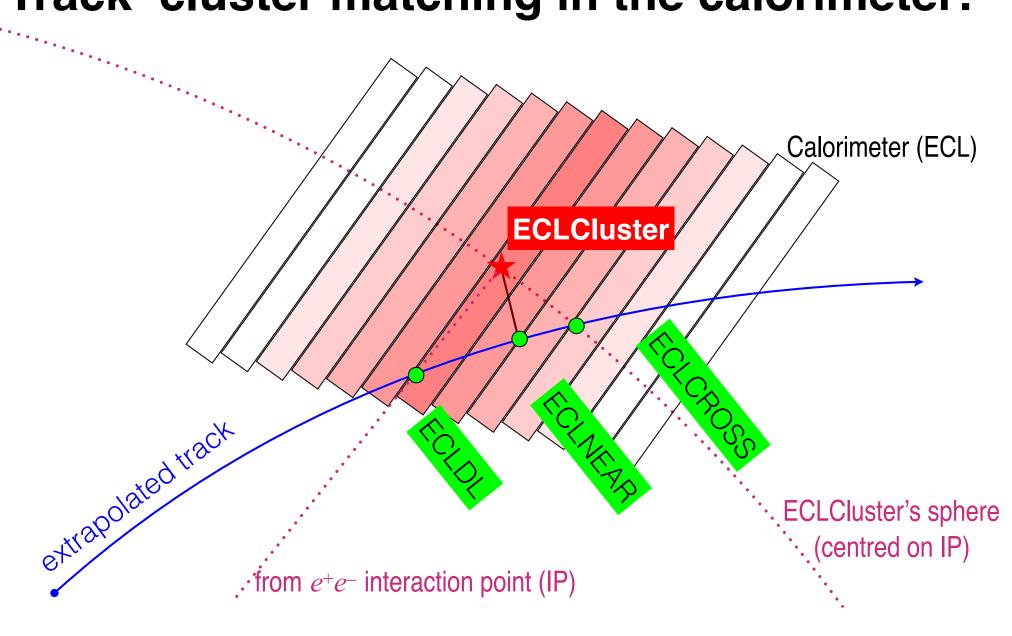
Our modified ConstructParticle() defines the geant4 standard particles:

gamma e+ e- mu+ mu- pi+ pi- piO kaon+ kaonO kaonOL kaonOS proton anti_proton neutron anti_neutron geantino chargedgeantino opticalphoton etc

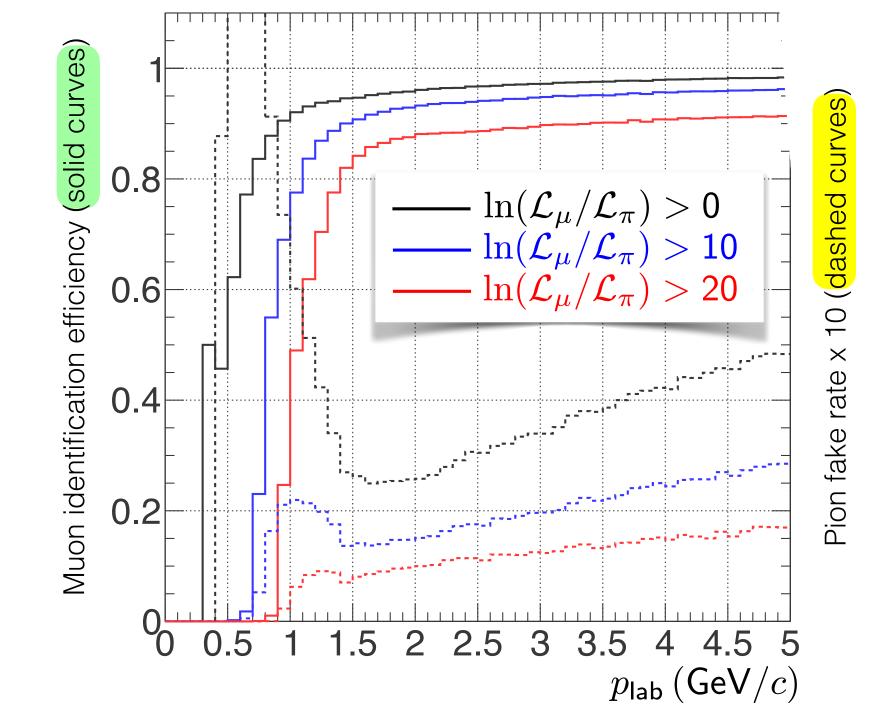
plus geant4e—specific particles (all with PIDcode = 0)

g4e_gamma g4e_e+ g4e_e- g4e_mu+ g4e_mug4e_pi+ g4e_pi- g4e_kaon+ g4e_kaon- g4e_proton g4e_antiproton g4e_deuteron g4e_antideuteron

- ☑ The distributed G4EnergyLossForExtrapolator defines energy-loss processes for electrons and positrons only. Our custom G4EnergyLossForExtrapolator extends these processes to μ , π , K, p and d (and their anti-particles).
- ☑ During GEANT4 simulation, G4SteppingManager calls user code to process steps through "sensitive" detector volumes and record the hits therein.


During GEANT4E extrapolation, our custom version of StepLengthLimitProcess() disables this behaviour:

G4ParticleChange aParticleChange; G4VParticleChange* ExtStepLengthLimitProcess::PostStepDoIt(const G4Track& track, const G4Step&) aParticleChange.Initialize(track); aParticleChange.ProposeSteppingControl(AvoidHitInvocation return & a Particle Change;


- ☑ Avoid the special G4ErrorPropagationNavigator in GEANT4E. Instead, use the standard G4Navigator defined in GEANT4.
- ☑ GEANT4E requires a <u>target surface</u> (G4ErrorCylSurfaceTarget) is an infinite-length cylinder). After each GEANT4E step, G4ErrorPropagationNavigator would have checked if track crossed this surface. Our steering code does this check.
- ☑ Our custom version of G4ErrorCylSurfaceTarget is a closed finite-length cylinder that includes the endcap surfaces.
- ☑ The distributed MagFieldLimitProcess in GEANT4E assumes that the magnetic field is along the z axis. Our custom MagFieldLimitProcess removes this assumption.

Track-cluster matching in the calorimeter:

CHEP 2006, Mumbai, 13-17th February 2006

Muon identification and hadron mis-ID:

