

Belle II experiment at SuperKEKB

Physics goals

- □ SuperKEKB accelerator
- Belle II detector
- Schedule

Maria Różańska, INP-PAN Kraków representing the Belle II Collaboration

XXII DIS Workshop, Warsaw , 28 April - 2 May 2014 Belle II @ SuperKEKB is a new facility at the intensity frontier for searches of physics beyond the stnadard model (new physics) with *B* mesons, charm mesons and τ leptons.

SuperKEKB – major upgrade of the KEKB *B* factory at KEK (Tsukuba)

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow \overline{B}B$

 $L = 8 \times 10^{35} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

 $E(e^+) = 4 \text{ GeV}, E(e^-) = 7 \text{ GeV}$

Belle II – upgraded Belle detector

to accumulate $L_{int} \approx 50 \text{ ab}^{-1}$ by 2022 55 billion BB pairs, 47 billion $\tau^+\tau^-$ pairs

Physics case

Belle II @ SuperKEKB

- Complementary to direct searches of NP at the energy frontier:
- Indirect searches of NP effects in rare processes (suppressed in the SM) allow us to explore regions of the parameter space that are not covered at LHC;
- If the LHC sees direct evidence of new physics, it is plausible to expect NP effects in *B*/*D*/T decays.

 \rightarrow Flavour structure of new physics?

 \rightarrow CP violation in new physics?

Complementarity to indirect NP searches:

- **LHCb** huge *B* and charm statistics: rare and very rare $B_{(s)}$ decays to clean final states, $e.g. \ B_{s(d)} \rightarrow \mu^+\mu^-, B \rightarrow K^*\mu^+\mu^-,...$
- Belle II well-defined initial state:
- final states consisting of neutrals, e.g. $B \to \pi^0 \pi^0$, $B \to K_s \pi^0$, $B \to K_s \pi^0 \gamma$, $B \to K_s K_s K_s \dots$
- final states with multiple missing particles (v's), e.g. $B \rightarrow \tau v_{\tau} B \rightarrow D^{(*)} \tau v_{\tau} \dots$

- inclusive modes, e.g. $B \rightarrow X_s \gamma, B \rightarrow X_s l^+ l^-, \dots$

Illustrative reach of NP searches

Physics case

Few examples of expected sensitivities @ 50 ab⁻¹ for observables sensitive to NP: Multiple v's:

 $\mathcal{B}(B \rightarrow \tau \nu) \pm 3\%, \ \mathcal{B}(B \rightarrow D^{(*)} \tau \nu) \pm 3\%$ Inclusive:

 $\mathcal{B}(B \to X_s \gamma) \pm 6\%$, $A_{CP}(B \to X_s \gamma) \pm 5.10^{-3}$, Neutrals:

$$S(B \rightarrow K_S \pi^0 \gamma) \pm 0.03, \ S(B \rightarrow K_S K_S K_S) \pm 0.04,$$

 $A_{CP}(B \rightarrow K_{S}\pi^{0}) \pm 0.04$

 $\mathcal{B}(\tau \rightarrow \mu \gamma) \pm 3.10^{-9}$ (90% U.L.) (lepton flavour violation)

(from arXiv:1002.5012)

Tensions between measurements and SM predictions

Puzzling CP violation in $B \rightarrow K\pi$ (Belle, Nature 452 (2008) 332)

CPV from interference between tree and penguin amplitudes

$$\Delta A \equiv A_{CP}^{\mathrm{B}^{0} \to K^{+}\pi^{-}} - A_{CP}^{\mathrm{B}^{+} \to K^{+}\pi^{0}} = -0.122 \pm 0.022 \text{ (HFAG 2013)}$$

 $\Delta A \approx 0$ in SM, NP (or hadronic effects) can change it

Model independent sume rule to test SM

Current measurements of $\mathcal{B}(\boldsymbol{B} \to \boldsymbol{D}^{(*)}\tau \boldsymbol{v})$ are systematically above SM predictions (and disfavour 2HDM II).

Belle: PRL 99 (2007)191807, PRD 82 (2010) 072005, arXiv:0910.4301; BaBar: PRL 109 (2012)101802

SM: M. Tanaka, Y. Watanabe, PRD 82 (2010)034027, S. Fajfer et al., PRD

Accellerator

Belle II @ SuperKEKB

SuperKEKB machine parameters

noromotoro		KEKB		SuperKEKB		unite
parameters		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	5.0	nm
Emittance ratio	κ	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	l _b	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0886	0.0830	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

- Small beam size "nano-beam" (vertical spot size is ~50nm !!)
- ~2 times higher currents
- Smaller boost to improve LER lifetime

From KEKB to SuperKEKB

Belle II @ SuperKEKB

Detector upgrade

Belle II @ SuperKEKB

Critical issues at L= 8×10³⁵/cm²/s:

