

T. Browder (University of Hawaii)

- A few comments on physics motivation
- SuperKEKB Accelerator
- Belle II Detector (a few highlights)
- Schedule

Many thanks to Akai-san for SuperKEKB slides and Phil Urquijo for physics performance slides and many other Belle II collaborators.

2008:

Critical Role of the B factories in the verification of the KM hypothesis was recognized and cited by the Nobel Foundation

A single irreducible phase in the weak interaction matrix accounts for most of the CPV observed in kaons and B's.

CP violating effects in the B sector are O(1) rather than O(10⁻³) as in the kaon system.

Nobel Prizes from Surprising Discoveries about

Weak Interactions of Quarks

T.D. Lee

C.N. Yang

Maximal P violation

Small CP

violation

J. Cronin

V. Fitch

T. Maskawa

O(1) CP violation and 3 generations

1957

1980

2008

M. Kobayashi

Are we done? (Didn't the B factories accomplish their mission, recognized by the 2008 Nobel Prize in Physics?)

BAU: KM (Kobayashi-Maskawa) mechanism still short by 10 orders of magnitude !!!

Me Soldmon memepatype als Becennin comia myse ho ex kondon querype

НАРУШЕНИЕ СР-ИНВАРИАНТНОСТИ, С-АСИММЕТРИЯ И БАРИОННАЯ АСИММЕТРИЯ ВСЕЛЕННОЙ

A. H. Cazanos

Теория расширяющейся Вселенной, предполагающая сверхилотное начальное состояние вещества, по-видимому, исключает возможность макроскопического разделения вещества и антивещества; поэтому следует New physics amplitudes 10-20% the size of the Standard Model contributions allowed by data

Belle II/SuperKEKB Motivation

As extensively discussed at this conference SuperKEKB/Belle II is *the <u>new intensity frontier</u> facility* for B mesons, charm mesons and tau leptons.

Unique new physics capabilities and unique detector capabilities ("single B meson beam", neutrals, neutrinos), clean environment with good systematics, which are critical for the next round of NP searches e.g. charged Higgs.)

Photo credit: R. Lipton

Upgrade The KEKB Collider

(Tsukuba, Japan)

8 x 3.5 GeV 22 mrad crossing angle

World record:

 $L = 2.1 \times 10^{34} / \text{cm}^2 / \text{sec}$

SuperKEKB luminosity projection

Belle/KEKB recorded ~1000 fb⁻¹. Now change units to ab⁻¹

SuperKEKB is the e+e- intensity frontier

Compare the Parameters for KEKB and SuperKEKB

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
β_y^* (mm)	10/10	5.9/5.9	0.27/0.30
β_{x}^{*} (mm)	330/330	1200/1200	32/25
ε_{x} (nm)	18/18	18/24	3.2/5.3
$\varepsilon_{y}/\varepsilon_{x}$ (%)	1	0.85/0.64	0.27/0.24
$σ_y$ (μm)	1.9	0.94	0.048/0.062
ξγ	0.052	0.129/0.090	0.09/0.081
σ_{z} (mm)	4	6 - 7	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80

Nano-beams are the key (vertical spot size is ~ 50 nm !!)

Colliding bunches

New superconducting final focusing magnets near the IP

e- 2.6A

e+ 3.6A

Redesign the lattice to reduce the emittance (replace short dipoles with longer ones, increase wiggler cycles)

Replace beam pipes with TiN-coated beam pipes with antechambers

KEKB to SuperKEKB

- ◆Nano-Beam scheme extremely small β_{v}^{*} low emittance
- ◆Beam current X 2

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right)$$

40 times higher luminosity $2.1 \times 10^{34} --> 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

DR tunnel

Reinforce RF systems for higher beam currents

Improve monitors and control system

Injector Linac upgrade

Upgrade positron capture section

Low emittance RF electron gun

New e+ Damping Ring

New Damping Ring for positrons

The new LER (with antechambers and TiN coating)

Ti-N beampipe coating and baking facility in the Oho Hall

Photoelectrons in the LER blow up the beam size and were a persistent problem at the B factories. A new LER section installed

Before 2013

Tsukuba straight section

電磁石搬入・据え付けは来年度から 一部の電磁石は新規製作予定

Done

- Dismantling all magnets, beam pipes, cables, etc.
- Belle rotation, roll-out
- Installation of magnets (except close to IP)