- Higher background (×10-20)
 - radiation damage and higher occupancy
 - fake hits and pile-up noise in EM calorimeter
- Higher event rates (×10)
 - higher rate trigger (L1 trigg. 0.5→30 kHz)
 - DAQ, computing
- Targeted improvements:
 - increase hermeticity
 - improve IP and secondary vertex resolution
 - improve K_s and π^0 efficiency
 - improve K/π separation
 - add µ-ID and PID in end-caps
 - improve K_s and π^o efficiency
 - precise timing for neutrals

Details in Belle II Technical Design Report, arXiv:1011.03252 [physics.ins-det]

Detector upgrade

Belle II @ SuperKEKB

Belle II RPC μ & K₁ counter: 7.4 m CsI(TI) EM calorimeter: scintillator + Si-PM waveform sampling for end-caps 3.3 m electronics, pure Csl for end-caps .5 m 4 layers DSSD \rightarrow 2 layers PXD 7.1 m (DEPFET) + **4 layers DSSD** Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation Central Drift Chamber: counter (barrel), smaller cell size, prox. focusing Aerogel long lever arm **RICH** (forward)

Inner tracking (PXD, SVD)

Belle II @ Supersk EKB

- Pixels in novel DEPFET technology: thin (75µm) sensors give little multiple scattering, close to the IR
- Improved IP resolution and low momentum tracking ($p_T < 100 MeV$), 30% larger eff. of $K_s \rightarrow \pi^+\pi^-$ with vertex info

Mechanical mockup of pixel detector

DEPFET sensor

Inner tracking (PXD, SVD)

Belle II @ SuperKEKB

Successful beam tests at DESY, Jan 2014, with prototypes of all components integrated.

Hit found inside the PXD ROI

Central drift chamber (CDC)

Belle II @ SuperKEKB

- Extended outer radius, longer lever arm
 → improved momentum and dE/dx
 resolutions
- Larger inner radius, smaller cells near beampipe → more background-hard

Wire stringing in a clean room in Fuji Hall

CDC wire stringing (~51k wires) is done.

Particle identification (PID)

Belle II @ SuperKEKB

iTOP: partial Cherenkov ring reconstruction from x, y and t of propagation using info from PMTs (40 ps resolution)

Employ multiple layers with different refractive indices \Rightarrow Cherenkov images from individual layers overlap on the photon detector; increases the number of photons without degrading the resolution

Particle identification (PID)

Belle II @ SuperKEKB

Test beam results for Aerogel RICH

Clear Cherenkov image observed

ahist Cherenkov angle distribution

6.6 σ π/K at 4GeV/c !

EM calorimeter

- **barrel:** new electronics with 2MHz wave form sampling to measure time and amplitude fake clusters suppressed by factor 7
- endcap: pure CsI crystals; faster performance and better rad. hardness than TI doped CsI (later upgrade)

\mathbf{K}_{L} and muon detector

Resistive Plate Chambers to measure hadronic K_L showers and muon tracks Background in barrel consistent with cosmic ray flux \rightarrow no change needed Background increase in endcaps by factor 20-40 (worse shielding of neutrons along beams) Endcap RPCs will be replaced with scintillator based detectors

 \rightarrow better beam-background tolerance

SuperKEKB schedule

- Phase 1 (Jan May 2015) No superconducting IR magnets; no Belle II.
- Basic tuning, vacuum scrubbing
- Phase 2 (Feb June 2016) Full accelerator; Belle II except vertex detector
- beam collision tuning, background studies
- Phase 3 (late 2016) First physics, L = 10³⁴ cm⁻²s⁻¹ (1/2 of iTOP will be in place for first physics run. Remainder will be installed in summer 2017).

Luminosity projection

Belle II @ SuperKEKB

16/17

Summary

Belle II @ SuperKEKB

- B factories have proven to be an excellent tool for flavor physics, with reliable long term operation, and surpassing design values.
- Discovery potential of Belle II is complementary to LHC and to other experiments at intensity frontiers.
- Belle II detector construction and integration is proceeding according to schedule.
- SuperKEKB commissioning starts in Jan 2015, first physics runs in fall 2016
 ⇒ new exciting time in flavor physics.

Backup slides

Belle II @ SuperKEKB

Wide researche area is possible due to the clean experimental environment and well defined initial state in the e+e- experiments as well as high luminosity and general purpose detector