On going 2014

- Beam pipe fabrication
- Magnets close to the IP being fabricated
- Cabling and piping
- Floor modification and moveable stage
- Radiation shielding

Superconducting IR Magnets

- Fabrication of QC1/QC2 magnets and cryostats in Mitsubishi
- Fabrication of SC corrector coils by Brookhaven National Lab (BNL)
- Excitation tests and field measurements underway

QC1LE correctors coils at BNL, November 2013

Collaring work in Mitsubishi

Completed collared QC1LP magnet and SC coils for QC1RP

SuperKEKB master schedule

SuperKEKB: Two Commissioning Phases

Phase 1: >Jan 2015
Vacuum scrubbing of beam pipe.
No QCS. No collisions. Belle will not roll-in.

Phase 2: > Feb 2016 Belle rolled in. No VXD detectors.

BEAST II Background commissioning experiment to measure bkgs, check simulation and determine if Belle II vertex detectors will be safe.

Belle II Detector Requirements

Build a full-capability magnetic spectrometer with excellent vertexing, tracking, PID, neutral and hermeticity capabilities

Belle I tags

Performance must be preserved when beam-related backgrounds are 10-20 times larger than in Belle. Such backgrounds are associated with Super B factory level luminosity.

Reuse as much of Belle as possible. Introduce new technological developments (pixel vertex detectors, pixelated photosensors, "oscilloscope on a chip" electronics etc.)

Belle II: A Truly International Team

599 Collaborators, 97 institutes, 23 countries

Belle II Detector

In e+e- scattering at 10-11 GeV, a critical issue for vertexing is multiple scattering.

Belle: r(beampipe) $2 \text{ cm} \rightarrow 1.5 \text{ cm}$

Belle II: r(beampipe) 1cm

Improved resolution and nano-beams will open new possibilities for vertex analysis

$$\sigma = a + \frac{b}{p\beta \sin^{\nu} \theta}$$

Beampipe r=10 mm

DEPFET pixels

Layer 1 r=14 mm

Layer 2 r=22 mm

DSSD (double sided silicon detectors)

Layer 3 r=38 mm (Australia)

Layer 4 r=80 mm (India)

+Italy

Layer 5 r=115 mm (Austria)

Layer 6 r=140 mm (Japan)

Significant improvement in $\Delta S(K_S\pi^0\gamma)$

B decay point reconstruction Using the K_S trajectory

Pixel Detector

Mechanical mockup of pixel detector

DEPFET pixel sensor

DEPFET:

http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

DEpleted P-channel FET

Cluster 5x5 (Mod10)(RunNo6615)

DEPFET sensor: very good S/N

Exploded view of an SVD detector

http://www.hep.ph.ic.ac.uk/cms/tracker/apv2 chip.html • Longest ladder type (L6) APV25 chips Origami flexes PCB Hybrid Airex spacer FWD End Mount Silicon Sensors PCB Hybrid Ribs Pitch adapters - BWD End Mount 23

Mechanical Set-up Belle II **PXD** PXD6 Layer 1 cmarinas@uni-bonn.de

Event display with EUDET Mimosa pixels, Belle II SVD and PXD modules

To reduce the Gbit/s data volume from pixels, read out only Regions Of Interest (ROI)'s from projected SVD track segments.

✓ SVD ROI (region of interest) finding in the PXD at the DESY beam test (plot from Jan 30, 2014)

Belle II Central Drift Chamber(CDC)

Wire Configuration

Longer lever arm than in Belle!

Wire stringing in a clean room in Fuji Hall

✓ CDC wire stringing is done (~51k wires done)

CDC viewed from the backward side

Expected performance using Kalman filter and GEANT4 simulation

PID: Principle of operation of iTOP detector

Shown below is a GEANT4 event display of a 2 GeV pion and kaon interacting in a TOP quartz bar.

Tight tolerances on the quality of the quartz bars and optical components.

16 bar modules arranged in a "roman arch"

Kaons vs pions: Integrated MC distributions

Channel Vs. time for 3GeV pions/kaons with beam test setup

At 3 GeV, the upper end of the interesting physics range, only modest differences between kaons and pions in the x vs t distributions. *Timing at the ~100* ps level is needed.

Belle II Jargon

TOP=Time Of Propagation

M. Barrett

Pixelated PMTs measure time and position of single photons

512 Hamamatsu 4 x 4 MCP-PMT needed

NaKSbCs photocathode
Typical
QE~28% at 380 nm

TTS 45 ps with a long

Electronics based on IRSnn "oscilloscope on a chip" electronics

Detector subsystem of Japan, US, Slovenia and Italy.

Expanded view of the readout

Passed CD1 in 2012

Proceeding to a US DOE CD2-3 (Critical Decision 2-3) review, scheduled for March 19-20 at PNNL

TOP optics are arriving

 Optics are coming in meeting specs and on or near vendor promised delivery dates (except for bars from Aperture/Okamoto)

TOP impact on Rare b \rightarrow d Penguins: B $\rightarrow \rho \gamma$, K* γ

35

Rare white penguin, observed in a 2012 expedition

The B \rightarrow K* γ (b \rightarrow s) penguin (turquoise) is ~30X more abundant than B \rightarrow $\rho\gamma$ (red). Belle II's *improved* detector PID and statistics solve this problem (c.f. Nishida-san)

Cherenkov rings in the forward endcap

To distinguish kaons and pions in the forward endcap, use an aerogel RICH.

- PID in forward endcap.
- Two-layer aerogel as radiator
- 420 of 144-channel Hybrid Avalanche Photo Detector (HAPD).

Verification of aerogel ring imaging Cerenkov counter performance in beam tests

Increases the number of photons without degrading the resolution

Data

4cm aerogel single index

2+2cm aerogel

New ECL Readout Electronics Status

Waveform sampling to compensate for the larger beam-related backgrounds and the long decay time of CsI(Tl) signals.

Expected performance iof CsI(Tl) system in GEANT4 simulation

ECL electronics upgrade and cabling to be installed in spring 2014

Detection of muons and KLs: Endcap RPCs and two layers of the barrel have to be replaced with scintillators to handle higher backgrounds (mainly from neutrons).

EKLM assembly by ITEP team at KEK

Expect completion by late spring 2014

BKLM (barrel KLM - two inner layers) installation completed

Virginia Tech crew

First new Belle II detector subsystem installed.

Looking forward to EKLM (endcap K_L -muon) installation in the next few months

Hardware Resources for Belle II

SuperKEKB schedule

Conclusion

- Belle II detector construction and integration is proceeding according to schedule.
- SuperKEKB commissioning starts in Jan 2015
- The second phase of background commissioning with the Belle II outer detector takes place starts ~Feb 2016
- Belle II roll-ins in fall 2016 with first physics runs. This will inaugurate a new era of flavor physics.

Backup Slides

We are here.

Phase I: w/o QCS and Belle II Jan-May, 2015

Phase II:
with QCS and Belle II
w/o inner detector
Feb-June, 2016

Phase III:
Physics Run with full
Belle II

Starts Oct, 2016

Executive Board

Chair: H. Aihara aihara@phys.s.u-tokyo.ac.jp

D.M.Asner, T.Aziz, A.Bozek, P.Chang, T.lijima, P.Krizan, S.Lange, P.Lubrano, P.Podesta, M.Roney, C.Schwanda, M.Sevior, E.Won, C.Z.Yuan, K.Akai

Institutional Board

Chair: Z.Dolezal dolezal@ipnp.troja.mff.cuni.cz

Belle II Organization

Spokesperson: Thomas E. Browder

teb@phys.hawaii.edu

Project Manager: Yoshihide Sakai Yoshihide.Sakai@kek.jp

Financial Board

Chair: Y.Sakai

Yoshihide.Sakai@kek.jp

W.Abdullah, H.Aihara, D.Asner, R.Ayad, T.Aziz, A.Bozek, T.Browder, P.Chang, Z.Dolezal, F.Forti, P.Krizan, C.Lacasta, M.J.Martinez, H.G.Moser, C. Nieber, P. Pakhlov, A. Rekalo, M. Ronie, C. Schwanda, M. Sevior, C. P. Shen, U. Tippawan, 7. Tran, N. Wermes, E. Won, M. Zeyrek

Speakers Committee

Chair: A.Schwartz

alan.j.schwartz@uc.edu

T.lijima, I. Peruzzi, Y.Sakai, C.Schwanda

Computing

Physics Coordinator

: K.Trabelsi : P.Urquijo

karim.trabelsi@kek.jp Phillip.Urquijo@cern.ch

t-independent : B.R.Ko t-dependent : M.Staric Missing E: K.Hara Analysis Model: P.Urquijo