Physics sensitivity at Belle II

Observable	Belle 2006	SuperKEKB		[†] LHCb	
	$(\sim 0.5 \text{ ab}^{-1})$	$(5 ab^{-1})$	(50 ab^{-1})	(2 fb^{-1})	(10 fb ⁻¹)
Leptonic/semileptonic B decays					
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%	-	-
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 \mathcal{B}_{\mathrm{SM}}$	$4.3 { m ~ab^{-1}}$ for 5	σ discovery	-	-
$\mathcal{B}(B^+ \to D \tau \nu)$	-	8%	3%	-	-
${\cal B}(B^0 o D au u)$	-	30%	10%	-	-
LFV in τ decays (U.L. at 90% C.L.)					
$\mathcal{B}(\tau \to \mu \gamma) \ [10^{-9}]$	45	10	5	-	-
${\cal B}(au o \mu \eta) \; [10^{-9}]$	65	5	2	-	-
${\cal B}(au o \mu \mu \mu) \left[10^{-9} ight]$	21	3	1	-	-
Unitarity triangle parameters					
$\sin 2\phi_1$	0.026	0.016	0.012	~ 0.02	~ 0.01
$\phi_2 (\pi \pi)$	11°	10°	3°	-	-
$\phi_2 \ (ho \pi)$	$68^{\circ} < \phi_2 < 95^{\circ}$	3°	1.5°	10°	4.5°
$\phi_2 \ (ho ho)$	$62^{\circ} < \phi_2 < 107^{\circ}$	3°	1.5°	-	-
$\phi_2 \pmod{\phi_2}$		2°	$\lesssim 1^{\circ}$	10°	4.5°
$\phi_3 (D^{(*)}K^{(*)})$ (Dalitz mod. ind.)	20°	7°	2°	8°	
$\phi_3 (DK^{(*)}) (ADS+GLW)$	-	16°	5°	5-15°	
$\phi_3 (D^{(*)}\pi)$	-	18°	6°		
$\phi_3 \pmod{\phi_3}$		6°	1.5°	4.2°	2.4°
$ V_{ub} $ (inclusive)	6%	5%	3%	-	-
$ V_{ub} $ (exclusive)	15%	12% (LQCD)	5% (LQCD)	-	-
$\bar{ ho}$	20.0%		3.4%		
$\bar{\eta}$	15.7%		1.7%		

Physics sensitivity at Belle II

Observable	Belle 2006	SuperKEKB		$^{\dagger}LHCb$	
	$(\sim 0.5 \text{ ab}^{-1})$	$(5 \ {\rm ab^{-1}})$	$(50 \ { m ab}^{-1})$	(2 fb^{-1})	(10 fb^{-1})
Hadronic $b \rightarrow s$ transitions					
$\Delta S_{\phi K^0}$	0.22	0.073	0.029		0.14
$\Delta S_{\eta'K^0}$	0.11	0.038	0.020		
$\Delta S_{K_s^0 K_s^0 K_s^0}$	0.33	0.105	0.037	-	-
$\Delta A_{\pi^0 K_0^0}$	0.15	0.072	0.042	-	-
$\mathcal{A}_{\phi\phi K^+}$	0.17	0.05	0.014		
$\phi_1^{eff}(\phi K_S)$ Dalitz		3.3°	1.5°		
Radiative/electroweak $b \rightarrow s$ transitions					
$\mathcal{S}_{K^0_S\pi^0\gamma}$	0.32	0.10	0.03	-	-
$\mathcal{B}(\tilde{B} \to X_s \gamma)$	13%	7%	6%	-	-
$A_{CP}(B \to X_s \gamma)$	0.058	0.01	0.005	-	-
$C_9 \text{ from } A_{FB}(B \to K^* \ell^+ \ell^-)$	-	11%	4%		
C_{10} from $A_{FB}(B \to K^* \ell^+ \ell^-)$	-	13%	4%		
C_7/C_9 from $A_{FB}(B \to K^* \ell^+ \ell^-)$	-		5%		7%
R_K		0.07	0.02		0.043
$\mathcal{B}(B^+ \to K^+ \nu \nu)$	$^{\dagger\dagger} < 3 \; \mathcal{B}_{ m SM}$		30%	-	-
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$^{\dagger\dagger} < 40 \ B_{SM}$		35%	-	-
Radiative/electroweak $b \rightarrow d$ transitions					
$S_{\rho\gamma}$	-	0.3	0.15		
$\mathcal{B}(B \to X_d \gamma)$	-	24% (syst.)		-	-

hep-ex arXiv:1002.5012

τ lepton flavor violation

Large LFV

- Neutral Higgs mediated decay
- Important when Msusy >> EW scale

mode	Br($\tau \rightarrow \mu \gamma$)	$Br(\tau \rightarrow 3I)$
mSUGRA + seesaw	10 ⁻⁷	10 ⁻⁹
SUSY + SO(10)	10 ⁻⁸	10 ⁻¹⁰
SM + seesaw	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁹	10 ⁻⁸
SUSY + Higgs	10 ⁻¹⁰	10 ⁻⁷

Accelerator

Belle II @ SuperKEKB

Strategy to increase luminosity

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB¹²

Particle identification (PID)

Belle II @ SuperKEKB

iTOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K (~shifted in time) Test beam results iTOP

x-t diagram from beam-test

Aerogel RICH with focusing radiator

Increases the number of photons without degrading the resolution

EM calorimeter (ECL)

Belle II @ SuperKEKB

ECL (barrel):

new electronics with 2MHz wave form sampling

ECL (endcap):

pure CsI crystals; may be staged;

faster performance and better rad. hardness than TI doped CsI

A snapshot of the Belle II computing model

SuperKEKB schedule

Belle II @ SuperKEKB