Technical Coordinator

: Y.Ushiroda

ushiroda@post.kek.jp

Integration Leaders : L Adachi (Outer) S. Tanaka (Inner)

PXO: H.G.Moser C.Kiesling

SVD: K. Hara

CDC: S.Uno TOP: J. Fast

ARICH: S. Nishida

S. Korpar **ECL**: A.Kuzmin

EKLM: P.Pakhlov

BKLM: L.Piilonen

TRG: Y.Iwasaki

DAQ: R.Itoh

STR: J.Haba

Thomas.Kuhr@kit.edu

Simulation: T.Hara

Software

Tracking: M.Heck, E.Paoloni

Database : M.Bracko

BKG: S. Vahsen

Coordinator Coordinator : T.Kuhr : T.Hara

takanori.hara@kek.jp

Data Transfer / Network : M. Schram

S. Tanaka (PXD) I. Adachi (BPID) I. Nakamura (ECL)

H.Nakayama

K. Sumisawa (BKLWEKLM)

A polarized electron beam can produce polarized τ pairs. A proposal was worked out for INFN SuperB.

Some basic requirements:

- (a)Polarized electron gun (like at SLC)
- (b) Operation at beam energies away from depolarizing resonances
- (c) Spin rotators to rotate the electron spin to the longitudinal direction at the IP. A machine lattice that avoids depolarizing effects from vertical bends and solenoids.

Not practical in initial operation of SuperKEKB (no space in straight sections). Upgrade may be possible (U. Wienands)

Slide adapated from D. Hitlin

Beamtest Experiment 2 Run 568 Event 1

Parameter	$B^0 o \pi^+\pi^-$	$B^0 o K^+\pi^-$	$B^0 o ho^0 \gamma$	$B^0 o K^{*0} \gamma$
Condition	Efficiency (%)	Fake rate (%)	Efficiency (%)	Fake rate (%)
Baseline Performance	90.4 ± 0.3	7.1 ± 0.3	96.7 ± 0.2	4.7 ± 0.3
t resolution (50ps)				
t_0 jitter (25ps)				
t resolution (100ps)	89.2 ± 0.3	9.1 ± 0.4	96.5 ± 0.2	5.3 ± 0.2
t resolution (150ps)	86.7 ± 0.3	11.9 ± 0.4	96.1 ± 0.2	5.8 ± 0.2
t_0 jitter (50ps)	88.8 ± 0.3	8.0 ± 0.4	96.3 ± 0.2	4.9 ± 0.2
t_0 jitter (100ps)	83.8 ± 0.3	14.4 ± 0.5	95.5 ± 0.2	7.4 ± 0.2
(t resolution=50 ps)				
1a. Photon yield \times 0.60	86.5 ± 0.3	9.3 ± 0.4	93.7 ± 0.2	6.57 ± 0.3
2a. $10 \times \text{background}$	90.4 ± 0.4	6.8 ± 0.3	97.4 ± 0.2	3.78 ± 0.3
3a. $\sigma_{\theta} = 6.0 \text{ mrad}$	82.9 ± 0.3	12.4 ± 0.4	95.9 ± 0.2	5.43 ± 0.3
4a. t_0 jitter = 50 ps	88.8 ± 0.3	8.0 ± 0.4	97.3 ± 0.2	3.89 ± 0.3
1a. + 2a.	86.2 ± 0.4	9.4 ± 0.4	93.7 ± 0.2	7.50 ± 0.3
3a. + 4a.	81.6 ± 0.3	14.3 ± 0.4	95.2 ± 0.2	6.41 ± 0.3

Luminosity Master Equation

Brute force: Increase beam currents by a factor of 5-10! Increase the beam-beam parameter by a factor of a few (crab cavities).

Too hard, too expensive (power, melt beam pipes)

SuperKEKB TDR parameters

		LER (e+)	HER (e-)	units
Beam Energy	\boldsymbol{E}	4	7	GeV
Half Crossing Angle	ϕ	41.5		mrad
Horizontal Emittance	ε_{x}	3.2(2.7)	2.4(2.3)	nm
Emittance ratio	$\varepsilon_y/\varepsilon_x$	0.40	0.35	%
Beta Function at the IP	β_x^*/β_y^*	32 / 0.27	25 / 0.41	mm
Horizontal Beam Size	σ_x^*	10.2(10.1)	7.75(7.58)	$\mu\mathrm{m}$
Vertical Beam Size	σ_y^*	59	59	nm
Betatron tune	ν_x/ν_y	45.530/45.570	58.529/52.570	
Momentum Compaction	α_c	2.74×10^{-4}	1.88×10^{-4}	
Energy Spread	$\sigma_{arepsilon}$	$8.14(7.96) \times 10^{-4}$	$6.49(6.34) \times 10^{-4}$	
Beam Current	I	3.60	2.62	A
Number of Bunches/ring	n_b	2503		
Energy Loss/turn	U_{o}	2.15	2.50	MeV
Total Cavity Voltage	V_c	8.4	6.7	MV
Synchrotron Tune	ν_s	-0.0213	-0.0117	
Bunch Length	σ_z	6.0(4.9)	5.0(4.9)	mm
Beam-Beam Parameter	ξ_y	0.0900	0.0875	
Luminosity	\tilde{L}	8×10^{35}		$\mathrm{cm^{-2}s^{-1}}$

Table 2.2: Machine Parameters of SuperKEKB. Values in parentheses denote parameters at zero beam currents.

Table of Belle II detector performance parameters

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	10 μ m Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0} \sim 20 \ \mu \mathrm{m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi} = 100 \ \mu \text{m}, \sigma_z = 2 \ \text{mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\%p_t)^2 + (0.3\%/\beta)^2}$
		$-83 \le z \le 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\%p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)
				$\sigma_{dE/dx} = 5\%$
TOP	RICH with	16 segments in ϕ at $r \sim 120$ cm	8 k	$N_{p.e.} \sim 20, \sigma_t = 40 \text{ps}$
	quartz radiator	275 cm long, 2 cm thick quartz bars		K/π separation :
		with 4x4 channel MCP PMTs		efficiency $> 99\%$ at $< 0.5\%$ pion
				fake prob. for $B \rightarrow \rho \gamma$ decays
ARICH	RICH with	4 cm thick focusing radiator	78 k	$N_{p.e.} \sim 13$
	aerogel radiator	and HAPD photodetectors		K/π separation at 4 GeV/c:
		for the forward end-cap		efficiency 96% at 1% pion fake prob.
ECL	CsI(T1)	Barrel: $\tau = 125 - 162 \text{ cm}$	6624	$\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{5/E} \oplus 1.2\%$
	(Towered structure)	End-cap: $z =$	1152 (F)	$\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$
		-102 cm and +196 cm	960 (B)	(E in GeV)
KLM	barrel: RPCs	14 layers (5 cm Fe $+$ 4 cm gap)	θ: 16 k, φ: 16 k	$\Delta \phi = \Delta \theta = 20 \text{ mradian for } K_L$
		2 RPCs in each gap		~ 1 % hadron fake for muons
	end-caps:	14 layers of $(7 - 10) \times 40 \text{ mm}^2 \text{ strips}$	17 k	$\Delta \phi = \Delta \theta = 10 \text{ mradian for } K_L$
	scintillator strips	read out with WLS and G-APDs		$\sigma_p/p = 18\%$ for 1 GeV/c K_L

Unique capability

In addition to excellent neutral detection from a crystal calorimeter, and good Cerenkov particle id, (Super) B-factories can fully reconstruct one B meson. This gives the equivalent of a "single B meson beam "

Major achievements at Belle (enabled by each succesive jump in luminosity)

How to make a Super Flavor Factory

Schematic view of beam collisions with a large, 83 mrad, crossing angle.

Kaon/Pion(s) in an iTOP GEANT4 simulation

New Interface for various fitting techniques (e.g.):

- Vertex fitting & Tag ve (with larger larger)

 New Interface for various fitting echniques (e.g.):

 GFRAVE vertexing: active vertex refitter (based on annealing).

 Full decay chain refitting & constraints for neutrals.

Vertex tagging prototype developed

Kaons vs pions: distributions in the iTOP

Channel Vs. time for 3GeV pions/kaons with beam test setup

Matt Barrett

LER Gate valve in West tunnel

Detection of muons and KLs: Endcap RPCs and two layers of the barrel have to be replaced with scintillators to handle higher backgrounds (mainly from neutrons).

